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Abstract

The purpose of this paper is to develop a realization theory and present the ‘gen-
eralized frequency response’ for an input-output map introduced in a previ;)us
paper. Relations with the realization of finite Volterra series will be outlined.
A simple example will be given to show that the new representations have im-

proved convergence properties.

090874

A




where

ad¥yY = Y

]

adx Y =adk Y [X,Y]=XY -YX  (Lie bracket)

1l

adpt'y [X,ad} Y] , m>1 (1.2)

2 Nonlinear input-output maps for bilinear sys-
tems :

Consider the bilinear system

m
z = Az + EUjNJ-z, z(0) = 2o
j=1
y = Cz (2.1)

where A, Nj,C are constant matrices of suitable dimensions. We shall present
in this section a new input-output map to represent this system.

Let uo(t) =1, ¢t > 0 and No = A, then (2.1) becomes
m
z = ZUijI, 2(0):130
j=0
y = Cz (2.2)
Consider the change of variable
2= e fyumir, (2.3)

we have z(0) = z0 = o .

Let Ug(t) = fot ux(7)dr . It is easy to prove [4] that the nonlinear input-output



map is given by

y(t) = CeNhUk(t)zo +

? ki T2

D)3 3 i |

Rijigk gk 0 °
CeNn[Urc(‘)-Uk(ﬂ)]1\,7".'e)\'k[Uh(ﬂ)—Uh("’x—x)]]\/'j‘._l

cee Nj,eN"[U“("’)'U*(”)]Nj,eN“U"("):co
uj(n) .. uj, (r)dry ...dn (2.4)
Returning to (2.1), the other representation [4] is given by

yit) = C®(,0)x

23 Th Ta
+ Z/ / / C‘I’(t,Tk)A@(Tk,Tk_l)A
k3170 Jo 0
e o AD(79, 1) A®(71,0)20 dry .. dTk (2.5)
where,®(t, 7) = T~1(#)['(r) and T is an n x n matrix solution of
, m
I = -T) N, , I(0)=1 (2.6)

§=1

Ezample:
As a trivial example, we consider A and N commuting. Thus, the input-output

map corresponding to the system

£ = Az+uNz

is given by
y(t) = CeA*NUC)z, @)
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Therefore, the series representation introduced here (see also [4]) and the Volterra

series are given by

At)*
n(t) = CCNU(‘)Z'(—ET)—%
k>0 ’

y2(t) = Ce?t Z Mzo
respectively. Obviously, if a truncation is to be made, y; will give a better
estimate than y, for most u’s.
Moreover, in our representation, we have the freedom to select the stable part
of the system, whereas in Volterra series representation, we are bound to take
A stable in order for the series to converge on [0,00] [9]. Of course, one of the

main advantages of Volterra series representation is its ‘multilinear’ nature.

3 Input-Output stability of bilinear systems :

In this section we shall present sufficient conditions for the L™ — stability of

bilinear systems. Detailed proofs can be found in [4]. We claim the following:

Theorem 1:
A sufficient condition for the system (2.2) to be L* — stable is that the following
hold:
(i) There exist at least one N (j = 0,...,m) (say Ni) having all its eigenvalues
with negative real parts,

(ii) limemoo fy[—prus(r) + au || Pe(7) |[ld7 < o0



where ax > 0 and pi > 0 are such that || eV*? ||< are™#**, Pu(t) = 35,4, wi N;
and u; > 0.

Furthermore, if the limit is —oo then y(t) — 0 as t — oo .

Corollary 1:
A sufficient condition for the system (2.2) to be L™ — stable is that the following
hold:
(i) There exist at least one Nj (§ = 0,...,m) (say Ni) having all its eigenvalues
with negative real parts,
() Yy o f1T=phu(r) + i e | ui(r) | 11 Ny [dr < 00
where oy > 0 and p; > 0 are such that || eV [|[< ape %!, Pi(t) = 3,45 u; N;
and ug > 0.

Furthermore, if the limit is —oo then y(t) — 0 ast — o0 .

Theorem 2:
A sufficient condition for the system (2.2) to be L™ — stable is that the following
hold:
(i) There exist a positive constant o and a non-decreasing function p satisfying
p(0) = 0 such that || &(¢,7) ||< ae=lb®=P(M) for t > 7 > 0
(i) Timy—eyoo[—p(8) + ¢ | A [ ] # 00

Furthermore, if the limit is —oo then y(t) — 0 as ¢t — oo.



Corollary 2:
A sufficient condition for the system to be L™ — stable isthat u; , j=1,...,m
satisfy the following inequality:
min{py— a1 || Ex+ 352, wiN; ||, —p2+ee || E2— 370, uiNj ||} 2 enea || A ]
where E; and E; are stable matrices satisfying || €& ||< aje=#¥* , ¢ > 0 for

some oy, p; > 0.

Hint: Take o = ajap and,

m m

p(t) = /Ot maz {p1—ay || Eﬁ; ui(T)N; ||, —p2tos || Ez—; up(T)N; |} } dr
i= j= 31)

and use theorem 2.

Remark:

The sufficient condition in corollary 2 has a nice geometric interpretation in

terms of the location of Z;'_’__l u; N; with respect to the balls centered at —FE;

and E; with radius £2- — o || A || and £2 + @, || A || respectively.

4 Realization of a nonlinear i/o map:

Consider the nonlinear input-output map given by

t T2
y(t) = / / / CeNIU@-U(m)] 4 NU(m)=U(n-n)] 4
0 JO 0

.. AeNU(r)=U(r)] geNU(m) g dry .. dry (4.1)



where again U(t) = [ u(r)dr.

Define z1,...,2141 by

zipa(t) = NV g,

t
z,(t) = / eN[U(t)-(T)]Azl.Q.l(T)dT

0

4
a(t) = /e~tv<r>-v<r>1A22(T)dT 4.2)
0

Therefore, differentiating with respect to t, we obtain,

y = Cz (4.3)
where
/0,40 0\ ( \
N 0 0 0 0
0 0 A 0
— _ 0N 0 0 0
A = ,N:
00 0 A
\ooo N )
kooo 0




[

¢ = (C,0,...,0), z

(.

Z2

1

\ 2141

)

, 2(0) =

(o)

0

\ %0 )

= 2p (44)

with dimensions [(I+1)n] x [(I+1)n],[(141)n] x [(I+1)n], n x [(I+1)n], (I+1)n

and (I + 1)n respectively.

Note that A is nilpotent of degree 1, i.e., z # 0 and At = o.

If we consider now the map obtained from the (I + 1)** term of the Volterra

series, we obtain,

z
y
where,
/A 0 0 ... 0\
= 0 A0 ... 0
A=
\0 00 ... A)
andC=C

n
|l

I
Qlf

=

z+uﬁz

z
(o n
0 0
0 0
\00

(45)
0 )
0
N
°)
(46)



Therefore, we can see that

A = St4
N = S§*N
C =C (4.7)
where S* is the operator
(010 .. 0)
0 0 I 0
st = (4.8)
00 0 ... I
\0 00 .0}

An immediate generalization is to consider the input-output map defined by

y(t) = eNVlg
l 4 Tx T3
+ 3 / / / CeNUM-U( 4 |
k=1 0 Jo 0
o AN~V 4o NU(T) g dry L dry, (4.9

If we define, as in section (4), z1,... 2141, We obtain
z = Az+4uNz
y = C'z (4.10)

where, this time, C = «,...,C).

Similar result for the finite Volterra series can be obtained and ? =C.



Remark:
There is clearly a one to one map between this representation and the Volterra
series representation, and since we know how to solve a minimal realization from
the Volterra series, we can deduce a minimal realization for this representation.

From the above discussion and the remark we have proved:

Theorem 3:

Given an i/o map of the form (4.9) there exists a minimal bilinear realization.

5 Generalized frequency response:

In [2] (see also [3])we have introduced the notion of the ‘generalized frequency
response’ as follows:

Consider a system S given in terms of an input-output map
S R® x L2]0,00] — L2[0,00) (5.1)
defined by
y(t) = S(=z0, v(.))(?) (5.2)
where u and y are respectively the input and the output of the system and z

is the initial state in some given state-space realization. For each fixed initial

state xg, we have a map
S = 8(z0,.) : LL]0,00) — L% [0, 00 (5.3)

10



For simplicity, we have assumned scalar input and scalar output.

Let T denotes the natural isomorphism between L2 [0,00] and £2 , then the
‘generalized frequency response’ for S is the induced map from £2 to 2 such

that the diagram

L2[0,00] — 9% _ L2[0,00]
7 7
r . S

commutes.

In this section, we shall derive the ‘generalized frequency response’ associated

with the input-output map (4.9). First we shall Consider the bilinear system
¢ = Az +ulNz, =z(0)=z
y = Cez (5.4)

We have,

' t
2(t) = NV 4 / NUO-UO) gz (r)dr (5.5)
o
from which we get
o) = NOn+

1



t pTx T3
+ [ [ ceroeay,
0 JO 0

E>1
o AN U UeNU (M) gy . dry (5.6)

We claim the following:

Theorem 4:
A sufficient condition for the nonlinear operator h defined by (5.6) to map
L2[0,00] N L®[0, 00] into itself is that the following hold:
(i) N has all its eigenvalues with negative real parts,
(i) there exists a function # such that fg[—pu(r) +all Alldr <n(t) < oo
with im0 n(t) = —o0.

where o > 0 ,p > 0 are such that || eN? ||< ae™? ¢ > 0.

Proof:

(5.5) yields
t
Il 2(2) I e |l 2o | +a/ e~ WOVOI A 2(r) lldr  (5.7)
0

Using Gronwall’s lemma, we obtain

eV || o(t) IS | zo || MM (5.8)
Therefore,
! Al|)d
lyt) | < allC || zo || elol-recrteliaiisr
< eflChllzolle™™® <00

12



hence,

v 2 /0 " y(e) 1P (et

* ) '
@ CIP llao I [ wiye (5.9)
0 .

IN

Using the Cauchy-Bouniakovsky inequality we obtain,
o0 o 1
lvR<a IO ol { [ wiat. [ #Oapi<oo  (510)
0 0

Theorem §:
The ‘generalized frequency response’ associated with the input-output map

(4.9) is the map s : £2 — £ defined by ¥ = s(u) where

Y = Cvg:co

i
&
T DD DIND DI IS ISR CEL)

m=1§120 fm4120

and o) = vQ() and v = v, (TW) are given by (5.20) and (5.21).

Proof :

Consider vg and v defined by

vw(t) = NV
v(t) = e NUM) 4NV (5.12)
‘We have
w(t)= ) N"‘—-l—;U"‘(t) (5.13)
m>0 m!

13



and the Baker-Campbell-Hausdorfl formula (1.1) yields

o) = 3 (~1)"adF Ami!Um(t)

m20
but
1 t T T2
—"-&—!U'"(t)=‘/0‘/0 ‘/; u(r1) .. . u(rTm)d7 ... d7T,
Thus
i fTm T2
vo(t) = ZN"‘/ / / u(r1) ... u(Tm)dr ... d7Ty
m>0 o Jo 0
and
t Tm T2
o) = 3 (~1)™adf A/ / / w(11) . u(rim)dr . .. AT
0 Jo 0

m20

Assume u, v, and vp are in L2 [0,00], so we can write u = Ekzo Uk €k,

v =Y ko Uker, and v0 = Yops o viek
Now assume that the basis {e;} satisfies the assumption

(A) the functions

t
el . 1 "_’fo OT"‘... 07’ e, (1) .. .65 (Tm)dTy ... dTr;

and

(5.14)

(5.15)

(5.16)

(5.17)

t (Tm
Bl jman — e () fy J Or’c,-,(n)...ej_(rm)drl...drm

belong to L2,[0, 00] for all indices.

14



Then, under assumption (A), we can write

SAROEDILIRAC (5.18)
k>0
and
Bl iman @) = DB L ex(?) | (5.19)
k>0
Therefore,
vp = Z E E N™ ;’:k.’m T () (5.20)
vy = Z Z z(—l) ad'" Aa;’: k; Uj, . ..ujmzvk(ﬁ) (521)
m205;20  jm20
Thus,

Cvkzo+z Z Z 1Jm+1 Jm+1”J TR (5.22)

M=1jmp1 20 5120

where yx =<y , € >w. Hence, we have proved the theorem.

6 Conclusion:

In this paper we have presented a realization theory for an input-output map
introduced in [4], outlining the link with the realization of finite Volterra se-
ries. We have defined the ‘generalized frequency response’ [2](see also [3]) for
this input-output map. A simple example has been included to show how this

representation compares with the Volterra series representation.
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