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LOCALIZED PATTERNS IN PERIODICALLY FORCED SYSTEMS

A S ALNAHDI∗, J NIESEN, A M RUCKLIDGE AND T WAGENKNECHT†

Abstract. Spatially localized, time-periodic structures are common in pattern-forming systems,
appearing in fluid mechanics, chemical reactions, and granular media. We examine the existence of
oscillatory localized states in a PDE model with single frequency time dependent forcing, introduced
in [20] as phenomenological model of the Faraday wave experiment. In this study, we reduce the
PDE model to the forced complex Ginzburg–Landau equation in the limit of weak forcing and
weak damping. This allows us to use the known localized solutions found in [7]. We reduce the
forced complex Ginzburg–Landau equation to the Allen–Cahn equation near onset, obtaining an
asymptotically exact expression for localized solutions. We also extend this analysis to the strong
forcing case recovering Allen–Cahn equation directly without the intermediate step. We find excellent
agreement between numerical localized solutions of the PDE, localized solutions of the forced complex
Ginzburg-Landau equation, and the Allen–Cahn equation. This is the first time that a PDE with
time dependent forcing has been reduced to the Allen–Cahn equation, and its localized oscillatory
solutions quantitatively studied.
This paper is dedicated to the memory of Thomas Wagenknecht.

Key words. Pattern formation, oscillons, localized states, forced complex Ginzburg-Landau
equation.

AMS subject classifications.

1. Introduction. Localized patterns arise in a wide range of interesting pattern-
forming problems. Much progress has been made on steady problems, where bistabil-
ity between a steady pattern and the zero state leads to localized patterns bounded
by stationary fronts between these two states [6, 12]. In contrast, oscillons, which are
oscillating localized structures in a stationary background, are relatively less well un-
derstood [17, 23]. Fluid [3], chemical reaction [19], and granular media [23] problems
have been studied experimentally. When the surface of the excited system becomes
unstable (the Faraday instability), standing waves are found on the surface of the
medium. Oscillons have been found where this primary bifurcation is subcritical [11],
and these take the form of alternating conical peaks and craters against a stationary
background.

Previous studies have averaged over the fast timescale of the oscillation and have
focused on PDE models where the localized solution is effectively steady [2, 7, 11].
Here we will seek localized oscillatory states in a PDE with time dependent paramet-
ric forcing. We find excellent agreement between oscillons in this PDE and steady
structures found in appropriate amplitude equations; this the first complete study of
oscillatory localized solutions in a PDE with explicit time dependent forcing.

The complex Ginzburg–Landau (CGL) equation is the normal form description
of pattern forming systems close to a Hopf bifurcation with preferred wavenumber
zero [8]. Adding time dependent forcing to the original problem results in a forcing
term in the CGL equation, the form of which depends on the ratio between the Hopf
and driving frequencies. When the Hopf frequency is half the driving frequency (the
usual subharmonic parametric resonance), the resulting PDE is known as the forced
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complex Ginzburg–Landau (FCGL) equation:

AT = (µ̃+ iν)A+ (1 + iκ)AXX − (1 + iρ)|A|2A+ ΓĀ, (1.1)

where all parameters are real, and µ̃ is the distance from the onset of the oscillatory
instability, ν is the detuning between the Hopf frequency and the driving frequency,
κ represents the dispersion, ρ is the nonlinear frequency correction, and Γ is the
forcing amplitude. The complex amplitude, A(X,T ), represents the oscillation in a
continuous system near a Hopf bifurcation point in one spatial dimension. In the
absence of forcing, the state A = 0 is stable, so µ̃ < 0. The amplitude of the response
is |A|, and arg(A) represents the phase difference between the response and the forcing.

The FCGL equation is a valid description of the full system in the limit of weak
forcing, weak damping, small amplitude oscillations and near resonance [9, 14]. This
model is known to produce localized solutions in 1D [7] and in 2D [18]. It should be
noted that these localized solutions have large spatial extent (in the limits mentioned
above) and so are different from the oscillons observed in fluid and granular experi-
ments. In spite of the cubic coefficient in (1.1) having negative real part, the initial
bifurcation at Γ = Γ0 is subcritical, the unstable branch turns around in a saddle-node
bifurcation, and so there is a nonzero stable solution (the flat state) close to Γ0. The
localized solution is a homoclinic connection from the zero state back to itself (Figure
1.1). Further from Γ0, there are fronts (heteroclinic connections) between the zero
and the flat state and back.
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Fig. 1.1. Localized solutions of the FCGL equation (1.1) with µ̃ = −0.5, ρ = 2.5, ν = 2,
κ = −2, and Γ = 1.496; the bifurcation point is at Γ0 = 2.06, following [7].

The aim of this article is to investigate localized solutions in a PDE with para-
metric forcing, introduced in [20] as a generic model of parametrically forced systems
such as the Faraday wave experiment. We simplify the PDE by removing quadratic
terms, by taking the parametric forcing to be cos(2t), where t is the fast time scale,
by working in one rather than two spatial dimensions, and by removing fourth-order
spatial derivatives. The resulting model PDE is:

Ut = (µ+ iω)U + (α+ iβ)Uxx + C|U |2U + iRe(U)F cos(2t), (1.2)

where U(x, t) is a complex function, µ < 0 is the distance from onset of the oscillatory
instability, ω, α, β, and F are real parameters, and C is a complex parameter.
In this model the nonlinear terms are chosen to be simple in order that the weakly
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nonlinear theory and numerical solutions can be computed easily, and the dispersion
relation can be readily controlled. The model shares some important features with
the Faraday wave experiment but does not have a clear physical interpretation. The
linearized problem reduces to the damped Mathieu equation in the same way that
hydrodynamic models of the Faraday instability reduce to this equation in the inviscid
limit [5].

We first seek oscillon solutions of (1.2) by choosing parameter values where (1.2)
can be reduced to the FCGL equation (1.1). In particular, the preferred wavenumber
will be zero, and we will take F to be small, µ < 0 to be small, and ω will be close
to 1. We will also consider strong forcing and damping. In the Faraday wave exper-
iment the k = 0 mode is neutral and cannot be excited, which means experimental
oscillons can only be seen with non-zero wavenumbers. This indicates a qualitative
difference between this choice of parameters for the PDE model and the Faraday wave
experiment.

Here we study equation (1.2) in two ways. First, in Section 2 we reduce the model
PDE asymptotically to an amplitude equation of the form of the FCGL equation (1.1)
by introducing a multiple scales expansion. The numerically computed localized solu-
tions of the FCGL equation (e.g., Figure 1.1) will then be a guide to finding localized
solutions in the model PDE. Second, we solve the model PDE itself numerically using
Fourier spectral methods and Exponential Time Differencing (ETD2) [10]. We are
able to continue the localized solutions using AUTO [4], and we make quantitative
comparisons between localized solutions of the model PDE and the FCGL equation.
In Sections 3 and 5 we will do reductions of the FCGL equation and the PDE to the
Allen–Cahn equation [1, 15] in the weak and strong damping cases respectively; the
Allen–Cahn equation has exact localized sech solutions. We give numerical results in
Section 4 and conclude in Section 6.

2. Derivation of the amplitude equation: weak damping case. In this
section we will take the weak forcing, weak damping, weak detuning and small am-
plitude limit of the model PDE (1.2), and derive the FCGL equation (1.1). Before
taking any limits and in the absence of forcing, let us start by linearizing (1.2) about
U = 0, and consider solutions of the form U(x, t) = exp(σt+ ikx), where σ is the
complex growth rate of a mode with wave number k. The growth rate σ is given by

σ = µ− αk2 + i(ω − βk2). (2.1)

The forcing F cos(2t) will drive a subharmonic response with frequency 1; by choosing
α > 0 and ω close to 1, we can arrange that a mode with k close to zero will have the
largest growth rate. With weak forcing we also need µ, which is negative, to be close
to zero, otherwise all modes would be damped. In this case, we are close to the Hopf
bifurcation that occurs at µ = 0.
We now consider the linear theory of the forced model PDE:

Ut = (µ+ iω)U + (α+ iβ)Uxx + iRe(U)F cos(2t), (2.2)

This can be transformed to a Mathieu-like equation [20]. The normal expectation
would be that cos(2t) would drive a response at frequencies +1 and −1. However,
because ω is close to 1, the leading behavior of (2.2) is

∂

∂t
U = iU, or `1U =

(
∂

∂t
− i
)
U = 0.
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The component of U at frequency −1 cancels at leading order, while the component
at frequency +1 dominates. Furthermore, since ω = 1 + ν with ν small, and since the
strongest response is at or close to wavenumber k where ω − βk2 = 1, modes with
wavenumber k = 0 will be preferred. Therefore, the leading solution is proportional
to eit, and so we will seek solutions of the form U(x, t) = Aeit, where A is a complex
constant. The argument of A relates to the phase difference between the driving force
and the response, and is not arbitrary. Later, we will allow A to depend on space and
time.
To apply standard weakly nonlinear theory, we need the adjoint linear operator `†1.
First we define an inner product between two functions f(t) and g(t) by

〈
f(t), g(t)

〉
=

1

2π

∫ 2π

0

f̄(t)g(t)dt, (2.3)

where f̄ is the complex conjugate of f . With this inner product, the adjoint operator
`†1, defined by

〈
f, `1g

〉
=
〈
`†1f, g

〉
, is given by

`†1 = i− d

dt
.

The adjoint eigenfunction is then U† = eit. We take the inner product of (2.2) with
this adjoint eigenfunction:

0 =
〈
U†, `1U

〉
+
〈
U†, (µ+ iν)U + iRe(U)F cos(2t)

〉
= 0 +

1

2π

∫ 2π

0

(µ+ iν)Ue−it +
iF

4
(U + Ū)(eit + e−3it)dt.

We write U =
∑+∞
j=−∞ Uje

ijt, and Ū =
∑+∞
j=−∞ Ūje

−ijt, so

0 = (µ+ iν)U1 +
iF

4
(U−1 + U3 + Ū1 + Ū−3).

Since the frequency +1 component of U dominates at onset, as discussed above, we
retain only U1 and Ū1, which satisfy[

µ+ iν iF
4

− iF4 µ− iν

] [
U1

Ū1

]
=

[
0
0

]
This system has a nonzero solution when its determinant is zero; this gives the critical
forcing amplitude F0 = 4

√
µ2 + ν2. This equation also fixes the phase of U1.

To perform the weakly nonlinear calculation, we introduce a small parameter ε and
make the substitutions: ω = 1 + ε2ν, F −→ ε2F , µ −→ ε2µ, and expand the solution
U in powers of ε as

U = εU1 + ε2U2 + ε3U3 + ..., (2.4)

where U1, U2, U3, .... are O(1) complex functions.
At O(ε), we get `1U1 = ( ∂∂t − i)U1 = 0, which has solutions of the form

U1 = A(X,T )eit,
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where the amplitude A is O(1), and X and T are slow space and time variables:
T = ε2t, and X = εx. At O(ε2), we have U2(x, t) = 0. At O(ε3), equation (1.2) is
reduced to

`1U3 +
∂U1

∂T
= (µ+ iν)U1 + (α+ iβ)

∂2U1

∂X2
+ C|U1|2U1 + iF cos(2t)Re(U1),

We take the inner product with U†1 , and use
〈
U†1 , `1U3

〉
= 0 to find the amplitude

equation for a long-scale modulation:

AT = (µ+ iν)A+ (α+ iβ)AXX + C|A|2A+
iF

4
Ā. (2.5)

We can do a rescaling of the equation (2.5) in order to bring it to the standard
FCGL form by rotating A −→ Aei

π
4 , which removes the i in front of the Ā term but

does not affect any other term. With this, the amplitude equation of the model PDE
reads

AT = (µ+ iν)A+ (α+ iβ)AXX + C|A|2A+ ΓĀ, (2.6)

where Γ = F
4 . A similar calculation in two dimensions yields the same equation but

with AXX replaced by AXX +AY Y .
One can see that the amplitude equation (2.6) takes the form of the FCGL equation
(1.1). We are now in a position to use the results from [7], where they find localized
solutions of (1.1), to look for localized solutions of the model PDE (1.2).

The stationary homogeneous solutions of (2.6), which we call the flat states, can
easily be computed. These satisfy:

0 = (µ+ iν)A+ C|A|2A+ ΓĀ.

To solve this steady problem we look for solutions of the form A = Reiφ, where R is
real and φ is the phase. Dividing by Reiφ results in:

0 = (µ+ iν) + CR2 + Γe−2iφ. (2.7)

We can then separate the real and imaginary parts and eliminate φ by using sin2 φ+
cos2 φ = 1 to get a fourth order polynomial:

(C2
r + C2

i )R4 + 2(µCr + νCi)R
2 − Γ2 + µ2 + ν2 = 0, (2.8)

where C = Cr + iCi. This can be solved for R2, from which φ can be determined
using (2.7).
Examination of the polynomial (2.8) shows that when the forcing amplitude Γ reaches

Γ0 =
√
µ2 + ν2, a subcritical bifurcation occurs provided that µCr + νCi < 0. A flat

stateA−uni is created, which turns into theA+
uni state at Γd =

√
− (µCr+νCi)2

(C2
r+C

2
i )

+ µ2 + ν2,

when a saddle-node bifurcation occurs. We will reduce (2.6) further in Section 3 by
assuming we are close to onset, and finding explicit expressions for localized solutions.

3. Reduction to the Allen–Cahn equation: weak damping case. The
FCGL equation (2.6) can be reduced to the Allen–Cahn equation [7, Appendix A] by

setting Γ = Γ0 + ε21λ, where Γ0 =
√
µ2 + ν2 is the critical forcing amplitude, λ is the

bifurcation parameter, and ε1 is a new small parameter that controls the distance to
onset. We expand A in powers of ε1 as

A(X,T ) = ε1A1(X,T ) + ε21A2(X,T ) + ε31A3(X,T ) + ...,



6 A S Alnahdi, J Niesen, A M Rucklidge, and T Wagenknecht

where A1, A2, A3 are O(1) complex functions. We further scale ∂
∂T to be O(ε21) and

∂
∂X to be O(ε1).
At O(ε1) we get

0 = (µ+ iν)A1 +
√
µ2 + ν2Ā1,

which defines a linear operator[
µ+ iν

√
µ2 + ν2√

µ2 + ν2 µ− iν

] [
A1

Ā1

]
=

[
0
0

]
The solution is A1 = B(X,T )eiφ1 , where B is real, and the phase φ1 is fixed by
e−2iφ1 = − µ+iν√

µ2+ν2
. This gives

φ1 = tan−1

(
µ+

√
µ2 − ν2
ν

)
,

At O(ε31), we have

BT e
iφ1 = (µ+ iν)A3 + (α+ iβ)BXXe

iφ1 + CB3eiφ1 + λBe−iφ1 + Γ0Ā3. (3.1)

We take the complex conjugate of (3.1) and multiply this by e−iφ1 , and then add
(3.1) multiplied by eiφ1 to eliminate A3. With this, equation (2.6) reduces to the
Allen–Cahn equation

BT =
−λ
√
µ2 + ν2

µ
B +

(αµ+ βν)

µ
BXX +

µCr + νCi
µ

B3. (3.2)

We can readily find localized solutions of (3.2) in terms of hyperbolic functions. This
leads to an approximate oscillon solution of (2.6) of the form

A =

√
2(Γ− Γ0)

√
µ2 + ν2

µCr + νCi
sech

√ (Γ− Γ0)
√
µ2 + ν2

(αµ+ βν)
X

 eiφ1 , (3.3)

provided Γ < Γ0, µ < 0, µCr + νCi < 0, and αµ + βν < 0. Note that in the PDE
(1.2) we have the assumption U1 = εAeit, therefore the spatially localized oscillon is
given approximately by

Uloc =

√
(F − F0)

√
µ2 + ν2

2(µCr + νCi)
sech

√ (F − F0)
√
µ2 + ν2

4(αµ+ βν)
x

 ei(t+φ1), (3.4)

again provided F < F0. We compare the approximate solution Uloc with a numerical
solution of the PDE below, as a dotted line in Figure 4.5(a).

4. Numerical results: weak damping case. In this section, we present nu-
merical solutions of (1.1) (in the form written in (2.6)) and (1.2), using the known [7]
localized solutions of (1.1) to help find similar solutions of (1.2), and comparing the
bifurcation diagrams of the two cases.

We use both time-stepping methods and continuation on both PDEs. For time-
stepping, we use a pseudospectral method, using FFTs with up to 1280 Fourier modes,
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and the exponential time differencing method ETD2 [10], which has the advantage of
solving the non-time dependent linear parts of the PDEs exactly. We treat the forcing
term (ΓĀ and Re(U) cos(2t)) with the nonlinear terms.

For continuation, we use AUTO [4], treating x as the time-like independent vari-
able, to find steady solutions of the FCGL (2.6). For the PDE (1.2), we represent
solutions with a truncated Fourier series in time with the frequencies −3, −1, 1 and
3. The choice of these frequencies comes from the forcing Re(eit) cos(2t) in the PDE,
taking U = eit as the basic solution, as described above.
Following [7] we will take illustrative parameter values for the amplitude equation
(2.6): µ = −0.5, α = 1, β = −2, and C = −1 − 2.5i, and solve the equation on
domains of size LX = 20π. For (1.2), we use ε = 0.1, which implies µ = −0.005,
F = 0.04Γ, ω = 1.02, Lx = 200π, and use the same α, β, and C. We show examples
of localized solutions in the FCGL equation and the PDE (1.2) in Figure 4.1, demon-
strating the quantitative agreement as expected between the two.
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Fig. 4.1. (a) Example of a localized solution to the FCGL equation (2.5) with µ = −0.5, and
F = 5.984. (b) Example of a localized solution to the PDE model (1.2) with µ = −0.5ε2, and
F = 5.984ε2, where ε = 0.1. In both models α = 1, β = −2, and ν = 2, and C = −1 − 2.5i. Note
the factor of ε in the scalings of the two axes.

In all bifurcation diagrams we present solutions in terms of their norms

N =

√
2

Lx

∫ Lx

0

|U |2 dx,

We computed (following [7]) the location of these stable localized solutions in the (ν,Γ)
parameter plane, shown in green in Figure 4.2. In this figure one can see that the
region of localized solutions starts where µCr+νCi = 0, when the primary bifurcation
changes from supercritical to subcritical [13, 16], and gets wider as ν increases. We
also show the bistability region of the amplitude equation between the primary (Γ0)
and the saddle-node (Γd) bifurcations.

Part of the difficulty of computing localized solutions in the PDE comes from
finding parameter values where these are stable. In the FCGL equation with ν =
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Fig. 4.2. The (ν,Γ)-parameter plane for FCGL equation (2.6), µ = −0.5, α = 1, β = −2, and
C = −1 − 2.5i, recomputed following [7]. Stable localized solutions exist in the shaded green region.

The dashed red line is the primary pitchfork bifurcation at Γ0 =
√
µ2 + ν2, and the solid black line

is the saddle-node bifurcation at Γd.

Fig. 4.3. The (ν, F )-parameter plane of the PDE model (1.2) with µ = −0.005, α = 1, β = −2,
and C = −1 − 2.5i. Stable localized solutions exist in the shaded grey region. The dashed black line
is the primary pitchfork bifurcation and the dashed red line is the saddle-node bifurcation at Fd.

2, stable localized solutions occur between Γ∗1 = 1.4272 and Γ∗2 = 1.5069. In the
PDE with parameter values as above, we therefore estimate that the stable localized
solutions should exist between F ∗1 = 0.04Γ∗1 = 0.0573 and F ∗2 = 0.0600. We found
by time-stepping a stable oscillatory spatially localized solution in the PDE model
(1.2) at F = 0.058 and used this as a starting point for continuation with AUTO. We
found stable localized solutions between saddle-node bifurcations, at F ∗1 = 0.05688
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and F ∗2 = 0.06001, which compares well with the prediction from the FCGL equation.
In addition, the bistability region was determined by time-stepping to be between
Fd = 0.04817 and F0 = 0.08165. As ν is varied, the grey shaded region in Figure 4.3
shows the region where stable localized solutions exist in the PDE.

The snaking regions of the PDE model and the FCGL equation are presented in
Figure 4.4. In this figure we rescale the PDE, so we can plot the bifurcation diagrams
of the amplitude equation and the PDE model in top of each other. The agreement
is excellent. Examples of localized solutions are given in Figure 4.5 (a)-(f) as we go
along the localization curve. Our comparison between results from the FCGL equation
(2.6) in Figure 4.2 and results from the model PDE (1.2) in Figure 4.3 shows excellent
agreement.

Note the decaying spatial oscillations close to the flat state in Figure 4.5 (c)-
(f): it is these that provide the pinning necessary to have parameter intervals of
localized solutions. These parameter intervals become narrower as the localized flat
state becomes wider (see Figure 4.4) since the oscillations decay in space, in contrast
with the localized solutions found in the subcritical Swift–Hohenberg equation [6].

In this study so far our calculations have been based on assuming weak damping
and weak forcing. Next, we study the PDE in the strong forcing case.

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
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0.8
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Γ
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(b)

(d)

(e)

(c)

Fig. 4.4. The red curves correspond to bifurcation diagram of the PDE model and the blue
curves correspond to the FCGL equation. Solid (dashed) lines correspond to stable (unstable) solu-
tions. For the PDE we use F = 4ε2Γ. Parameters are otherwise as in Figure 4.1. Example solutions
at the points labeled (a)-(f) are in Figure 4.5. Bifurcation point in the FCGL is Γ0 = 2.06, and in
the PDE is Γ0 = 2.05.
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Fig. 4.5. Examples of solutions to (1.2) equation along the localized branch with µ = −0.005,
α = 1, β = −2, ν = 2, and C = −1 − 2.5i. Bistability region is between F0 = 0.08165 and
Fd = 0.048173, and localized oscillons branch is between F1

∗ = 0.05688 and F2
∗ = 0.06001. (a)

F = 0.07499. (b) F = 0.05699. (c)F = 0.06015. (d) F = 0.05961. (e) F = 0.05976. (f)
F = 0.05975. Dot lines represent the real (blue) and imaginary (red) parts of Uloc.

5. Reduction of the PDE to the Allen–Cahn equation: strong damping
case. In the strong damping, strong forcing case, the linear part of the PDE is
not solved approximately by U1 = eit. Rather, a Mathieu equation must be solved
numerically to get the eigenfunction [20]. In this case, weakly nonlinear calculations
lead to the Allen–Cahn equation directly, without the intermediate step of the FCGL
equation (1.1) with its ΓĀ forcing. The advantages of reducing the PDE to the Allen–
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Cahn equation are that localized solutions in this equation are known analytically,
and that demonstrates directly the existence of localized solutions in the PDE model.
We write the solution as U = u+iv, where u(x, t) and v(x, t) are real functions. Thus,
equation (1.2) is written in terms of real and imaginary parts of U as

∂u

∂t
= (µ+ α∇2)u− (ω + β∇2)v + Cr(u

2 + v2)u− Ci(u2 + v2)v,

∂v

∂t
= (ω + β∇2)u+ (µ+ α∇2)v + Cr(u

2 + v2)v + Ci(u
2 + v2)u+ f(t)u.

(5.1)

We begin our analysis by linearizing (5.1) about u = 0 and v = 0. We write the
periodic forcing function as f(t) = fc(t)(1 + ε21λ), where fc(t) = Fc cos(2t). Here, Fc
is the critical forcing amplitude, which must be determined numerically, and is where
the trivial solution loses stability. We seek a critical eigenfunction of the form

U = p1(t) + iq1(t), (5.2)

where p1(t) and q1(t) are real 2π-periodic functions. Note that in writing u + iv in
this form, we are taking the critical wavenumber to be zero. The analysis follows that
presented in [20], but in the current work the spatial scaling and the chosen solution
are different, again because the critical wavenumber is zero. Substituting into (5.1)
at onset leads to [

∂

∂t
− µ

]
p1 = −ωq1,[

∂

∂t
− µ

]
q1 = ωp1 + fc(t)p1,

(5.3)

which can be combined to give a damped Mathieu equation[
d

dt
− µ

]2
p1 +

(
ω2 + fc(t)ω

)
p1 = 0,

or

p̈1 − 2µṗ1 +
(
µ2 + ω2 + fc(t)ω

)
p1 = Lp = 0, (5.4)

defining a linear operator

L =
∂2

∂t2
− 2µ

∂

∂t
+ (µ2 + ω2 + ωfc(t))

The critical forcing function fc(t) = Fc cos(2t) is determined by the condition that
(5.4) should have a non-zero solution p1(t), from which q1(t) is found by solving the
top line in (5.3). Using the inner product (2.3), we have the adjoint linear operator,
given by

L† =
∂2

∂t2
+ 2µ

∂

∂t
+ (µ2 + ω2 + ωfc(t)).

The adjoint equation is L†p†1 = 0, where p†1 is the adjoint eigenfunction, which is
computed numerically.
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In order to reduce the model PDE (1.2) to the Allen–Cahn equation, we expand
solutions in powers of ε1 as

u = ε1u1 + ε21u2 + ε31u3 + ...,

v = ε1v1 + ε21v2 + ε31v3 + ...,
(5.5)

where ε1 � 1 and u1, u2, u3, ..., v1, v2, v3, ... are O(1) real functions. We introduce
the slow time variable T = ε21t and the slow space variable X = ε1x. Substituting
equation (5.5) into (5.1), the associated equations at each power of ε1 are as follows.
At O(ε1), the linear argument above arises, and we have u1 + iv1 = B(X,T )(p1 + iq1),
where p1 + iq1 is the critical eigenfunction, normalized so that 〈p1 + iq1, p1 + iq1〉 = 1,
and B is a real function of X and T . Note that the phase of the response is determined
by the critical eigenfunction. At O(ε31), the problem is written as(

∂

∂t
− µ

)
u3 +

∂u1
∂T

= −ωv3 + α
∂2u1
∂X2

− β ∂
2v1
∂X2

+ Cr(u
2
1 + v21)u1 − Ci(u21 + v21)v1,(

∂

∂t
− µ

)
v3 +

∂v1
∂T

= ωu3 + fc(t)u3 + λfc(t)u1 + α
∂2v1
∂X2

+ β
∂2u1
∂X2

+ Cr(u
2
1 + v21)v1

+ Ci(u
2
1 + v21)u1.

Eliminating v3, we find

Lu3 = −
(
∂

∂t
− µ

)
∂u1
∂T

+ ω
∂v1
∂T

+

(
∂

∂t
− µ

)(
α
∂2u1
∂X2

− β ∂
2v1
∂X2

)
− ω

(
α
∂2v1
∂X2

+ β
∂2u1
∂X2

)
− ωλfc(t)u1

− ω
(
Cr
(
u21 + v21

)
v1 + Ci

(
u21 + v21

)
u1
)

+

(
∂

∂t
− µ

)(
Cr
(
u21 + v21

)
u1 − Ci

(
u21 + v21

)
v1
)
.

(5.6)

We apply the solvability condition to equation (5.6) 〈p†1, Lu3〉 = 0. We substitute the
solution u1 = Bp1, and v1 = Bq1 into equation (5.6), and then we take the inner

product between p†1 and this equation. Note that we use
(
∂
∂t − µ

)
p1 = −ωq1, so the

equation can be then written as〈
p†1, 2

(
∂

∂t
− µ

)
p1

〉
∂B

∂T
= −

〈
p†1, ωfc(t)p1

〉
λB

+

〈
p†1,

((
∂

∂t
− µ

)
(αp1 − βq1)− ω (αq1 + βp1)

)
∂2B

∂X2

〉
+

〈
p†1,−ω

(
Cr
(
p21 + q21

)
q1 + Ci

(
p21 + q21

)
p1
)

+

(
∂

∂t
− µ

)(
Cr
(
p21 + q21

)
p1 − Ci

(
p21 + q21

)
q1
)〉

B3,

(5.7)



Localized Patterns in Periodically Forced Systems 13

We find coefficients of the above equation by computing the inner products numeri-
cally. Therefore, the PDE is reduced to the Allen–Cahn equation as

BT = 1.5687λB + 11.1591BXX + 9.4717B3, (5.8)

for the parameter values in Figure 5.1 (a). Note that U = ε1U1, X = ε1x, and
ε21λ = F

F0
− 1, so that the spatially localized solution takes the form

Uloc =

√
−3.1374( FF0

− 1)

9.4717
sech

√−1.5687( FF0
− 1)

11.1591
x

 (p1(t) + iq1(t)) . (5.9)

Thus, we have found approximate examples of localized solutions of the PDE, which
are qualitatively similar to those found in the weak damping case. Figure 5.1 (a) shows
the comparison between the numerical solution and Uloc. This solution is continued
using AUTO to compute a bifurcation diagram in Figure 5.1, again qualitatively
similar to the weak damping case.
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Fig. 5.1. Examples of solutions to (1.2) in the strong damping limit with ε = 0.5, F = 2.304,
µ = −0.125, α = 1, β = −2, ν = 2, ω = 1 + νε2, and C = −1 − 2.5i. The bistability region is
between F0 = 2.3083 and Fd = 1.2228. Dotted lines in (a) represent the real (blue) and imaginary
(red) parts of Uloc.

6. Conclusion. In the present study we examine the possible existence of spa-
tially localized structures in the model PDE (1.2) with time dependent parametric
forcing. Since bistability is known to lead to the formation of localized solutions, we
consider subcritical bifurcations from the zero state. The localized solutions we find
are time dependent, unlike most previous work on this class of problems; they oscil-
late with half the frequency of the driving force. In the weak damping, weak forcing
limit, the solutions and bifurcations of the PDE are accurately described by its am-
plitude equation, the forced complex Ginzburg-Landau (FCGL) equation. Our work
uses results in [7], where localized solutions are observed in the FCGL equation in 1D.
We reduce the FCGL equation to the Allen–Cahn equation to find an asymptotically
exact spatially localized solution of the PDE analytically, close to onset.
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By continuing the numerical solution of the PDE model (1.2) that we take from time-
stepping as an initial condition, we found the branch of localized states. The stability
of this branch was determined by time-stepping, and the region where stable localized
solutions occur was found. The saddle-node bifurcations on the snaking curve arise
from pinning associated with the decaying spatial oscillations on either edge of the
flat state.
The numerical examples we give in this paper indicate how localized solutions exist
in 1D, and show excellent agreement between the PDE model and the FCGL equa-
tion. The agreement remains qualitatively good even with strong damping and strong
forcing. In strong damping limit, we reduce the PDE directly to the Allen–Cahn equa-
tion analytically, close to onset. By continuing the approximate solution, examples of
localized oscillons are observed numerically.

In the current work the preferred wave number is zero, so our results are directly
relevant to localized pattern found in Turing systems, such as those found in [22, 24].
In contrast, in the Faraday wave experiment, the preferred wavenumber is non-zero,
and so this work is not directly relevant to the oscillons that are observed there. Our
interest next is to find and analyze spatially localized oscillons with non-zero wave
number in the PDE model, both in 1D and in 2D. This will indicate how localized
solutions might be studied in (for example) the Zhang–Vinals model [25], and how
the weakly nonlinear calculations of [21] might be extended to the oscillons observed
in the Faraday wave experiment.
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