
This is a repository copy of From data to analysis: linking NWChem and Avogadro with the
syntax and semantics of Chemical Markup Language.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/77810/

Version: Published Version

Article:

de Jong, WA, Walker, AM and Hanwell, MD (2013) From data to analysis: linking NWChem
and Avogadro with the syntax and semantics of Chemical Markup Language. Journal of
Cheminformatics, 5. 25. 1 - 12. ISSN 1758-2946

https://doi.org/10.1186/1758-2946-5-25

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

RESEARCH ARTICLE Open Access

From data to analysis: linking NWChem and
Avogadro with the syntax and semantics of
Chemical Markup Language
Wibe A de Jong1*†, Andrew M Walker2† and Marcus D Hanwell3†

Abstract

Background: Multidisciplinary integrated research requires the ability to couple the diverse sets of data obtained

from a range of complex experiments and computer simulations. Integrating data requires semantically rich

information. In this paper an end-to-end use of semantically rich data in computational chemistry is demonstrated

utilizing the Chemical Markup Language (CML) framework. Semantically rich data is generated by the NWChem

computational chemistry software with the FoX library and utilized by the Avogadro molecular editor for analysis

and visualization.

Results: The NWChem computational chemistry software has been modified and coupled to the FoX library to

write CML compliant XML data files. The FoX library was expanded to represent the lexical input files and molecular

orbitals used by the computational chemistry software. Draft dictionary entries and a format for molecular orbitals

within CML CompChem were developed. The Avogadro application was extended to read in CML data, and display

molecular geometry and electronic structure in the GUI allowing for an end-to-end solution where Avogadro can

create input structures, generate input files, NWChem can run the calculation and Avogadro can then read in and

analyse the CML output produced. The developments outlined in this paper will be made available in future

releases of NWChem, FoX, and Avogadro.

Conclusions: The production of CML compliant XML files for computational chemistry software such as NWChem

can be accomplished relatively easily using the FoX library. The CML data can be read in by a newly developed

reader in Avogadro and analysed or visualized in various ways. A community-based effort is needed to further

develop the CML CompChem convention and dictionary. This will enable the long-term goal of allowing a

researcher to run simple “Google-style” searches of chemistry and physics and have the results of computational

calculations returned in a comprehensible form alongside articles from the published literature.

Keywords: Chemical Markup Language, FoX, NWChem, Avogadro, Computational chemistry

Background
In chemistry, the key to successful multi-disciplinary in-

tegrated research is often the ability to couple the di-

verse sets of data obtained from a range of complex

experiments and computer simulations to solve scientific

problems that are intractable when only one technique

is employed. In an ideal world any researcher in any dis-

cipline should be able to easily access, find and

synthesise all the scientific data pertaining to the scien-

tific question, molecular system or material being stud-

ied [1]. With this data the researcher has a knowledge

base that has the potential to deliver new unexpected in-

sights when all the information is brought together. Ac-

cess to all scientific data relevant to the study at hand

can also avoid repetition of previous experiments or sim-

ulations, and can serve as a starting point for generating

new ideas for the design of alternative new approaches

or molecular/materials systems, or can provide a frame-

work for validation [2]. Increasing quantities of detailed

data is gradually being made available to scientific users

* Correspondence: bert.dejong@pnnl.gov
†Equal contributors
1EMSL, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA

99352, USA

Full list of author information is available at the end of the article

© 2013 de Jong et al.; licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

de Jong et al. Journal of Cheminformatics 2013, 5:25

http://www.jcheminf.com/content/5/1/25

mailto:bert.dejong@pnnl.gov
http://creativecommons.org/licenses/by/2.0

in the scientific literature [3], and more widely in data

repositories and other systems [4].

Raw data (for example the recorded NMR signal or

calculated molecular orbitals) is only a subset of all the

scientific data generated from an experiment or com-

puter simulation. This acquired data gets processed and

analyzed with a barrage of tools to extract the important

observables, i.e. derived data, and help create the scien-

tific interpretation. This derived data is most likely

stored in the researcher’s notebooks and sometimes

forms part of scientific publications and presentations,

but it rarely gets used to annotate the raw data. Observ-

ables are the common language at which computational

chemistry and experimental communities interact, and

these should be accessible as part of the scientific dia-

logue to make available data useful to the scientific com-

munity at large.

A key challenge is the need to remove technical bar-

riers to access scientific data, and common data formats

play a key role in this respect. In the experimental com-

munity raw data is often stored in a standardized format

once it has been acquired (e.g. NeXus [5] or Scientific

Data Exchange [6] using HDF5 [7]), lightly annotated

with details of the experiment itself. While the experi-

mental community has been working to develop and

deploy data standards, this is less true in the computa-

tional chemistry community.

Historically, complete data sets from computer simula-

tions, including input and all generated ASCII and bin-

ary output data files, have not been made widely

available. These files are not generally stored in access-

ible data repositories or included as supplements with

publications. Within computational chemistry and mate-

rials science there are multiple efforts to make a limited

set of calculated observables available to the broader

community. Examples include the Materials Project at

MIT [8], CatApp at Stanford [9] the Computational Re-

sults Database at Washington State University [10] and

the Computational Chemistry Comparison and Bench-

mark Database at the National Institute of Standards

and Technology (NIST) [11]. The latter also links the in-

formation to the available experimental data available at

NIST. Each of these efforts provides easy access to com-

monly used observables using diverse and non-standard

data formats, but often with incomplete scientific data

sets or lacking the important meta-data.

The key to effective integration, mining, reuse, and

visualization of diverse data sources is to work within

standardized and semantically rich data formats. The

myriad of simulation data also stifles advances in the de-

velopment of open-source data mining/search tools and

visualization tools (such as Avogadro [12]) due to the

significant efforts to develop and maintain translation in-

frastructures for all the data formats. A good example of

standardization is the Crystallographic Information

Framework, which includes the widely used Crystallo-

graphic Information File (CIF) [13] maintained by the

International Union of Crystallography (IUCr). Natu-

rally, many of the more recent efforts to develop

standardised data formats have made use of the exten-

sible markup language (XML) to define the format. The

various XML standards provide a widely implemented

framework for defining the basic syntax of data files,

mechanisms for specifying the permitted structure and

content of such files and common approaches to rea-

ding, writing, manipulating, normalising and validating

standardised documents. These standards and tools

enormously simplify the task of designing and deploying

sharable data formats. Some relevant examples include

the work of Gygi and co-workers, who developed a rudi-

mentary XML-based standard for the interchange of

simulation data [14] that is used in their framework for

the validation and verification of electronic structure

codes, called ESTEST [15]. Researchers at NIST led an

effort to develop an XML standard for the interchange

of materials information (MatML) [16].

Perhaps the most successful attempt to standardize

the development of common language for chemistry is

the Chemical Markup Language (CML), developed by

Murray-Rust and Rzepa since 1995 [17-21]. CML pro-

vides the vocabulary needed to express a very wide range

of chemical (and related physical) concepts in an XML

document. This vocabulary is specified in an XML

Schema definition (XSD) document that is deliberately

permissive: it must be as the use of valid CML docu-

ments is extremely varied [22,23]. CML documents can

act as interactive scholarly manuscripts [21], as supple-

mentary data to support more traditional publication

[3], as the primary data format for a range of experimen-

tal and computational studies [2,24], or as a means of

data exchange within automated workflows [25-28]. For

some of these applications it can be useful if the docu-

ment structure and content is further restricted with

additional constraints beyond those enforced by requir-

ing validity as defined by the CML XSD specification.

These additional constraints, termed CML Conventions,

provide discipline-specific meaning to CML documents

and reduce the development burden for document con-

sumers and producers [29]. CML dictionaries provide

additional fine-grained semantics with specific concepts

identified by terms referenced from elements within

CML documents [29]. Furthermore, these mechanisms

impose additional good practice on document produces

by requiring the inclusion of defined metadata to pre-

serve provenance, and by insisting that all numerical

data carries a machine readable specification of its units.

It is the ability to impose strict syntax and defined se-

mantics, and to validate these using well-understood

de Jong et al. Journal of Cheminformatics 2013, 5:25 Page 2 of 12

http://www.jcheminf.com/content/5/1/25

tools, that means XML in general and CML in particular

is still the tool of choice for the storage and exchange of

scientific data. While we imagine that alternative data

representations, such as the JavaScript Object Notation

(JSON), may be used in this context for efficient data ex-

change we do not foresee the development tools for

powerful validation and semantic transformation that

motivate the use of XML, as discussed below.

To enable different computational chemistry codes to

interoperate it is key that all essential data is stored in a

common format. Within the computational chemistry

community various simulation codes, for example,

MOLPRO, VASP, and Quantum-Espresso [30-33], have

been adapted to produce a code specific XML output.

Other projects have utilized components of CML as an

enabling tool for data exchange, storage and processing.

The Quixote project seeks to build a collection of tools

to allow data from computational chemistry calculations

to be stored, shared, organised and queried [25]. Key to

this effort is the creation of a CML document for each

calculation. This is then ingested into, and processed by,

an instance of the Chempound database system. By con-

trast, the eMinerals [34] and Materials Grid [35] projects

sought to develop automated scientific workflows for

high-throughput computation in atomic-scale mineral-

ogy and materials science. These workflows combined

distributed grid computing [26,27] with tools to generate

input files, extract and analyse output data, and create

and store key items of metadata [28]. An important as-

pect of this work was the generation of a representation

of the key data in a CML document. The approach taken

to allow these documents to be easily produced on the

myriad of systems that formed the distributed comput-

ing environment utilised by these projects was to dir-

ectly generate CML as the computational chemistry

application was executed. As the majority of such appli-

cations are written predominantly in Fortran, and the in-

stalled software on the computational resources was so

varied, this involved the creation of a pure Fortran XML

library called FoX [36,37], described below and in more

detail by Murray-Rust and co-workers in another article

in this special issue [38].

An alternative approach would be to utilize Python or

a similar high level language to wrap the Fortran code

and use features of the high level language to generate

the CML. However the integration of Python and For-

tran codes requires quite intrusive changes to the For-

tran application including the development of interface

routines for each piece of functionality in the code that

needs to store output data in the CML document, a re-

design of the existing build and test system, and poten-

tially a change in the skills needed by members of the

developer community. While we consider that this may

be a viable approach if integration into a high-level

programming environment was being undertaken for

other reasons, we avoided this change merely for the

purpose of generating an XML document. As new con-

cepts, conventions, and dictionaries are defined within

CML, new common interfaces can be developed in the

FoX library and used by the computational chemistry

codes. FoX and its interfaces were used to allow solid-

state simulation codes such as SIESTA [39] and GULP

[40] to directly output CML without introducing add-

itional dependencies into the applications’ compilation

process. Very recently, developers of the TURBOMOLE

package reported the use of CML and the interfaces in

the FoX library to store a subset of their output data

needed to develop a database for computational data

[41].

In this paper the further development of a FoX based

infrastructure to produce semantically rich CML docu-

ments with the NWChem computational chemistry soft-

ware [42] will be described. NWChem is one of US

Department of Energy’s open-source computational

chemistry software packages, developed at the Environ-

mental Molecular Sciences Laboratory (EMSL) National

User Facility located at Pacific Northwest National La-

boratory. In addition, some developments of the CML

language for computational chemistry will be discussed

in some detail. Furthermore, the reading, ingestion and

visualization of the CML documents generated by

NWChem will be demonstrated in Avogadro, an open-

source, cross-platform molecular editor and analysis tool

written mainly in C++ [13].

Methods
Generating semantically rich data with NWChem

The NWChem software like many other computational

chemistry software applications produces various data

files during a simulation. These data include a human

readable descriptive output file and binary files poten-

tially containing from tens of megabytes to multiple

gigabytes of additional data (such as molecular orbitals

and molecular dynamics trajectories). One approach to

the creation of a CML document to describe an

NWChem calculation is to post-process the existing out-

put data files and convert these into CML. This is the

path taken by the Quixote project where Java Universal

Molecular Browser for Objects (JUMBO) converters are

used to transform the human readable output files to

CML documents that can be digested by tools such as

Chempound [25]. The major disadvantage of the use of

converters is that they need to be continuously modified

and maintained because the output files they read have a

tendency to change, for example when new functionality

is added to NWChem. The NWChem developer modify-

ing the codebase in this way has no way of knowing if

the change causes external tools to fail and, probably,

de Jong et al. Journal of Cheminformatics 2013, 5:25 Page 3 of 12

http://www.jcheminf.com/content/5/1/25

has no reason to care. In addition, the content extracted

from the simulation is limited to what is contained in

these text based output files. Additional information

held within associated large binary files, for example mo-

lecular orbitals or time evolution data, is lost unless this

data also gets post-processed. Both of these issues are

addressed by our approach as described below.

In addition to the text and binary files, NWChem has

a built-in infrastructure to produce an additional ASCII

file that contains key-value pairs. This file serves as input

for the EMSL developed Extensible Computational

Chemistry Environment (ECCE) graphical user interface

and visualizer [43]. Ironically, ECCE reads this file and

translates it into an application specific XML format that

is used internally. This means that both the JUMBO

converters and ECCE use multiple steps to obtain a

similar final XML product.

As part of the current work, a prototype CML writer

capability in NWChem has been developed that writes a

CML file during the simulation run. To minimise intru-

sive modifications to the code base, the implementation

builds upon the infrastructure in NWChem for writing

key-value pairs into the ECCE ASCII file. This infra-

structure inherently already opens a data file at start up,

writes data to the file, and closes the file when the simu-

lation ends. Instead of writing a standard ASCII text file,

NWChem’s ECCE infrastructure has been modified to

make use the FoX library to create the CML document.

This makes more data available to the CML writing ma-

chinery than is written to the output file designed for

human consumption. We have benchmarked the per-

formance impact of writing CML files on a larger (6 mi-

nute runtime) version of the example case used in this

paper and find the run time to be increased by less than

0.5% (the impact falls below 0.1% for even larger calcula-

tions). The CML writing capability is being integrated

into the main NWChem development tree and will be-

come a standard output format in a future release.

As discussed elsewhere in this issue [38], the FoX li-

brary permits the reading, writing and manipulation of

arbitrary XML documents in a Fortran-only environ-

ment. As expected, FoX will not permit the creation of

an XML document that is not well-formed. As well as

the general-purpose interfaces, FoX_wcml provides a

specialised mechanism for generating CML output tai-

lored to computational chemistry applications. This

interface, which was used for the majority of the CML

generation from NWChem, does not attempt to allow

the creation of any arbitrary CML document but instead

focuses only on the needs of the majority of expected

use cases in computational chemistry and to a large ex-

tent imposes adherence to the relevant conventions. For

example, users of FoX_wcml are not able to add atoms

to a molecule without specifying both position and

element name, avoid declaring (and using) the relevant

namespace for CML, or introduce numerical quantities

without specifying units. Data passed into the FoX_wcml

interface is accepted in a format expected to be present

inside of computational chemistry applications but some

data conversion is still sometimes needed. Figure 1

shows an example of a fragment of the CML document

that can be generated from NWChem with this imple-

mentation. In Additional file 1 we provide a full example

of a CML document produced by our current imple-

mentation. We note that this passes the tests

implemented by the CML validation service [44].

A side effect of the constrained interface is that new

ideas for the representation of output data cannot easily

be generated with FoX_wcml. However, the generic

FoX_wxml interface can be used in concert with

FoX_wcml to produce additional output in an already

open CML document. We made use of this feature to

expand the FoX_wcml interface to include an ability to

write molecular orbitals to the CML document. Molecu-

lar orbitals are currently not well defined in the CML

language. Appendix 1 outlines a draft CML computa-

tional chemistry dictionary for molecular orbitals, and

shows a formatted example that can be used as a tem-

plate to develop a molecular orbital convention in the

future. We also enabled the ability to include a repre-

sentation of the main NWChem ASCII file input pa-

rameters within the output document. Such ‘echoing’

back of the exact code input in the output stream is

very common in computational chemistry and is essen-

tial to preserve data provenance (for example, if the

input files are inadvertently lost or modified). An ex-

ample of the data inside a CML document produced

by NWChem is provided in Figure 1 and a more for-

mal definition of the proposed CML format echoing

computational input is included in Appendix 2 (where

we assume only ASCII data will be stored: arbitrary

binary files with, for example, wave functions are out

of scope). This new functionality in the FoX library is

publically available in the development source control

system and will be included in the next formal release

of the software.

Visualisation and analysis of semantically rich NWChem

data with Avogadro

In order to read in the CML produced by NWChem or

any other computational chemistry code, a new reader

was developed for Avogadro in the OpenQube library.

As discussed briefly in another publication in this jour-

nal issue [12], OpenQube was developed to address the

requirements of normalization of data produced by

codes employing Gaussian type orbitals for calculations.

It was already able to recognize the data available in out-

put from several other quantum codes, with the new

de Jong et al. Journal of Cheminformatics 2013, 5:25 Page 4 of 12

http://www.jcheminf.com/content/5/1/25

computational chemistry CML reader being one of the

fastest to develop using the compact PugiXML library as

a lightweight XML parsing engine. The example

NWChem CML data in this paper was read into Avoga-

dro using the new reader, and from that point on be-

haved as other data files.

An experimental branch is available for Avogadro that

can read in important electronic structure information

from NWChem, display it to the user and even produce

further input for NWChem based on geometries from

previous calculation results. This allows Avogadro to le-

verage the semantic information stored in the CML

document with minimal code changes. Figure 2 shows

an integrated visualization of the molecular orbital

isosurface and the nuclear magnetic resonance (NMR)

shielding tensors calculated by Avogadro using the data

read in by this new reader, successfully demonstrating

an end-to-end semantically enriched workflow. The

visualization of both properties in more complex mole-

cules can provide new insights into molecular bonding.

The new reader was written using the PugiXML C++

XML parser library, and took the approach of using an

efficient Document Object Model (DOM) to represent

the CML document, and specific functions to read in

and process XML nodes of interest. One of the major

advantages of this approach over other readers was the

minimal amount of parsing code as it was possible to

rely upon the standard XML parsing routines to find the

nodes that contained data that needed to be read in.

More work will be required to generalize the approach

taken as a single CML document can contain a rich

computational experiment with multiple steps. Add-

itional interfaces must be developed in Avogadro to go

beyond a simple view of an output file containing one

result to that of a rich document that can contain mul-

tiple steps with links.

A major advantage of the CML reader is that of exten-

sibility; where the CML document can contain elements

that this version of the reader does not necessarily

understand. Most other readers are somewhat fragile,

Figure 1 First section of CML validated XML data, generated with NWChem using the FoX library.

de Jong et al. Journal of Cheminformatics 2013, 5:25 Page 5 of 12

http://www.jcheminf.com/content/5/1/25

and require updates when the computational code adds

extra elements to its output. This reader is able to scan

the CML document for the tags and attributes it under-

stands, if more tags/attributes are added in the future

the reader will still be capable of understanding the

document, with updates to the reader adding support

for the new elements. This allows for the development

of a much more robust approach to reading and

transforming the data in the Avogadro application that

was simply not possible in the other readers developed.

Results and discussion
Our experience of the use of FoX for introducing CML

output into NWChem has reinforced our understanding

of various best-practice guidelines for the integration of

FoX to large-scale computational chemistry simulation

codes. By modifying NWChem to directly generate CML

we avoid some of the potential difficulty with external

converters discussed above. Any NWChem developer

modifying the codebase will see, directly in the code be-

ing modified, the subroutine calls that generate the CML

document. This, in itself, alerts the developer of the po-

tential for their changes to break the generation of CML

(or, at least, for the potential to break some unknown

feature of the code). This cue is absent in the case of ex-

ternal converters that parse an output file only designed

for human consumption. If this hint to developers is in-

sufficient the use of FoX provides a second line of

defence against breakage of the CML output: such dam-

age will result in the NWChem code failing to compile

or run simple test cases. The developer will thus be mo-

tivated to correct the output immediately, hopefully be-

fore checking the change into their version control

system. Again, this opportunity is absent in the case of

the use of external file converters.

For comparatively simple applications the FoX_wcml

interface should be sufficiently clear to allow calls to be

made directly from the main body of the simulation

code. However, as the simulation code becomes larger it

becomes important to isolate the calls to the FoX library

within a ‘glue’ layer (often a single Fortran 90 module)

within the application. This technique was adopted in

NWChem. As is typical, the layer brings together groups

of calls to FoX routines within a higher-level interface

adapted for the data structures used by the application

and isolates the necessary (and often simple but tedious)

data conversion tasks from the important numerical

computation. This isolation helps minimise the possibi-

lity that an unrelated change to the main numerical

parts of the code would cause the CML output to fail

(for example, by attempting to generate an ill-formed

document resulting in FoX terminating execution). This

can be particularly important if the code is developed by

a large team as it is possible that only a few developers

understand the constraints of the FoX API and XML

more generally. Placing the FoX calls in an isolated

Figure 2 Visualization of molecular orbital isosurface calculated by Avogadro using the NWChem CML data, with NMR tensor

projections and magnitudes represented as arrows.

de Jong et al. Journal of Cheminformatics 2013, 5:25 Page 6 of 12

http://www.jcheminf.com/content/5/1/25

module also makes it comparatively easy to make the

generation of CML output a runtime or compile time

option allowing, for example, some of the more egre-

gious compiler bugs to be avoided when deploying on

systems with a limited choice of Fortran compiler.

Once a computational chemistry code like NWChem

produces CML data, tools are required to read in and

analyse this data. One such tool is Avogadro, which was

extended to read in the CML data files produced by

NWChem and to display the molecular orbitals using

the same library functionality written for other output

formats. The major advantage of this approach over

those previously taken is in the clear definition of what

each term means, and how it should be used. The file

reader can also be much simpler as it makes use of

standard C++ libraries to read in and scan the XML

document for the expected tags, allowing for a reader

that is likely to continue working as expected even as

new output types are added to the XML document.

There are of course other options for data storage,

with formats such as JSON being used in an increasing

number of projects for data exchange. The form and

syntax of JSON is much simpler than XML, allowing for

smaller and simpler parsers but there are also several

drawbacks, which make XML a better choice for data

exchange between loosely coupled components. JSON

schemas are in their infancy, with no support for

namespaces and nascent validation tools, all of which

can be very helpful when composing complex docu-

ments incorporating elements from several sources. This

leads to software that must generally be more tightly

coupled to the data representation chosen in a particular

implementation. This allows for XML based documents,

such as CML, to compose multiple concepts such as scien-

tific units defined by the wider community in a dedicated

namespace composed with chemistry specific terms in the

CML namespace, such as atomic positions and the ground

state energy of the system. Due to the similarities in base

representation, round-tripping between CML and JSON

representations is not very difficult, and simple mapping

schemes can be developed for applications where JSON is

preferred as the underlying storage mechanism or light-

weight data exchange container in more tightly coupled sys-

tems. XML documents retain a much richer semantic

structure, which is also more readily converted to Resource

Description Framework (RDF) for further and more gener-

alized consumption in semantic frameworks.

Not all important data produced by a computational

chemistry simulation is suitable to be stored and fully

expressed in an XML format. Examples include the gener-

ally large data files storing molecular orbitals, densities on a

grid, or time evolution files generated by molecular dynam-

ics simulations. Work is underway to develop a two-layer

data infrastructure through the integration of the eXtensible

Data Model and Format (XDMF) [45] with the CML. Using

XDMF allows semantically rich data, such as the common

observables discussed above, to be stored in a searchable

framework, while all the large data (such as orbitals, trajec-

tories, etc.) will be stored in the compact HDF5 format [7].

Chemical Markup Language for computational chemistry

Coupling diverse sets of data requires the development

of a common language to describe observables that

should span experimental and computational technolo-

gies. CML [18] provides a high level language for che-

mistry while the dictionaries and, to a lesser extent, the

conventions, offer a starting point for the development

of rich semantically enabled tools. Various fields, such as

computational chemistry and NMR, XPS, and other ex-

perimental capabilities, are developing conventions and

dictionaries using CML. We believe that these dictiona-

ries can begin to be linked to form a more unified ontol-

ogy [46,47] to start to formally define relationships

between terms in the different fields of chemistry. Such

an effort will provide the common semantically rich lan-

guage needed to integrate diverse sets of data. However,

the use of CML dictionaries is currently underdeveloped.

Most of the current technology only requires that dic-

tionary references are used and that they uniquely iden-

tify a particular concept. Increasingly these concepts are

defined by entries in actual dictionaries and this is an

important aspect of providing shared meaning but defi-

ning computationally accessible links between concepts

is also crucial. This requires both the links to be present

in the dictionaries and tools to exploit these links, pro-

bably via a transformation to RDF, to be developed.

Looking forward, one of the major challenges for the

community will be to define a unified convention and

dictionary for the electronic wave function. The current

CML computational chemistry convention and dictio-

nary for Gaussian basis sets and effective core potentials

is based on the XML format defined by the EMSL Basis

Set Exchange. [48] Some work on defining a standard

format for plane wave basis sets has been done by Gygi

et al. [15]. The EMSL Basis Set Exchange has the poten-

tial, especially when expanded to describe plane wave

basis sets, to serve as a reference database on its own.

Conclusions
We have developed an end-to-end use of semantically

rich data in computational chemistry within the Che-

mical Markup Language (CML) framework. NWChem

was relatively easily modified to use the FoX library to

produce well-formed and valid CML documents that

conform to recent conventions and are semantically rich.

Draft dictionary entries as well as a proposed CML

CompChem format for describing molecular orbitals

were developed and included in the FoX library. The

de Jong et al. Journal of Cheminformatics 2013, 5:25 Page 7 of 12

http://www.jcheminf.com/content/5/1/25

FoX library was expanded to provide semantics that en-

able the scientific application to represent the raw ASCII in-

put file(s). A new CML reader developed for Avogadro was

used to read and visualize the NWChem computational

chemistry CML data. We briefly discussed the need for a

community-based development of a unified computational

chemistry convention and dictionary, and outlined some of

the challenges to its development.

The long-term goal is the development of a common

language and data infrastructure for the chemistry com-

munity that will enable machines to easily process data

generated by computational chemistry tools. By clearly

embedding the semantics of the document with the raw

data we hope to limit or eliminate ambiguity when data

documents are indexed, searched or otherwise processed

and enable scientific discovery through simple and ro-

bust interfaces. We envisage a situation where a re-

searcher, prior to embarking on a calculation, enters key

parameters in a search tool, perhaps resembling the Goo-

gle interface, and that this would return rendered and

understandable representations of the output of previous

calculations along with links to the published literature. By

embedding the semantics inside the data document from

their creation we remove the need for excessive inference

of the semantics by the indexing system. A useful side ef-

fect of this effort, demonstrated in this contribution, is the

ease that the technology can be used to link existing simu-

lation and visualisation tools in the computational chemis-

try domain. At present efforts are underway to integrate

both experimental and NWChem’s computational data at

the EMSL, a national user facility of the U.S. Department

of Energy’s Office of Biological and Environmental Re-

search. Eventually, all CML data from the facility’s com-

puting capabilities will be available in a searchable data

archive and researchers will be able to gain new scientific

insight through access and visualization of complex sets of

simulation and experimental data.

Appendix 1: Molecular orbitals dictionary entries
As discussed in the main text, in the process of adding

CML output to NWChem we developed a draft of dic-

tionary entries with descriptions and a proposed CML

CompChem format for describing molecular orbitals.

These dictionary entries and descriptions will be inte-

grated in the CML CompChem dictionary to a reference

to the semantic meaning of the concepts in CML docu-

ments that include the specification of molecular orbitals.

This dictionary is already used in a range of applications

that require this information internally (e.g., for unit valid-

ation) or to provide human readable descriptions of the

terms (e.g. to provide help text in documents transformed

into HTML). By being included in the dictionary, the new

terms will also become available on the web.

Dictionary entries

Molecular Orbitals (dictRef: molecularOrbitals)

Definition: CML list container for all information

related to one set of molecular orbitals.

Description: A set of wavefunctions describing all

electrons in a system of atoms.

Data Type: molecularOrbitals is of data type cml:list

Unit Type: molecularOrbitals has unit type unitType:

none

Atomic Basis Descriptions (dictRef: atomicBasis

Descriptions)

Definition: A cml array containing the descriptions of

atomic basis functions.

Description: Atomic basis functions constructed from

linear combinations of Gaussian functions that

describe atomic orbitals and form the basis for the

molecular orbital in the format < atom number: atom

name, shell type>, and of the type xsd:string. Shell

type refers to the angular momentum of the basis

function (s, px, py, pz, dxx, dxy, dxz, dyy, dyz, dzz, etc.

for cartesian basis functions and s, px, py, pz, d −2,

d −1, d 0, d 1, d 2, etc. for spherical basis functions).

Data Type: atomicBasisDescriptions is of data type

cml:array

Unit Type: atomicBasisDescriptions has unit type

unitType:none

Molecular Orbital (dictRef: molecularOrbital)

Definition: A cml list container for one molecular orbital.

Description: Mathematical representation of the

wavefunction of an electron in a system of atoms

described by a linear combination of atomic basis

functions or atomic orbitals.

Data Type: molecularOrbital is of data type cml:list

Unit Type: molecularOrbital has unit type unitType:none

Orbital Energy (dictRef: orbitalEnergy)

Definition: Total energy of the molecular orbital.

Description: Energy of the electron described by the

molecular orbital in Hartrees.

Data Type: orbitalEnergy is of data type xsd:double

Unit Type: orbitalEnergy has unit type unitType:energy

Orbital Symmetry (dictRef: orbitalSymmetry)

Definition: Point group symmetry of the molecular

orbital.

Description: Symmetry character of the molecular orbital

within the point group symmetry of the molecule.

de Jong et al. Journal of Cheminformatics 2013, 5:25 Page 8 of 12

http://www.jcheminf.com/content/5/1/25

Data Type: orbitalSymmetry is of data type xsd:string

Unit Type: orbitalSymmetry has unit type unitType:none

Orbital Spin (dictRef: orbitalSpin)

Definition: Spin of the orbital.

Description: Spin symmetry of the molecular orbital as

either “alpha” or “beta”.

Data Type: orbitalSpin is of data type xsd:string

Unit Type: orbitalSpin has unit type unitType:none

Orbital Occupancy (dictRef: orbitalOccupancy)

Definition: Occupancy of molecular orbital.

Description: Number of electrons occupying the

molecular orbital. The value will range from 0.0 to 2.0

electrons. When the orbital spin is defined as either

alpha or beta, the maximum occupation can be 1.0.

Data Type: orbitalOccupancy is of data type xsd:double

Unit Type: orbitalOccupancy has unit type unitType:

none

Atomic Basis Function Composition of Molecular Or-

bital (dictRef: aoVector)

Definition: The cml array containing atomic basis

function coefficients.

Description: A cml array of xsd:double containing the

coefficients of the linear combination of atomic basis

functions that describe the molecular orbital.

Data Type: aoVector is of data type cml:array

Unit Type: aoVector has unit type unitType:none

Example of molecular orbitals

Below an example of the molecular orbitals CML for-

mat. Shown is the header and first two orbitals of the

H2 molecule:

Appendix 2: Representing input data
In the process of adding CML output to NWChem we

found that it is important to include a direct representa-

tion of the NWChem input parameters within the CML

output for provenance. Although the CML Schema has

sufficient flexibility to allow this none of the existing

conventions contain a suitably defined mechanism for

this task. In this appendix we outline a suitable

microformat for the representation of Fortran input files

in computational chemistry. The intention is that this

representation forms part of the CML CompChem con-

vention but is sufficiently flexible to be reused in other

contexts. We note that a textural representation of input

files does not offer the same degree of semantic inter-

operability as including input data in a fully marked-up

format (i.e. as CML parameters with dictionary refer-

ences and explicit units). However, the task of recreating

input files from such data is a non-trivial problem that

has, thus far, received little attention. The microformat

defined here can be viewed as an essential intermediate

step to allow a complete representation of the input data

to be stored in the meantime. Applications making use

of the microformat should additionally report input data

semantically, as CML parameters.

The microformat is designed to allow easy storage and

retrieval of the content of one or more files, or of data

read from another file-like source (e.g. from standard in-

put). The aim is to make it possible to reconstruct the

input using a simple streaming parser without the need

to build an in-memory representation of the CML docu-

ment (in order to handle cases of very large files) even if

the XML document has been modified (e.g. if the docu-

ment has been subject to Canonicalization [49]). The ap-

proach is also designed to make data recovery using an

XSL transform straightforward. File metadata such as

the original filename is also accessible. We assume that

only ASCII data must be stored, arbitrary binary files are

out of scope as are XML documents and non-ASCII

textural data.

Format for the representation of input data

This specification uses the namespaces and prefixes to

indicate those namespaces as outlined in Table 1.

Table 1 Namespaces and namespace prefixes used in the

representation of input file data

Prefix Namespace URI Description

cml http://www.xml-cml.org/schema Chemical Markup
Language elements

convention http://www.xml-cml.org/
convention/

Standard Chemical
Markup Language
convention namespace

compchem http://www.xml-cml.org/
dictionary/compchem/

CompChem Dictionary
namespace

de Jong et al. Journal of Cheminformatics 2013, 5:25 Page 9 of 12

http://www.jcheminf.com/content/5/1/25

http://www.xml-cml.org/schema
http://www.xml-cml.org/convention/
http://www.xml-cml.org/convention/
http://www.xml-cml.org/dictionary/compchem/
http://www.xml-cml.org/dictionary/compchem/

Element names, and where necessary, attribute values,

are given as QNames (i.e. in the form prefix:localName)

and the prefix must be in scope and bound to the appro-

priate namespace URI. The data format is defined as

follows:

(a)The cml:module element may be used as a

container for one or more input files. If used this

outer module must have a dictRef attribute with the

value ‘compchem:inputFileList’. There may be a title

attribute giving this information in brief human

readable form. Rationale: It is important to be able

to easily locate input file data in large documents.

By enclosing all such data in a single parent element

with a uniquely defined dictionary reference a low-

memory streaming parser can extract the data without

the need for complex document manipulation.

(b)Data for each input file must be contained in its own

cml:module element. Each such element must have a

dictRef attribute with the value “compchem:inputFile”

and may have a title attribute. It should be possible to

convert the contents of each such module to a single

ASCII file used as input to an atomistic simulation

application without reference the rest of the XML

document. Rationale: Some applications read input

data from multiple input files. It must be possible to

reconstruct each of these files.

(c)Each module element described in (b) should contain

a single cml:metadataList element with zero or more

number of cml:metadata child elements. These

elements are intended to contain metadata that can

be used help the (re)creation of the calculation’s input

data. It is intended that a wider range of information

could be conveyed in this way but we pay particular

attention here to the file name of the input data file

represented by the parent module. The file name

should be stored as the content attribute of a

metadata element with the name attribute being

compchem:inputFileName. Rationale: Associated with

each file are various items of metadata. While not all

file-like objects will have a name where it is present

the file name can be used to recreate the input data

needed by the application (which, sometimes, must be

contained in files with a fixed name).

(d)Each module element described in (b) should

contain one or more cml:scalar child elements.

These should have the attribute ‘dataType’ with the

value ‘xsd:string’. Text content of these elements

should each correspond to a single (XML encoded)

line of the input file. All white space should be

preserved but line-ending characters should be

removed. The order of the lines in the input file must

correspond to the document order of the cml:scalar

elements as defined in section 5 of the XPath

specification [50]. Empty lines should be represented

by empty cml:scalar elements. Whitespace, including

tabulation characters, multiple spaces and spaces at

the start and end of lines should be preserved

unaltered unless it is known that the application

generating the CML document is insensitive to such

changes. Rationale: This approach allows the location

of each line of input via an XPath expression without

the risk of modification due to normalisation of the

document. Whitespace characters must be retained

unaltered as, for some Fortran applications, the exact

amount, form and location of such characters can be

significant.

The CML file shown in Figure 1 and included in the

Additional file 1 illustrates the use of this microformat.

Reading and writing file data

A small number of new subroutines have been added to

the FoX_wcml module to permit Fortran applications to

easily create representations of their input files in an

output CML document using the format outlined above.

Two methods are provided with the most appropriate

being dependent on the design of the application. In the

first approach a single subroutine, cmlDumpInputDeck,

is called with an array of file names as input arguments.

In turn each file is opened, its contents are written to the

CML document in the appropriate form, before the file is

closed. The convoluted nature of file handling in Fortran

combined with the way that some applications read their in-

put data means that this approach is not always available

(for example, if the input file is held open for the duration

of the calculation, or if data is read from standard input) so

an alternative interface with five subroutines (cmlStartInput

DeckList, cmlStartInputDeckFile, cmlAddInputDeckLine,

cmlEndInputDeckFile and cmlEndInputDeckList) is pro-

vided. The FoX documentation provides full details of how

to use these two interfaces [51].

Finally, we provide a trivial example script to show

one way of recreating input files given a CML document.

This uses XPath [50] and python and is provided in

Additional file 1.

Additional file

Additional file 1: The following additional data are available with

the online version of this paper. Additional data file prop_h2o.cml is a

full example of a validated CML file produced by the modified NWChem

version discussed in this paper, running the input file entitled prop_h2o.

nw. The full output file prop_h2o.output is also provided. Additional data

file input_files_example.xml is a simple example of the proposed input

data format described in Appendix 2 and produced with new features of

the FoX_wcml library. Additional data file extract_input_files.py is a

straightforward python script that can be used to reproduce input data

files stored in a CML document following the format described in

Appendix 2.

de Jong et al. Journal of Cheminformatics 2013, 5:25 Page 10 of 12

http://www.jcheminf.com/content/5/1/25

http://www.biomedcentral.com/content/supplementary/1758-2946-5-25-S1.zip

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

WAJ and AMW carried out the work on the implementation of FoX in

NWChem, while MDH carried out the work on Avogadro. All authors drafted,

read and approved the final manuscript.

Acknowledgements

A portion of the research was supported by EMSL, a national scientific user

facility sponsored by the U.S. Department of Energy’s (DOE) Office of Biological

and Environmental Research and located at Pacific Northwest National

Laboratory (PNNL). PNNL is operated for the DOE by the Battelle Memorial

Institute under contract DE-AC06-76RLO-1830. This work has also received

funding from the European Research Council under the European Union’s

Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement number

240473 “CoMITAC”. MDH would like to thank the US Army Engineer Research

and Development Center for funding under contract W912HZ-12-C-0005.

Author details
1EMSL, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA

99352, USA. 2School of Earth Sciences, University of Bristol, Wills Memorial

Building, Queen’s Road, Bristol BS8 1RJ, UK. 3Department of Scientific

Computing, Kitware, Inc., 28 Corporate Drive, Clifton Park, NY 12065, USA.

Received: 4 January 2013 Accepted: 17 April 2013

Published: 24 May 2013

References

1. Murray-Rust P: Chemistry for everyone. Nature 2008, 451:648–651.

2. Downing J, Murray-Rust P, Tonge AP, Morgan P, Rzepa HS, Cotterill C, Day N,

Harvey MJ: SPECTRa: The deposition and validation of primary chemistry

research data in digital repositories. J Chem Inf Model 2008, 48:1571–1581.

3. Rzepa HS: The past, present and future of scientific discourse. J Cheminfo

2011, 3:46.

4. Marcial LH, Hemminger BM: Scientific data repositories on the Web:

An initial survey. J Am Soc Inf Sci 2010, 61:2029–2048.

5. Maddison DR, Swofford DL, Maddison WP: Nexus: an extensible file format

for systematic information. Syst Biol 1997, 46:590–621.

6. Scientific Data Exchange. http://www.aps.anl.gov/DataExchange/.

7. HDF Group: Hierarchical data format version 5, 2000–2010. http://www.

hdfgroup.org/HDF5.

8. Jain A, Hautier G, Moore C, Ong SP, Fischer C, Mueller T, Persson KA, Ceder G:

A high-throughput infrastructure for density functional theory

calculations. Comp Mat Sci 2011, 50:2295–2310.

9. Hummelshoj F, Abild-Pedersen F, Studt F, Bligaard T, Norskov J: CatApp:

A Web application for surface chemistry and heterogeneous catalysis.

Angew Chem Int Ed 2012, 51:272–274.

10. Feller D: The role of databases in support of computational chemistry

calculations. J Comp Chem 1996, 17:1571–1586.

11. Johnson RD III: NIST Computational Chemistry Comparison and Benchmark

Database, NIST Standard Reference Database Number 101, Release 15b. 2011.

http://cccbdb.nist.gov.

12. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR:

Avogadro: An advanced semantic chemical editor, visualization, and

analysis platform. J Cheminfo 2012, 4:17.

13. McMahon B: Applied and implied semantics in crystallographic

publishing. J Cheminfo 2012, 4:19.

14. XML standards for simulation data. http://www.quantum-simulation.org.

15. Yuan G, Gygi F: ESTEST: a framework for the validation and verification of

electronic structure codes. Comput Sci Disc 2011, 3:015004.

16. MatML Standard. http://www.matml.org.

17. Murray-Rust P, Townsend JA, Adams SE, Phadungsukanan W, Thomas J:

The semantics of Chemical Markup Language (CML): dictionaries and

conventions. J Cheminfo 2011, 3:43.

18. Murray-Rust P, Rzepa HS, Wright M: Development of Chemical Markup

Language (CML) as a system for handling complex chemical content.

New J Chem 2001, 25:618–634.

19. Murray-Rust P, Rzepa HS: Chemical markup, XML, and the Worldwide

Web. 1. Basic principles. J Chem Inf Comp Sci 1999, 39:928–942.

20. Murray-Rust P, Rzepa HS, Wright M, Zara S: A universal approach to web-

based chemistry using XML and CML. Chem Comm 2000:1471–1472.

doi:10.1039/B002483J.

21. Murray-Rust P, Rzepa HS: CML: Evolution and design. J Cheminf 2011, 3:44.

22. Townsend J, Murray-Rust P: CMLLite: a design philosophy for CML.

J Cheminf 2011, 3:39.

23. Murray-Rust P, Rzepa HS: Chemical markup, XML, and the World Wide

Web. 4. CML schema.

J Chem Inf Comp Sci 2003, 43:757–772.

24. Wakelin J, Murray-Rust P, Tyrrell S, Zhang Y, Rzepa HS, García A: CML tools

and information flow in atomic scale simulations. Mol Sim 2007,

31:315–322.

25. Adams S, de Castro P, Echenique P, Estrada J, Hanwell MD, Murray-Rust P,

Sherwood P, Thomas J, Townsend J: The Quixote project: Collaborative

and Open Quantum Chemistry data management in the Internet age.

J Cheminfo 2011, 3:38.

26. Bruin RP, White TOH, Walker AM, Austen KF, Dove MT, Tyer RP, Couch PA,

Todorov IT, Blanchard MO: Job submission to grid computing

environments. Concurrency Computat: Pract Exper 2008, 20:1329–1340.

27. Walker AM, Bruin RP, Dove MT, White TOH, Kleese-van Dam K, Tyer RP:

Integrating computing, data and collaboration grids: the RMCS tool.

Phil Trans R Soc A 2009, 367:1047–1050.

28. Kleese-van Dam K, James M, Walker AM: Integrating data management

and collaborative sharing with computational science processes.

In Handbook of Research on Computational Science and Engineering:

Theory and Practice Volume 1. Edited by Leng J, Sharrok W. Hershey,

Pennsylvania: IGI Global; 2011:506–538.

29. Murray-Rust P, Townsend J, Adams SE, Phadungsukanan W, Thomas J:

The semantics of Chemical Markup Language (CML): dictionaries and

conventions. J Cheminf 2011, 3:43.

30. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D,

Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, Fabris S, Fratesi G, de

Gironcoli S, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M,

Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A,

Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A,

Umari P, Wentzcovitch RM: Quantum ESPRESSO: a modular and open-

source software project for quantum simulations of materials. J Phys

Condens Matter 2009, 21:395502.

31. Gordon MS, Schmidt MW: Advances in electronic structure theory:

GAMESS a decade later. In Theory and Applications of Computational

Chemistry, the first forty years. Edited by Dykstra CE, Frenking G, Kim KS,

Scuseria GE. Amsterdam: Elsevier; 2005:1167–1189.

32. Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M: Molpro: a general-

purpose quantum chemistry program package. WIREs Comp Mol Sci 2012,

2:242–253.

33. Kresse G, Furthmüller J: Efficiency of ab-initio total energy calculations for

metals and semiconductors using a plane-wave basis set. Comp Mat Sci

1996, 6:15–50.

34. Salje EKH, Artacho E, Austen KF, Bruin RP, Calleja M, Chappell HF, Chiang G-

T, Dove MT, Frame I, Goodwin AL, Kleese-van Dam K, Marmier A, Parker SC,

Pruneda JM, Todorov IT, Trachenko K, Tyer RP, Walker AM, White TOH:

eScience for molecular-scale simulations and the eMinerals project.

Phil Trans R Soc A 2009, 367:967–985.

35. Yang XY, Bruin RP, Dove MT: Developing an end-to-end scientific

workflow. A case study using a comprehensive workflow platform in

e-science. Comput Sci Eng 2010, 12:52–61.

36. White TOH, Bruin RP, Chiang G-T, Dove MT, Tyer RP, Walker AM: Lessons in

scientific data interoperability: XML and the eMinerals project. Phil Trans

2009, 367:1041–1046.

37. FoX library. http://www1.gly.bris.ac.uk/~walker/FoX/.

38. Murray-Rust P, Hanwell MD, Hutchison GR, Neylon C, Spjuth O, Townsend J,

Willighagen E, Walker AM: Building a CML code library. J Cheminfo 2012, 4:14.

39. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D:

The SIESTA method for ab initio order-N materials simulation. J Phys

Condens Matter 2002, 14:2745–2779.

40. Gale JD: GULP - a computer program for the symmetry adapted

simulation of solids. J Chem Soc Faraday Trans 1997, 93:629–637.

41. Glöß A, Brändle MP, Klopper W, Lüthi HP: The MP2 binding energy of the

ethene dimer and its dependence on the auxiliary basis sets: a

benchmark study using a newly developed infrastructure for the

processing of quantum chemical data. Mol Phys 2012, 110:2523–2534.

de Jong et al. Journal of Cheminformatics 2013, 5:25 Page 11 of 12

http://www.jcheminf.com/content/5/1/25

http://www.aps.anl.gov/DataExchange/
http://www.hdfgroup.org/HDF5
http://www.hdfgroup.org/HDF5
http://cccbdb.nist.gov/
http://www.quantum-simulation.org/
http://www.matml.org/
http://dx.doi.org/10.1039/B002483J
http://www1.gly.bris.ac.uk/~walker/FoX/

42. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, van Dam HHJ,

Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA: NWChem:

a comprehensive and scalable open-source solution for large scale

molecular simulations. Comput Phys Commun 2011, 181:1477–1489.

43. Black GD, Schuchardt KL, Gracio DK, Palmer B: The Extensible

Computational Chemistry Environment: A Problem Solving Environment

for High Performance Theoretical Chemistry. In Computational Science -

ICCS 2003: June 2–4, 2003; Saint Petersburg Russian Federation and Melbourne,

Australia. Edited by Sloot PMA, Abramson D, Bogdanov AV, Dongarra J.

Heidelberg: Springer Verlag; 2003:122–131.

44. CML validator. http://validator.xml-cml.org/.

45. eXtensible Data Model and Format (XDMF). http://www.xdmf.org.

46. Adams N, Cannon E, Murray-Rust P: ChemAxiom – an ontological

framework for chemistry in science. Nature Proceedings 2009. doi:10.1038/

npre.2009.3714.1.

47. Guba R, Howard MT, Hutchinson GR, Murray-Rust P, Rzepa H, Steinbeck C,

Wegner J, Willighagen EL: The Blue Obelisk – interoperability in chemical

informatics. J Chem Inf Model 2006, 46:991–998.

48. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J,

Windus TL: Basis set exchange: a community database for computational

sciences. J Chem Inf Model 2007, 47:1045–1052.

49. Boyer J: Canonical XML Version 1.0 W3C recommendation. 2001. http://www.

w3.org/TR/xml-c14n.

50. Clark J, De Rose S: XML Path Language (XPath) Version 1.0, W3C

recommendation. 1999. http://www.w3.org/TR/xpath/.

51. FoX wcml documentation. http://www1.gly.bris.ac.uk/~walker/FoX/DoX/

FoX_wcml.html.

doi:10.1186/1758-2946-5-25
Cite this article as: de Jong et al.: From data to analysis: linking
NWChem and Avogadro with the syntax and semantics of Chemical
Markup Language. Journal of Cheminformatics 2013 5:25.

Open access provides opportunities to our

colleagues in other parts of the globe, by allowing

anyone to view the content free of charge.

Publish with ChemistryCentral and every

scientist can read your work free of charge

W. Jeffery Hurst, The Hershey Company.

available free of charge to the entire scientific community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours you keep the copyright

Submit your manuscript here:

http://www.chemistrycentral.com/manuscript/

de Jong et al. Journal of Cheminformatics 2013, 5:25 Page 12 of 12

http://www.jcheminf.com/content/5/1/25

http://validator.xml-cml.org/
http://www.xdmf.org/
http://dx.doi.org/10.1038/npre.2009.3714.1
http://dx.doi.org/10.1038/npre.2009.3714.1
http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/xpath/
http://www1.gly.bris.ac.uk/~walker/FoX/DoX/FoX_wcml.html
http://www1.gly.bris.ac.uk/~walker/FoX/DoX/FoX_wcml.html

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Generating semantically rich data with NWChem
	Visualisation and analysis of semantically rich NWChem data with Avogadro

	Results and discussion
	Chemical Markup Language for computational chemistry

	Conclusions
	Appendix 1: Molecular orbitals dictionary entries
	Dictionary entries
	Example of molecular orbitals

	Appendix 2: Representing input data
	Format for the representation of input data
	Reading and writing file data

	Additional file
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

