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Abstract

A new theory of spectral analysis for nonlinear systems is introduced.
The method consists of estimating the parameters in a NARMAX model
description of the system and then computing the generalised frequency
response functions directly from the estimated model. The paper is
divided into three parts. Part I introduces a methodology for
estimating the models and computing the frequency response functions.
Part II concentrates on the interpretation of the nonlihear frequency
response functions and Part III describes a series of case study
examples and illustrates in detail how to apply the algorithms to

real systems.
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1. Introduction

Although linear spectral analysis is a well established tool in signal
processing, that finds wide application in almost every branch of
science and engineering, its usefulness is limited when the system under
investigation is nonlinear. Indeed it is easy to construct simple
nonlinear examples where linear spectral analysis gives completely
misleading results [Billings and Tsang 1988]. This is a severe
limitation given that most real systems are nonlinear to some extent.

It is these restrictions, coupled with the current interest in measuring,
analysing and exploiting nonlinearity, which have provided the impetus
to develop spectral estimators for nonlinear systems which can be

applied almost as easily and routinely as the linear algorithms.

Existing nonlinear methods are based on transforming the Volterra
kernels to the frequency domain to yield generalised transfer functions
[Schetzen 1980, Marmarelis and Marmarelis 1978]. Whilst this approach
provides a suitable means of characterizing nonlinear systems in the
frequency domain [Bedrosian and Rice 1971; Bussgang, Ehrman and

Graham 1974] the measurement techniques which are available are all
based on extending the classical linear FFT based algorithms to higher
dimensions [Brillinger and Rosenblatt 1967; Vinh, Chouychai and
Djouder 1987; Billings 1980]. This inevitably leads to considerable
complexity and an explosion in computational cost to the extent that
the only systems identified with this approach have contained just

the first two Volterra kernels. These restrictions, unless they can
be overcome, suggest that this non-parametric approach may not be
upwardly extendable to general classes of multi-input multi-output

nonlinear systems.

The present paper introduces a methodology for analysing unknown
nonlinear systems in the frequency domain which has been developed

as an alternative to the non-parametric algorithms[Billings and

Tsang 1987; Billings, Tsang and Tomlinson 1988]. The method consists
of estimating the parameters in a NARMAX (Nonlinear AutoRegressive
Moving Average model with eXogenous inputs) description of the system
[Leontaritis and Billings 1985; Chen and Billings 1988] and then
computing the generalised frequency response functions directly from
the estimated model. The first part of this approach consists of an
estimation procedure that can be applied to a wide class of nonlinear

systens. This can be divided into four stages; testing for non-
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linearity in the data, identifying the system structure or which
terms to include in the model, estimating the system parameters

and validating the model. The generalised frequency response
functions can then be obtained directly from the estimated NARMAX
model by discarding the noise model, which was estimated to ensure
unbiased system parameters'and using the probing method [Bedrosian
and Rice 1971] to obtain analytical expressions for the frequency
response functions. Because the NARMAX methodology provides a model
of the system which is essentially a discrete-time version of the
describing differential equation any order of generalised frequency
response function can be obtained. The advantages of this approach
are that it works for small data lengths (typically a few hundred
data points), the system can be described by a small parameter set
and there are no restrictions on the form of the input except that

it should be persistently exciting.

The cornerstone to this whole procedure is the estimation of an accurate
parametric description of the system. Whereas previous algorithms
were based on an optimum prediction error estimator [Leontaritis and
Billings 1988; Billings and Chen 198871 much simpler alternatives have
now been derived. These are based on an orthogonal estimation
algorithm [Korenberg, Billings and Liu 1988; Billings, Korenberg and
Chen 1988] which, even for complex nonlinear models, consist of just

a few lines of simple code. The algorithm detects both the system
structure and provides estimates of the unknown parameters and forms

the estimation engine for the current approach.

The purpose of the present paper is to introduce a unified procedure
for estimating nonlinear freguency response functions. The main
objective is to demonstrate how easy it is to code and use these
algorithms and the emphasis is placed on the practical application
rather than the theory underlying the methods which is available
elsewhere. The paper is divided into three parts. In Part I the
estimation algorithms are introduced and illustrated using simulated
examples. Part II concentrates on the interpretation of nonlinear
frequency response functions and illustrates by example properties
of the nonlinear frequency response functions including harmonics,
gain compression/expansion, desensitization, intermodulation and
other related characteristics. Part III describes a series of case
study examples and illustrates in detail how to apply the algorithms

to real systems and how to interpret the results.
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2. Nonlinear Frequency Response Functions

The importance of studying spectral analysis for nonlinear systems can
best be demonstrated by considering what can happen if linear methods
are blindly applied to data generated  from nonlinear systems. For
example estimation of the frequency response function for a system

represented by the model
dy/dt + ay(t) = bult) + cu(t) (1)

where u(t) is a signal whose third order moments are zero (eg zeromean

Gaussian or sine wave input) yields

Suy(jw) _ b

Suu(w) Jw-+a

~n
H1(jw) =

where Suy(jw) represents the cross-spectral density.

The estimate is completely independent of the nonlinear term cug(t)
and shows the limitations of linear methods when applied to nonlinear

systems.

Efforts to extend spectral analysis to the nonlinear case have to date
concentrated on the functional series methods and higher order spectra.
Although several authors [Bedrosian and Rice 1971; Bussgang, Ehrman

and Graham 1974, Chua and Ng 1979; Brillinger and Rosenblatt 1969]

have considered the theoretical analysis of such ideas very few practical
results have been reported. In the few cases where a simulated or
practical system has been analysed only the first and second order
functions were estimated on the assumption that all higher order

terms were zero. This was because of the inherent difficulties of
estimating nonlinear frequency response functions by extending the
traditional FFT windowing algorithms to work in many dimensions, the
necessity of a huge data set, special inputs and an excessive computational
requirement. All these difficulties can however be overcome by

merging the theoretical ideas of generalised freguency response

functions with the NARMAX model description and estimation procedures.

2.1. Generalised Freguency Response Functions

The traditional description of nonlinear systems has been based on the

Volterra series [Schetzen 19803 Marmarelis and Marmarelis 1978]
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<) n
yie) = § [ oo hn(TPTE,...Tn) I ult-t,)dr, (3)
n=1 =o i=1

where hn(T1’T2"‘Tn) is the n'th order Volterra kernel which can be
visualised as a nonlinear impulse response of order n. Equation (3)

can be expressed as

yie) = Ly (t) (4)
nz=1
© n
where ynHﬂ ={m"‘fhnh1"”Tn)ii$”t4d)mi (5)

Taking the multiple Fourier transform of the n'th order Volterra kernel
yields the n'th order generalised frequency response function [Bedrosian

and Rice 1971; Bussgang, Fhraan and Graham 1974]

o —j2n(f1T1+...+f‘nTn)
H (£, 65,0 f)) = f ...Ihn(T,l,...Tn)e dr,...dr

(6)
Conversely, the nonlinear impulse response of order n follows from the

nonlinear transfer function of order n by the inverse Fourier transform

o j2ﬂ(f‘1T1+...f'nTn)
h (T, 0T ) =J_m...f H (£,,...0 e ar,...df
(7)
Substituting egn (7) into eqn (5) and carrying out the multiple integrals
on TT,...Tn gives
o - n jenf.t
y (8) =) o B (F, £ T OlE e tar, (8)
<0 i=1

where U(f) represents the input spectrum.

The total system response eqn (3) can be thought of in terms of each
component which makes up eqn (4). This consists of the linear portion
characterized by the linear frequency response function H1(f), the
quadratic contribution to the response characterized by the second order

frequency response function Hz(f f.) and so on.

1°°2
Notice that hn(T1""Tn) and its transform Hn(f1""fn) may not be
symmetric functions of their arguments. Even so all kernels or transforms

that differ only by the permutations of their arguments are equivalent in

representing the system because in each case the output yn(t) in egn's (5)
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or (8) would be identical. It is however convenient to work with
symmetric transforms where the order of the arguments in Hn(f1""fn)
can be arbitrarily interchanged and this will be assumed in the analysis
that follows. If a kernel or transform is not symmetric it can be
replaced by a symmetrized kernel and associated transform defined as

[Schetzen 1980]

n "1’ 'n

1
N R ) iH(f ) (10)

where # denotes that the summation is over all permutations of the arguments

of hn(') or Hn(') respectively.

It is apparent from egn (6) that the properties of spectral conjugation
hold

H *¥(f ) (11)

n "1’ """'n n 1"t n
where * denotes complex conjugation. It therefore follows that
- = - = ¥ - - - = %
H1( f) = H1(f), H2( f1,f2) H2 (f1, f2) and H2( f1, f2) H2 (f1,f2).
Therefore plots of H1(f) 0 < f <, and Hz(f1,f2) 0 < f1 {»y, - < f2 <

will fully characterize H1(f1) and H2(f1,f2) respectively. It is of
course impossible to plot the third order function H3(f1,f2,f3) directly.
By fixing one of the frequency variables however f3 = fc say slices of
the function can be displayed [Billings, Tsang and Tomlinson 1988].

The plot of H3(f1,f2,fc) can then be plotted in a similar way to the
second order response function H2(f1,f2). An alternative way would be
to set one of the frequency variables equal to another f3 = f1 say.
Similar procedures can be used to obtain frequency plots of higher order

response functions.

2.2. Computation of Nonlinear Frequency Response Functions

The probing or harmonic input method [Bedrosian and Rice 1971] can be
justified by considering the steady-state output of a nonlinear system
with several exponential inputs. Let the input u(t) be a sum of K

exponentials




ulk) = % A e : (12)
= ~
where Ak represent the amplitudes and fk may be any positive or negative
real number. From eqn (5) the n'th order output can be expressed as
[Chua and Ng 1979]

© n K j2ﬂfk(t-Ti)
¥ ,(t) = .. h (T, 1) T L ae aty (13)
-0 i=1 k=1
¢ - jont, t @ n 'JZ”fkiTl
1 ...f h (t,,...7. ) T e dt
= z z 11 A e n 1 n .
k., 0 iz1
k.=1 k =1 i=1 i
1 n
{(14)
Substituting from eqn (6) yields
K K JZﬁ(fk1+ +fkn)t
vy (£) = ) ... L [A, ..A H(f ,...f e
n K, =1 k=1 K1 Kpnok ky
17 n- {(15)

where different terms in this eguation may give rise to the same output
frequency, a common phenomena of nonlinear systems, and each permutation

of fk ceefy in the argument of Hn(’) gives rise to a term in the n'th

order1outpu%.

The results of egn (15) and hence the probing method of determining the

generalised frequency response functions, can be made much more transparent

by noting that the Fourier transform of the input egn (12) will be a sum

of delta functions. So that using eqn (8) with the input egn (12) and

setting K = n, A= 1 for all k = 1,2,...n yields |
jZTT(fk S ST B

A M

y (t) = o H (f ’.'Qf‘ )-e

n K, =1 k=1 ° K Kn (16)
1 n

which also follows directly from (15).  There are n! terms in yn(t)

eqn (16) with frequency f1+f2...+fn each corresponding to a permutation

of f1"“fn in the argument of Hn(°). Consequently if y(t) contains no
component with frequency f1+"'+fn other than those n! terms in yn(t)
then it follows from (10) and (16) (compare also with eqn (18) that the
symmetrized n'th order nonlinear transfer function Hn(f1,...f ) can be

n’sym
obtained by the harmonic or probing input method by equating coefficients
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of n!exp{j2ﬂ(f1+...+fn)t} in the system output when the input is defined

as in eqn {12) with K = n and Ak = 1 [Bedrosian and Rice 1971; Bussgang,
Ehrman and Graham 1974]. It ca% be shown [Chua and Ng 1979] that this

procedure will be valid providing the set of frequencies {f1""fk} form a
frequency base. This means that there is no set of rational numbers
{PW""FK} (not all zero) such that

r1f1 + r2f2 ces + rKfK = 0
Since any output freguency fk +fk ...+fk in eqn (15) can be written as
m1f1+m2f2...+meK with a suitable choicenof coefficients mi, i=1,2...K
that are nonnegative integers (mi > 0) it is convenient to define a
module vector M = (m1,...mK) so that the corresponding output frequency

for each module vector M can be written as

fM = m1f1 + e + meK
Further, if m1+m,)+...+mK = n for n>0 then fM is an n'th order output

1,...fn).

frequency generated by Hn(f
If the input frequencies constitute a frequency base then the sum of all
terms with frequency fM in egn (15) for the n'th output component yn(t)

will be denoted by yn(t;f ) and is given by [Bussgang, Ehrman and Graham

M
19743 Chua and Ng 19791

Mg
K A, jnfyt
. - '
yn(t,fM) =n!| I — Hn(m1{f1},...,mk{fk})e (17)
k=1 "k
where mk{fk} denotes m,. consecutive arguments in Hn(') with the same
frequency fk and % m = n. Since y_(t) consists of all possible
k=1 K n

frequency mixes that satisfy k§1mk = n egn (15) can be expressed as

n n
yn(t) = X yn(t;fM) = I ... I yn(t;fM) (18)
all m, =0 m, =0
. 1 k
possible
M

where in general the terms do not have overlapping frequency components,

Notice that whilst yn(t,fM) is complex terms in egn (18) occur in conjugate

pairs so that yn(t) is real.



-8 -

Because the probing method for computing the Hi(')'s is analytic and
cannot be used as a basis for measurements on real systems consider the
more realistic input composed of K different sinusoids [Chua and Ng 19791,
often called a K-tone input

K K Ai j2ﬂfit Ai -j2ﬂfit
ult) = Z lA.lcos(ZﬂfittﬁAi) = | =e + 5= e (19)

. i 2
1

1 i=1

where lAi‘ is the amplitude,é!%_the phase and Ai* is the complex conjugate
of Ai. By definition A_i = A§ and f—i = —fi so that egn (19) can be
expressed as
K Ai jZﬂfit
ult) = I == e (20)

iz-K
140

The n'th order module vector of input frequencies becomes M = (m_K,...m_q,m

..mK) where m, i = 11,%2,...1tK are nonnegative integers with

K

L m, = n, The input frequencies {f PRSP AP & } do not in
! -K -1 K
i£0

this case form a frequency base because fi+f_i = 0 and

K K
£ = ¥ m.f. = I (m.f.+m ,f ) = I (m,-m )f, (21)
g T joq FiT-1 -1 . i =i

1 i=1
i£0

Substituting egn's (20) and (21) into egn (17) yields

i
K A,
n! i
y (t3f,) = — it ;
n M 2n {=-K mi
i#0

X Hn(m_K{f_K}...m_1{f_1},m1{f1},...mK{fKD

joTf, t
X e M {(22)

Equation (22) illustrates that when a sum of K sinusoids is applied to a
nonlinear system additional output frequencies are generated by the n'th

order frequency response function of the system consisting of all possible
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combinations of the input frequencies {"fK""'fT’f1""fK}

time. Because {f-K""f-1’f1""fK} is not a frequency base different

taken n at a

module vectors of the same order can produce the same output frequency.
Equation (22) can be used to predict how harmonic, intermodulation,
desensitization and compression terms can arise in the output response
of nonlinear systems @nd these effects will be illustrated by example in

Part II of this paper.

2.2. Examples of the Probing Method

It was shown in the previous section that the harmonic input or probing
method can be used to determine the symmetrized n'th order transfer

function Hi(f ) - by eguating coefficients of n!exp{jEﬂ(f +...+fn

17°°""n’'s L
in the system output for an input defined by eqn (12). The procedure
is recursive and is best illustrated by an example [Bussgang, Ehrman and

Graham 1974].

Consider a system described by the differential equation

Y3U(t) = Elé%l + Y1y(t) + Yzyz(t) (23)

where Yis i=1,2,3 are constants.

This could for example represent a nonlinear circuit [Bussgang, Ehrman
and Graham 19747 consisting of a linear resistor, a nonlinear resistor
and a capacitor all in parallel and supplied by a current source uflt).
The successive nonlinear frequency response functions can be obtained by

using a series of probing inputs.

The procedure begins by setting X = 1, Ak =1, fk = f in egn {12) to
define the first probing input

u(t) = eI2MET (24)
From eqn's ({4) and (16) with n = 1

y(t) = H1(f)ej2ﬂft
and hence

LA j.c_me1(f)e32Trft (25)

Substituting into egn (23) gives
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2

eJ?ﬂft eJZﬂft+ eJ2ﬂft eJZﬂft]

= j2TfH, (f) Y, H, (F)

Yq 1H, +Y2[H1(f)

1

jenft

and equating coefficients of e on both sides yields

"3

Probing with two inputs by setting K = 2, Ak = 1 ¥k in eqn (12)

jemf,t jemf,t
ult) = e + e (27)

From egqn's (14) and (16) with n = 2
janf, t jomf t Jom(f, +F )t

+H2(f1,f1)e +H (f.,f.)e (28)

and the derivative is

dy jemf. t j2ﬂf2t
i 32ﬂf1H1(f1)e +J2ﬂf2H2(f2)e
j2ﬂ(f1+f2)t
191
+3212T (£ 48, H (£, 1, )e
j2n(2f1)t j2ﬂ(2f2)t
+32ﬂ(2f1)H2(f1,f2)e +32ﬂ(2f2)H2(f2,f2)e
(29)
Substituting egn's (27), (28) and (29) into (23) and equating coefficients
j2ﬂ(f1+f2)t
of 2le yields
0 = {j2ﬂ(f1+f2)+Y1}H2(f1,f2)+Y2H1(f1)H1(f2) (30)
et . Y2H1(f1)H1(f2)
, = -
27172 JZTT(f‘.]+f‘2)+Y1
and hence from egn (26)
\E
H2(f1,f ) = = — H (£, )H,(f,)H (f1+f2) (31)

2 Y, 1oet
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Continuing the procedure by probing with three exponentials and equating

J2ﬂ(f1+f2+f3)t

coefficients of 3le on both sides of eqn (23) yields

2y
2
Hy(f,0,,05) = - 3, {H1(f1)H2(f2,f3)+H1(fg)HZ(f1,f3)
+H1(f3)H2(f1,f‘z)}H1(f1+f2+f3) (32)

The procedure can be continued indefinitely to find at each step higher
order nonlinear frequency response functions in terms of the lower order

functions.

Even though the defining equation (23) is a very simple nonlinear system,
there is only one nonlinear term, the Volterra expansion is infinite
because the nonlinearity is in the output. This clearly demonstrates

the disadvantages of identifying systems based on a Volterra description
and shows the advantages of the NARMAX model which is based on expanding
the current output in terms of both past inputs and outputs. Notice also
that a classical linear frequency response analysis which computed
Suy(jw)/Suu(jw) would not provide an estimate of H1(f) eqn (26) because
many of the other terms in the Volterra expansion would contribute.

The degree that each higher order kernel contributed would be dependent

on the statistical properties of the input so that the results obtained
would only be valid for the specific input used in the experiment.

This would be a severe limitation since it would mean the results could
not be used to predict the system response to other inputs, the estimates
would be input sensitive. The NARMAX method avoids all these limitations,
but before it is introduced consider the evaluation of the generalised

frequency response functions given that a NARMAX model has been identified.
Consider the application of the probing method to the NARMAX model

y(k) = ay(k-=1) + bu(k=1) + cyz(k—1) (33)
Implementing the procedure almost exactly as in the continuous time case

the system is probed initially with a single exponential

ulk) = ej2ﬂfk

The Volterra series eqn (3) will be as before except the integrals now
become summations. Equation (16) can therefore be applied directly with
n = 1 such that
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y(k) = H1(f)e32ﬂfk (34)
and the delayed inputs and outputs are
u(ke1) = eJZﬂf(k—1)
y(k=1) = H1(f)e32ﬂf(k—1) (35)
Substituting into eqn (33)
H1(f)eJ2ﬂfk - aH1(f)eJZHf(k—1)+beJ2ﬂf(k—1)
jemf(k=1) 2
+C[H1(f)e ]
. o jomfk . .
and equating coefficients of e on both sides yields
-2jnf
be
H,l(f) -———_—j'éﬁ (36)
1-ae
Probing with two exponentials
j2ﬂf1k j2ﬂf2k
ulk) = e +e (37)
The output response is from eqn (16)
j2ﬂf1k j2ﬂf2k j2ﬂ(f1+f2)k
- 1
y(k) = H1(f1)e +H1(f2)e +2.H2(f1,f2)e
j2ﬂ(2f1)k j2ﬂ(2f2)k
+H2(f1,f1)e +H2(f2,f2)e (38)

The delayed input u(k-1) and output y(k-1) follow directly as in the case

above so that substituting into eqn (33} and equating coefficients of
j2n(f1+f2)k
2le yields
—j2ﬂ(f1+f
e

CH1(f1)H1(f2)e

-j2ﬂ(f1+f2)
l-ae

5)

H2(f1,f2) =

As in the continuous time case the probing can be continued to determine

higher order nonlinear frequency response functions. Clearly therefore
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any order of generalised freguency response function can be found
analytically as above provided efficient algorithms can be developed
to identify models of the form of egn (33). This is the subject of

the next section.

3. The NARMAX Methodology

The NARMAX approach is a parameter estimation methodology for identifying
both the structure and the parameters of unknown nonlinear systems. The
method consists of several stages including testing for nonlinearities

in the data prior to analysis, structure detection{which terms should

be included in the model), parameter estimation, model validation and
testing. Each of these stages is designed to support, verify and if
necessary update the results from a previous stage in a manner which
increases the probability of identifying an accurate description of the
system under investigation. It is this handshaking and interaction

between the stages in the identification that makes the method so powerful.

The theory associated with each of the stages in the NARMAX methodology
is well documented in the literature and the objective below will be to
provide a short overview of the algorithms with the aim of demonstrating

how they can be implemented.

3.1. Testing for Nonlinearity

It is pointless applying powerful nonlinear identification algorithms if
the system under test is linear. The first stage in any analysis should
therefore indicate if the data was generated from a linear or a nonlinear
system. Various algorithms are available which test for nonlinearity

and these include two correlation tests [Billings and Tsang 1988], a filter
detection method [Peyton Jones and Billings 1988] and the Hilbert

transform test [Tomlinson 1987]. These will not be discussed in the
present publication because of space limitations. They are however all
easy to implement and provide valuable information which should be

verified by the NARMAX estimation and model validation stages as described

below.



- 14 -

3.2. The NARMAX Model

The NARMAX model (Nonlinear AutoRegressive Moving Average model with

eXogenous inputs) for a single input single output system takes the form
(k) = aM[y(k-w),...y(k-ny)u(k-d),...u(k-nu>,
e(k—1),...€(k—n€)] + €(k) (40)

where y(k), u(k), €(k) are the sampled output input and prediction error
sequences respectively, d is the system time delay, & the degree of

nonlinearity and @ is a constant term.

Although in the present study F[*] will be taken to be a polynomial the
theory states that F[*] is some nonlinear function and it may be that
other choices for F[*] are more appropriate in certain situations. These
can easily be accommodated as part of the NARMAX methodology [Billings

and Chen 1988; Chen and Billings 1988].

The NARMAX model which was first introduced in 1981 [Billings and Leontaritis
19811 and rigorously derived by Leontaritis and Billings [1985] can be
visualised as the discrete-time equivalent of the differential equation

that would represent the system in continuous time [Chen and Billings

19887, The Hammerstein, Wiener, bilinear and Volterra models can all

be interpreted as subclasses of the NARMAX.

The prediction error terms €(¢) are included in the NARMAX model to
accommodate noise which because the system is nonlinear could be additive
or multiplicative. Both types of noise can be represented by the NARMAX
which provides estimates of the process and noise models. Although

the noise model is not usually used in nonlinear spectral analysis it
must be estimated to ensure the process model is unbiased. Failure

to fit a noise model will in general lead to biased estimates; the model
will predict well over the data used in estimation but may be totally
inappropriate for predicting the system response to alternative inputs.
It is therefore very misleading to accept an estimated model on the basis
of its prediction accuracy over the estimation set only. Unfortunately,
this is a practice that appears to be widespread and which will often
lead to the acceptance of incorrect models and hence may result in

inappropriate designs.
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3.3 The Orthogonal Estimator

Detecting which terms are significant and should be included in the

model is vitally important. Although several structure detection and

parameter estimation algorithms have been developed as part of the NARMAX

methodology [Leontaritis and Billings 1987] only the orthogonal estimator
[Korenberg, Billings and Liu 1988; Billings, Korenberg and Chen 1988)

will be described here because it is both the simplest to implement and

to
in
an
An

use. The strength of the algorithm is that it allows each coefficient
the model to be estimated independently of the other terms and provides
indication of the contribution that the term makes to the system output.

m-dimensional estimation problem can therefore be reduced to m one

dimensional problems.

Represent the NARMAX model egn (40) by the regression equation

yik) = I p.(k)O, + (k) (41)

where pi(t) represents a term in the NARMAX and no two pi(t)'s are
identical. For example, the NARMAX model

y(k) = ®1y(k—1)+®2u(k~1)+®3u(k-1)y(k-1)

+®4u(k—1)€(k—1)+®5€(k-1)+€(k) (42)

could be described by egn (41) by defining

kel
~
n

y(k=1), pz(k) = ulk-1), p3(k) = ulk-1)y(k=-1)

T
~
~
1]

ulk-1)e(k=1), p5(k) = e(k-1)

Notice that the term e(k) will always be present, it represents the

prediction errors and as such does not appear as a term in pi(k).

Using the model in eqn (42) as an example the process model is defined

by

the terms which do not involve €(°¢). The process model associated

with the NARMAX of egn (42) is therefore defined by the first three

terms and the noise model is defined by all terms which include an e(*),

that is the last three terms in eqn (42).

Rather than estimating the parameters @i directly from egn (41) the

orthogonal algorithm operates on an equivalent auxiliary model

)

Zo Bk + (k)

y(k) =
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The parameters 8y in eqn (43) are estimated by implementing the

orthogonal estimator:-

N
pX w1(k)y(k)
(a) Set w,(t) = p(t) ana B == (44)
z w12(k)
k=1
(b) Set j = 2 and compute
N
k§1 wi(k)pj(k)
Oy, = —= for i = 1,2,.04,3-1 (45)
1] N >
X Wy (k)
k=1
j-1
w,(k) = p.(k) - I o,.w,(k
] ) P ) . lel( ) (46)
N
T wJ(k)y(k)
k=
g. = N1 (47)
J 2
I ow. (k)
k=1 3
Increment j and compute eqn's (45), (46) and (47). When the case
j = ng has been completed go to (c).
(¢c) Compute the NARMAX parameters @i backwards using
6 A
=g
e g .
A @ A \
ei - .Z uijej for i = ng-1,ng-2,...1 (48)
J=i+1

Equations (44) to (48) define the orthogonal estimator where N represents
the number of data points. The algorithm is remarkably simple and easy
to implement. The auxiliary regressors wi(t> are orthogonal so that

additional terms can be added to the model without the need to recompute

all the previous @j, Jj<i. Numerical ill-conditioning can be avoided by
N -5

deleting wj(k) if I wj (k) is less than some threshold (typically 10 7).
k=1

The standard deviation of the estimates are given by [Korenberg, Billings,
Liu 1988]
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n t2
A S ij
Std(0,) = 02X i=1,2,...n (49)
i _— N > S,
IT T W, S (k)
g=1 Y
where
lJ: 1 , 1=3,3 =12, Ny
; (50)
- I o,,tps OKi<§, § = 1,2,...n
L=i+1 12783 ©
and 02 = E[ez(k)]. In practice the prediction errors must be estimated from
eqn (43)
A n@
(k) = ylk) - Z g.w, (k) (51)
j=1 *F

and an estimate of 0 can then be obtained as

N
5 = I (k) (52)
© k=1

By estimating all the process parameter terms first and then computing the

prediction errors egn (51) and estimating the noise model the orthogonal
algorithm presented above provides an efficient method of estimating all
the unknown coefficients in the NARMAX model egn (41). Qur objective
however was not just to estimate the parameters, but to detect which terms
should be included within the model. This can be achieved by computing
the error reduction ratio [Korenberg, Billings and Liu 1988] for the i'th

term as

x 100 (53)

eRRi provides a measure of the reduction in mean squared error which would
result by including the i'th term @ipi(k) in the NARMAX (associated with

giwi(k) in the auxiliary model) expressed as a percentage reduction in the
total mean squared error. Usually ERRi is tested against a threshold and

the i'th term is only included in the model if ERRi exceeds the threshold,
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Separate thresholds of Cd and Cde for the process and noise terms

respectively have been found to be appropriate.

Notice that eRRi only gives an indication and not a definitive measure

of which terms to include in the model. If the position or order of

each pi(k) in eqn (41) were changed a different value of ERRi would be
obtained. In general, a term which is introduced at an early stage in

the regression will have a larger eRR:.L than would be obtained if it were
re-ordered to enter as a candidate term at a later stage. This difficulty
can be overcome by using the forward regression version of the above
algorithm [Billings, Korenberg and Chen 1987]. To introduce the idea

of this algorithm consider initially the case where only process model
terms exist. Consider all the possible pi(k), is= 1,2,...ne as

candidates for w1(k), and for i = 1,...n4 calculate

=

(i) N .
(1) st w  ETAT et e
W, (k) = pi(k) 5 8 = =¥ : [eRR]1 = K=1
(i) 2 N
 (w (k)) 2
K= 1 Xy (k)
P k=1
(54)
Find the maximum of [eRR]1(l), say [ERR]1(J) = max{[eRR]T(l), 1<1i<n }.
Then the first term to include in the model is selected as w1(k) = w1(J (k)
(associated with pj(k)) with §1 = @1(j) and [SRR]1 = [ERR]1(j).
At the second step all the pi(k), i= 1,...n@, i # j are considered as
possible candidates for w1(k). For i = 1,...ne, i # j compute
(1) _ (1)
W, (k) = pl(k) -0, w1(k)
N
(1) N )
. I W, (k)y(k) . (é (1))2 T (w (1)(k))2
a (1) _ k=1 (j) _ =2 Coe
g = ; [€RR] = k=1
2 N . 2 (55)
T (W (1)(k))2 N,
k=1 2 I oy (k)
- k=1
where N
T w,{k)p, (k)
1 i
(1) _ k=1
Ay = = > (56)
(k)
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) (%)

Find the maximum of [ERR]Z(i , say [ERR]2 = max{[eRR]2(i
Then the second term wz(k) = WZ(Q)(k) = pg(k)au
(2) =» (Q}

),1_<_i_§n@,i:£j}.
2w1(k), (associated with

. . _ A _ ()

pk(k)) is selected with Uiy =045 4 By = By and [eRR]2 = [ERR]2 .

The procedure is terminated when at any step q say

[ERR]q < Cd or Cde as appropriate (57)

or when the total parameter set has been searched.

The forward regression algorithm with a noise model estimator can now be

summarized as:-

(a) Select initial values of nos ny, n., d and & in egn (40) and use the
forward regression algorithm to select and estimate terms in the
process model. The selection is terminated using the rule defined

in egn (57).

(b) Calculate the residuals

where np is the number of process model terms.

(c) Using € (k) apply the forward regression algorithm to the noise model
and determine the next noise term which has the maximum €RR. If this

€RR is less than C then go to (f).

(d) Add the selected noise term to the model, recompute the residuals

£(k) = y(k) - I g.w,(k)
iq I J
J_
with the new term included where nc = np + the number of noise model

terms.

(e) Re-apply the orthogonal estimator for each of the current noise model
terms.
Go to (d) and repeat until the parameters converge to constant

values then go to (c).
(f) Compute the NARMAX coefficient using eqn (48).

In practice repeating steps (d) and (e) 4 or 5 times should be sufficient
to achileve convergence. Notice that because of the orthogonality property
the estimation of the process parameters in step (a) is totally decoupled

from the noise model updates. The algorithm is particularly simple to
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code because it just involves repeated computation of eqn's (45) to
(47).

The advantage of the forward regression algorithm is that it provides an
efficient yet simple method to search through and select the terms which
should be included in the model. If the original model set is large
however the search can be time consuming. There are simple ways to
minimize this and these will be discussed in the examples. An alternative
is to implement a simpler form of the algorithm, called forward inclusion,
to dramatically increase the speed. This is based on applying the
algorithm defined by egn's (44) to (48) directly but introducing the

terms into the estimator in the order:- constant term, u(k-1),y{k-1),

u(k=2),y(k-2)..., nonlinear process model terms in order of ascending
nonlinearity, €(k-1),€(k-2),..., nonlinear noise terms in order of ascending
nonlinearity. As each term is introduced €RR, eqn (53) is calculated and
if it is less than Cd or Cde respectively the relevance term is immediately
deleted from the model. The choice of Cd and Cde are data dependent

but typical values are 0.001 to 0.5 for Cd and 0.00017 to 0.1 for Cde'

This algorithm is not optimal in any sense but it is very quick and it
works weli in practice, Furthermore any deficiencies in the model
structure which result because of the order dependancy of €RR or an
inappropriate choice of Cd or Cde will be detected by the model validation
tests. Notice that the ordering and implementation described above is
far preferable than proposed in the original version of the method
[Korenberg, Billings, Liu 1988].

3.4 Model Validation

Model validation is designed to test if the model structure and parameter
estimates are correct. When the system is nonlinear the prediction
errors € (k) should be unpredictable from all linear and nonlinear
combinations of past inputs and outputs and this will hold iff [Billings
and Voon 1986]

Qe (T) = §(1)
@ueh) = OWT (58)
cpuz'e(’r) = ONT
¢ 5y (T = OM T
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weeu(T)z O¥T > 0

where the dash (') indicates the mean has been removed. If any significant
terms have been omitted from the model or any parameters incorrectly
estimated €(k) will not satisfy the above tests and this will indicate

that the orthogonal algorithm should be re-entered to investigate the
deficiency. The form of the functions in egn (58) can often indicate

the type of deficiency [Billings and Voon 1986; Leontaritis and Billings
19871].

3.5 A Recipe for Estimation

The NARMAX methodology can be implemented by following a simple recipe.
This will be briefly summarised below and described in detail using the

examples and case studies in Parts II and III.

In order to fit a NARMAX a few hundred data samples (typically 500-1000)
are required. The input does not have to have any special form but
obviously should be sufficient to excite the properties of interest in

the system [Leontaritis and Billings 1987bl].

Initially the data may be tested to detect nonlinearity. Whilst this step
can be easily omitted it does provide information which should be confirmed
by the NARMAX term selection procedure. If any a-priori information is
available about the form of model this can be used to focus the term
selection procedure. Otherwise use either the forward inclusion or
forward regression algorithms to detect significant terms and provide
parameter estimates. It may be advantageous in some cases to use the
forward inclusion method initially with small Cd and Cde to rapidly

search and provide a reduced set of terms which can then be optimally
searched using forward regression. The final model should then be
validated using the correlation tests. If any deficiencies are revealed
the estimation stage should be re-entered to investigate if the model

can be improved in any way. When an acceptable model has been obtained
the noise model can be discarded and the process model can be used to
compute the nonlinear frequency response functions or to predict the

response to any input [Billings, Tsang and Tomlinson 1988].

The results from each of the stages in the recipe should reinforce results
from earlier stages. It is this interaction that adds to the methods

robustness and ensures that any mistakes by the user are trapped and

signaled by the following stages in the procedure.
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4, An Illustrative Example

In order to demonstrate the application of the algorithms described above
the system described by egn (23) will be used as a simulated example.
Allocating some values to the constant parameters in eqn (23) defined
the system as

& - su(t) - sy(t) - 0.8y° (k) (59)
This differential equation was simulated on a Vidac analogue computer.
A zero mean Gaussian noise signal of bandwidth 5Hz was used as input and
the input/output signals were sampled with a ten bit A/D converter sampling

at 32ms to provide five hundred pairs of sampled input/output sequences

which are illustrated in Fig.1.

4.1 Linear Identification

Although tests for nonlinearity (not shown) indicated that the system was
nonlinear it is almost always worthwhile identifying the best linear model
initially. There are two reasons for this. Firstly, if the nonlinear
detection tests had not been used, or were in error, and the system were
linear this would be the correct procedure to follow, If the system is
nonlinear the model validity tests should indicate that the estimated
linear model is deficient. Secondly, fitting a linear model as a first
step almost always indicates to the investigator a suitable choice for

n,s ny and nE. This is valuable information since it defines a smaller
search space for the nonlinear terms and it helps considerably with the

choice of n. which can be difficult to select using Cde only.

The initial analysis involved fitting linear models of various orders

(nu z ny = 1,2,3,4) and delays (d = 0,1,2,3) and computing the loss
functions (sum of squared errors) of the fitted models using the forward
inclusion algorithm with & = 1. The results are summarised in table 1.
Inspection of table 1 shows that the time delay is almost certainly zero
and that an appropriate model order would be nu = ny = 3. This latter
decision is made because, whilst the loss function will always monotonically
decrease with increasing nu, ny its rate of decrease should level out when
the true system order is reached. Having established a good initial guess
of nu, ny and d the forward regression algorithm was applied for a third
=3, C, = 0.001, C = 0.0001 with five iterations

€ d de
on the noise model. The results are illustrated in table 2 and the model

order model, d = O, n
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0.200¢401 1
Output
0.
-200¢401
0.500¢401
Input
0.
~500¢ 401 Time interval
Fig.1 Input and output of the data records
delay
order 0 1 2 3
1 -2.519 | -2.394 | -1.474 | -1.349
2 23,779 | -2.855 | -2.626 | -2.227
3 -4.078 | -3.140 | -2.655 | -2.404
4 -4.089 | -3.155 | -2.655 | -2.469
Table 1 Linear model loss functions
Terms Estimates ERR Stdev
ylt- 1)= 0.1232e+01 (0.886e+02) (0.718e-01)
u(t- 0)= 0.6999e-01 (0.104e+02) (0.130e-02)
u(t4 1)= 0.7342e-01 (0.934e+00) (0.607e-02)
Constant term= -.6913e-02 (0.354e-01) (0.142e-02)
u(t- 2)= -.6836e-01 (0.217e-01) (0.839e-02)
y(t— 2)= —.2025e+00 (0.170e-01) (0.540e-01)
y (&~ )= ~.1032e400 (0.490e-02) (0.191e-01)
e(t- 2)= 0.1127e+00 (0.132e-03) (0.671e-01)
e(t- 1)= 0.1025e400 (0.135e-03) (0.850e~01)

Table 2 Linear model estimation
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Figure 2

validity tests egn (58) are shown in Fig.2a. Notice that in Fig.2a the
traditional linear model validity tests indicate that the model is adequate
wgg(T) = &(1), @ug(T) = 0 (E(t) = €(t)) and the predicted output of the

model in Fig.2b looks quite good. Inspection of the nonlinear model
validity tests @uz,g(T) and wuz,g(T) however shows that these are well
outside the 95% confidence bounds indicating that nonlinear terms are missing

from the model, and that the parameter estimates are highly biased.

4,2 Nonlinear Identification

The linear identification results suggest that n, = ny =N, = 3and d =0
would be a good starting point for the nonlinear search. Inputting these
values into the forward regression estimator setting the degree of non-

linearity % = 2 initially, Cd = 0.001, C = 0.0001 with five iterations

of the noise model produced the results ig Table 3a. There are fifty five
possible terms in the model with this specification and the algorithm has
indicated that only those in Table 3a are significant. A comparison with
2(k-1) and E°(k-3)

have been included. For the purpose of illustration the nonlinear estimates

the linear model Table 2 shows that the additional terms y
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in Table 3a were then optimised using a prediction error algorithm
[Leontaritis and Billings 1988] to produce the estimates in Table 3b.

A comparison of Tables 3a and 3b shows that there is little difference
between the two demonstrating the accuracy of the orthogonal methods.

Fig 3 shows the model validity tests of the model in Table 3b and since
all the plots are within the 95% confidence bands this indicates that

the model is now acceptable. The predicted output of the nonlinear

model is illustrated in Fig 3b. A comparison of Figs 2(a),(b) the linear
model case with Figs 3(a),(b) clearly shows the improvement that has been

achieved by the addition of just one nonlinear process model term.

Estimates of the nonlinear frequency response functions can now be computed
from the estimated nonlinear model by applying the probing method described
in section 2.2. The probing method is applied after discarding the noise

model to yield from Table 3(b) the process model

y(k) = 0.1758y(k-1)+0.0623u(k)+0.1616u(k~1)
-0.03839y2(k—1)+O.569y(k—2)+0.03143u(k—2) (60)

Probing eqn (60) yields the frequency response functions illustrated in
Fig 4. A1l the frequency response plots are against normalised frequency.
Multiplying the normalised frequency by the sampling freqguency (31.25Hz
in this example) gives Hertz. Hence H1(f) in Fig 4{a) i1s plotted for the
range of normalised frequencies 0 S f 5 0.16 which corresponds to 0 to 5Hz
in actual frequency. Hz(f1’f2) is plotted for normalised frequencies
0<f, <0.16, -0.16 < f2 < 0.16 and H3(f1,f2,f3
Because the model egn (60) contains a

1 ) is displayed over the

same range but with f1 = f3.
nonlinear term in y(°*) H4(°), HS(') etc will exist and although these can
easily be computed analytically from the NARMAX it is difficult to see how
to display them. The true frequency response functions of eqn (59) are
illustrated in Part II of the paper and a comparison of these with the

estimates in Fig 4 demonstrates the effectiveness of the current algorithms.,
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Terms Estimates ERR
)= 0.1572e+00 (0.886e+02) (O.
0)= 0.6230e-01 (0.104e402) (0.
)= 0.1633e400 (0.934e+00) (0O
1)*y(t= 1)= ~.3822e-01 (0.845e-01) (0.
2)= 0.5849e+00 (0.234e-01) (O
2)= 0.3275e~01 (0.290e-02) (O
2)= ~.3902e+00 (0.158e-02) (O
3)*te(t~ 3)= ~.1049%9e+02 (0.274e-03) (O
3)= -.1005e+00 (0.114e~-03) (O
(a) Initial nonlinear estimate
Loss function = -.470686e+01
Terms Estimates Stdev
1)= 0.17582e+00 (0.33750e-01)
0)= 0.62366e~01 (0.65280e-03)
1)= 0.16160e4+00 (0.33187e-02)
1N*ry (- 1)= -.38395e~01 (0.94737e-03)
2)= 0.56907e+4+00 (0.28441e-01)
2)= 0.31425e-01 (0.24540e-02)
2)= -.38415e4+00 (0.46923e~-01)
3)*e(t- 3)= -.39611e~-01 (0.14158e+400)
)= ~.86674e-01 (0.45860e-01)

(b) Optimised nonlinear estimate

Table 3

Stdev

354e-01)
659e-03)

.347e-02)

972e-03)

.298e~-01)
.257e~02)
.494e-01)
.329e401)
.480e-01)
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5. Conclusions

A new methodology for identifying the generalised frequency. response
functions of a wide class of nonlinear system has been presented.
Although the derivation of the algorithms often involves complex
mathematics the final procedures that are implemented are particularly
simple, and are both easy to use and interpret, Whilst other more
sophisticated algorithms have been developed to provide alternative
solutions to the problems posed in the present paper [Leontaritis and
Billings 1987,1988] the combination of the orthogonal estimator and the
probing algorithm provide a powerful toolkit for the analysis of non-
linear systems in the frequency domain. The methods are of course
upwardly extendable to MIMO systems etc and these results will appear
in forthcoming publications. The second part of this paper will
consider the interpretation of the nonlinear frequency response functions
and Part III will describe in detail the application of the methods to

some case study examples.

Acknowledgements

One of the authors (SAB) gratefully acknowledges that this work was
supported by the Science and Engineering Research Council Ref GR/D/75809.
Both authors wish to thank Prof G Tomlinson of Heriot-Watt University

for numerous stimulating discussions on the topics in this paper.

References

Bedrosian E, Rice SO (1971): The output properties of Volterra systems
(nonlinear systems with memory) driven by harmonic and Gaussian
inputs; ProcIEEE, 59, pp1688-1707.

‘Billings SA (1980): Identification of nonlinear systems - a survey;

Proc IEE, 127, pp272-285.

Billings SA, Chen S (1988): Identification of nonlinear rational systems
using a prediction error estimation algorithm; Int J Systems Sci,
(to appear).

Billings SA, Korenberg MJ, Chen S (1988): 1Identification of nonlinear
output-affine systems using an orthogonal least squares algorithm;
Int J Systems Sci, 19, pp1559-1568. '

Billings SA, Leontaritis IJ (1981): Identification of nonlinear systems
using parameter estimation techniques; IEE Conf Publ 194, Warwick
Univ, pp183-187.



SH“J e LIV
- 30 - APPLIED SCIaNGE
LIBRARY

Billings SA, Tsang KM (1987): Estimating higher order spectra; 5th
IMAC, London.

Billings SA, Tsang KM, Tomlinson GR (1988): Application of the NARMAX
method to nonlinear frequency response estimation; 6th IMAC Orlando.

Billings SA, Tsang KM (1988): Spectral analysis of block structured
systems; submitted for publication.

Billings SA, Voon WSF (1986): Correlation based model validity tests
for nonlinear models; Int J Control, 44, pp235-244.

Brillinger DR, Rosenblatt M (1967): Asymptotic theory of estimates of
k'th order spectra; in B Harris (ED): Spectral Analysis of Time
Series, Wiley.

Bussgang JJ, Ehrman L, Graham JW (1974): Analysis of nonlinear systems
with multiple inputs; Proc IEEE, 62, pp1088-1119.

Chen S, Billings SA (1988): Representations of nonlinear systems: the
NARMAX model; Int J Control, (to appear).

Chua LO, Ng CY (1979): Freqguency domain analysis of nonlinear systems:
formulation of transfer functions: general theory; Electronic Cts
and Systems, 3, pp165-185 and 257-269,

Leontaritis I1J, Billings SA (1985}): Input-output parametric models for
nonlinear systems. Part I - Deterministic nonlinear systems.

Part II - Stochastic nonlinear systems; 1Int J Control, 41, pp303-344.

Leontaritis IJ, Billings SA (1987): Model selection and validation
methods for nonlinear systems; Int J Control, 45, pp311-341.

Leontaritis I1J, Billings SA (1987b): Experiment design and indentifiability
of nonlinear systems; Int J Systems Sci, 18, pp189-202.

Leontaritis IJ, Billings SA (1988): Prediction error estimation for
nonlinear stochastic systems; Int J Systems Sci, 19, pp519-536.

Korenberg MJ, Billings SA, Liu YP (1988): An orthogonal parameter
estimation algorithm for nonlinear stochastic systems; Int J Control,
48, pp193-210.

Marmarelis PZ, Marmarelis VZ (1978): Analysis of physiological systems -
the white noise approach; Plenum Press.

Peyton Jones J, Billings SA (1988): Prediction error filtering to detect
nonlinearity, (in preparation).

Schetzen M (1980): The Volterra and Wiener theories of nonlinear systems;
Wiley.

Tomlinson GR (1987): Developments in the use of the Hilbert transform for
detecting and quantifying nonlinearity associated with frequency response
functions; Mechanical Syst Sig Proc, 1, pp151-171.

Vinh TT, Chohychai HL, Djouder M (1987): Second order transfer function

computation and physical interpretation; 5th IMAC, London.




