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Abstract

A recursive prediction error parameter estimation algorithm is derived for systems
which can be represented by the NARMAX (Nonlinear ARMAX) model. A
convergence analysis is presented using the differential equation approach and the new
concept of m-invertibility is introduced. The analysis shows that while a highly
nonlinear process model may be used to capture the nonlinearity of the system it is
advisable to fit a simple noise model. The results of applying the algorithm to both
simulated and real data are included.

1. Introduction

Recursive identification of parameters in linear models is now a well-established
field. Several methods of analysing recursive estimators have been proposed and an
elegant cohesive theory has been developed (Ljung and Sbderstrom, 1983).

In many practical applications however nonlinear models may be required to
achieve an acceptable predictive accuracy. Subject to some mild assumptions the
NARMAX model (Billings and Leontaritis, 1981; Leontaritis and Billings, 1985) can
be used as the basis for identification of such systems and several of the basic
principles of linear recursive identification can with obvious interpretations be applied
to this model (Billings and Leontaritis, 1982; Billings and Voon, 1984; Fnaiech and
Ljung, 1987).

In the present study a recursive prediction error estimator (RPEM) is derived for
the polynomial NARMAX model. In order to apply the differential equation approach
of convergence analysis developed by Ljung the filter that generates the prediction
should be exponentially stable and for the NARMAX model this coincides with the
stability of the noise model. Whilst this is relatively easy to analyse when the noise
model is linear the new concept of m-invertibility is introduced for the general case of
nonlinear noise models. This leads to a convergence analysis of the RPEM for
polynoimal NARMAX models and to the development of a practical rule for the
choice of noise model in nonlinear system identification. The rule, which implies that
to ensure m-invertibility the noise model should not include nonlinear terms in the °
prediction errors, has important implications for all nonlinear model fitting algorithms
recursive or batch. The results represent an extension of a previous study (Chen and
Billings, 1988b), which considered nonlinear output-affine models and, which by

definition were therefore restricted to the special case of noise models linear in the

prediction errors.
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For notational simplicity the single-input single-output case is studied throughout
although the results are valid for multi-input multi-output systems. The algorithms are

illustrated using both simulated and real data.

2. The NARMAX model

Under some mild assumptions a discrete-time nonlinear stochastic control system

can be described by the NARMAX model (Leontaritis and Billings, 1985)
y(t) =f(y(l—-l),.,.,y(r—ny),u(t-—l),...,u(t—nu),e(t—1),...,e(t-—n,)) + e(t) (1)
where y(1), u(r) and e(r) are the system output, input and noise respectively; ny, n, and n,
are the orders of the output, input and noise; {e(1)} is assumed to be a white sequence;

and f) is some nonlinear function. Expanding f.) as a polynomial of degree L gives
the representation

"y
¥ = 3 0xi(t) + e(10) 2)
i=1
where
L
ng =3, ny ng=l, np= nig(npngdnsi-1)i, i=1,.,L 3)
=0
0=(61,....0,) (4)
and
xl(t) =1 . -
p q r
xi(’) = H y(t—nyj)'n u(t_nuk)'l__[ e(t_nerme) (5)
=l k=1 m=1

i=2,.,0, p,qr20, 1<p+q+r<L, 1<n, <0y, 1€n,80, 1<n,,.<n,
By convention, p=0, ¢=0 or r=0 indicates that x,(r) does not contain y() terms, u(.) terms
or e(.) terms respectively. As 6 ranges over Dy, a subset of R"®, eqn.(2) describes the

set of models, within which the one that best describes the recorded data is to be

selected. Denote the input-output record at time r-1 as

2 = (2(1-1),...,2(0)) (©6)
where

0 = 0] ™
Then for a given 6 the one step ahead prediction of the output at time ¢ is

F(18) = gm(01,2) = 67¢u(1,0) 8)
where

0+(1,0) = (x1(1)yurrs X ()T &)

The prediction error is given by



£(4,0) = y(1) — J(116) (10)
The gradient of J(1/6)
T
¥(1,0) = [—"J%Q)J 1D

a ng-dimensional column vector, plays an important role in recursive identification.
Differentiating eqn.(8) w.r.t. 6 yields

e 84).(!,9)
- - T I
P(1,0) = 6(1,0) g_—_zx [9 = (t—i,e)]\y(t i,0) (12)

Regrouping terms in eqn.(2) gives

() = 1),y (0-ny)u(t=1),...,u(t-n,);0) +
L QU101 ) u(t=1),. U (8-1,),6(1=1,0),....£(t-1,,0);0) + €(1,8) . (13)
where f(.) contains all terms 6x; () with »=0 and f*() contains all terms 6x,(r) with r=0.

() is referred to as the process model and f%.) as the noise model. A first order
NARMAX model with second degree nonlinearity would for example be given by
Y(t) = [0; + 0,9(+-1) + O3u(t=1) + 0,2(—1) + Osy(I—1u(t-1) + Og(-1)] +

[6,6(t—1,0) + Bgy(t—1)e(t-1,0) + Oqu(t—1)e(t—1,0) + 0,ce(+-1,8)] + £(1,0) (14)
Notice that unlike the output-affine model (Chen and Billings, 1988b) nonlinear power

terms in y(.) and e(.) are present.

An important case of the model (13) is

¥ = POU=1),.0y(-ny),u(t=1),...,u(t-n,);0) + i cie(t—i,8) + €(1,8) (15)
where the ¢; coefficients are part of 6. The off—T;ne identification of several industrial
systems has shown that many can be modelled in the form of eqn.(15). Some examples
are a 6996 bhp industrial diesel generator (Billings et al, 1988), a liquid level system
(Billings, 1986) and a heat exchanger (Billings and Fédzil, 1985; Liu et al, 1987). Itis
obvious that the ARMAX model

A(g)y() = B(g™ )u(t) + C(g™)e(1,8) ' (16)
where A(g"), B(g™') and C(g™") are the polynomials-in the backward shift operator ¢!
1

-1 & —i
Agh=1+ %aiq
=

Bgh=Ybg" b (17)
=1

II‘ .
ClgH=1+Y cq™
=1

o

is a simple case of eqn.(15).
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3. A recursive prediction error estimator

A general class of recursive parameter estimators is derived by minimizing the
discrepancy between the measured output and the predicted output according to a
candidate model (the prediction error) over the model set. The method of deriving
these estimators is generally referred to as the recursive prediction error method and its
application to linear system identification has been extensively studied (Sbderstrom,
1973; Gertler and Banyasz, 1974; Ljung, 1978, 1979; Ljung and Sbderstrom, 1983).
In this section, the recursive prediction error method is applied to the NARMAX
model. A quadratic criterion will be used as an illustration. Extension to the general

criterion is obvious.

Based on a recursive minimization of the criterion

V(8) = E[e%(1,0)] (18)
a recursive prediction error parameter estimator takes the form

e(t) = y(&) = 3(t)
R(®) = R(-1) + ¥O[YOW(1) - R(+-1)) (19)
8(1) = 8(-1) + YORNOPW)e(r)

In the algorithm (19) W(ne(s) corresponds to the gradient of the criterion (18) and R() is
an approximation of the Hessian of the criterion. R{(ND¥(ne(r) is therefore a Gauss-
Newton search direction. Other search directions are also feasible, and as long as R(;)
is positive definite the convergence properties of the algorithm will not be changed. If

the prediction error process is not stationary the criterion can be chosen as

Ty = Biel RTINND [ )
7(6) = Ele’(0)] = lim g, E[€%(1,0)] (20
Notice that e(s), (1) and ¥(1) depend upon all the old estimates 8(—1) to 6(0) implicitly.
In practice, the algorithm eqn. (19) is implemented in the equivalent form

() = y(1) - (O
1 _ PE=D¥OYT(OP(-1)

PO=55 [P(H) M) + PIOP(-1¥() @1
8(1) = b(+-1) + POYY(DE()

where
P(6) = YOR™(¢) (22)
A = (=11 ~ y@0))y() (23)

For analysis purposes however it is better to work with version (19).

It now remains to specify recursions $(+) and ¥(r) for the NARMAX model. From

eqn.s (8) and (12) it is seen that



ey = (é<t—1>>T¢~<r) (24)

W) = do(1) — ): [(éa 5oy aa qzt( )) ]W(r—i) (25)

where ¢.() is obtamed by replacing e(~,0) in eqn.(9) by e(—i). If the model structure is
given by eqn.(15) the recursion (25) is often written as

W) = (1 26

& _1) ) (26)

where Cig =1+ }:‘, ¢ét-1)g~. Notice that this is similar to the ARMAX model. As an
=1

illustration of recursions (24) and (25), the simple example (14) in Section 2 would
result in the following definitions:

() = (B1(1),....010)T
\Ij(t) = (\Pl(t)’-wqjlo(t))’r
Oo(t) = (L,y(t=1),u(t=1),y2(t=1),y(t=1)u(t=1),12(1=1),€(0— 1),y (-=1)e (- 1), u (0~ 1)e(t=1),e3(t—-1))

o od«()
T
-1 5D

= 8,(-1) + Bg(-1)y(-1) + Bo(r~u(t=1) + 26,5(-1)e(r~1)
4. Convergence analysis

4.1, Results for the linear model

In linear system identification it is assumed that the prediction j((6) is obtained by
filtering the input-output data through a linear finite-dimensional filter

o(++1,0) = F(0)d(1,0) + G(0)z(r) ’
$(16) = H()d(1,0) 27)

where ¢(1,0) is an n-dimensional vector, F(6) and G(8) are matrices of appropriate
dimensions. The stability region of the predictor (27) is

D, = {6 | F(B) has all eigenvalues inside the unit circle } (28)
The predictor should be constrained to be stable. Therefore it is necessary to require

that Dy < D,. Notice that D, is not the stability region for the system dynamics, and
that constraining e to D, does not impose a serious restriction on the model. All linear
models can be written in the form of eqn.(27). It can easily be shown that for the
ARMAX model (16)

D,=1{0] c () has all zeros inside the unit circle } : (29)
where

C'(s) = 5*C(s™h) (30)
Before quoting the analysis results from (Ljung, 1977,1979; Ljung and Stderstrom,
1983), it should be emphasized that the same analysis results hold for the predictor

model



9(+1,8) = F(©)0(1,0) + G(e)h<z<r»} o1
$(16) = H(8)0(10) )
where k() is some vector valued function. This is apparent in the proof of Theorem 1
in (Ljung, 1977). In the analysis it will be more convenient to include W¥(,0) as the

filter’s output. Differentiating eqn.(27) w.r.t. 6 and rearranging the resulting equations
yields

E(r+1,0) = F(0)5(1,0) + G(B)2()

. (32)
[@g,'?g)] = H(0)%(1,9)
where
T T T K

and F(0) has the same eigenvalues as F(@8) but with higher multiplicities. The following
results are from (Ljung and Sbderstrdbm, 1983).

Consider the algorithm (19) with the recursion

&(e+1) = FEWED + GO©)20 34)
[9;’,((’;?)] = A1)

Assume:

(a) Dy is a compact subset of R"® and Dy, C D,.

(b) The matrices £(6), G(6) and A(9) are continuously differentiable w.r.t. 6 for 6 Dy.
(c) }52 Y1) =pn > 0.

d RW=281 Vi for some 5>0.

(¢) A projection is included into the algorithm to keep 6() inside D,,. That is,

8 = B(-1) + YOR (Y ()], 35)
with
x if xeDy
$Ip, =1 4 value strictly interior to Dy otherwise (36)

(f) The data generation is asymptotically mean stationary so that ¥(6) defined in
eqn.(20) and

E¥(1,0)e(1,0) = fp(0)
Ew(1,0)¥7(,6) = Gp(6) (37

exist, where as in eqn.(20)



=1 N
EQ = I&l_xllNZ%E() (38)
and the expectation is over the stochastic process {z(1)}.

(g) The data generation is exponentially stable, That is, for each i, ¢, t21,, there exists

a random vector zg(t) that belongs to the o-algebra generated by z* but is

independent of 2%, such that —

Ellz() — 0l <A™ e<oo, A<l

where ||| is a chosen norm.
Then {8} converges w.p.1. to a local minimum of V(6).

The analysis of the algorithm is based on the associated differential equation
(d.e.)

B~ k@)
dRp() (39)
2 = Go6() - Rol®)

This d.e. is defined in the area D,. The results mean that the recursive prediction error
algorithm has the same convergence properties as its corresponding off-line algorithm.
Nothing is assumed about the true system other than that the data generation is stable
and asymptotically mean stationary (conditions (g) and (f)). The true system may be
much more complex than the resulting model, but this model is the best approximation
to the system within the model set in terms of the chosen criterion. The only situation
where it is not realistic to assume conditions (f) and (g) a priori is when the generation

of {z(1)} depends upon past estimates such as in adaptive control.

To ensure condition (d) the computation of R() can be modified to

R() = R(t-1) + ) [YOYT() - R(=1)] 40
_ R(ty ifRy=81 (40)
~ R(t) + My(t) otherwise

where My(r) is chosen so that R(:) 2. This modification can easily be implemented.

R()

Many projection rules are possible. One example is

8(0) = 6(=1) + YOROW ()

50 i S0eDy (1)
= B-1) otherwise '
For a linear model, D, is usually known and there is no difficulty in incorporating a

o(1)

projection mechanism within the algorithm. Take the ARMAX model (16) , for
example, once n, is given D, is specified by eqn.(29) which can be checked by testing
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if the C-polynomial is stable at each stage of the estimation using a Routh scheme. If

it is not, 8(/) can be projected into the interior of D,.

4.2. Application to the NARMAX model with linear noise model

An important class of NARMAX models are given by eqn.(15), where the noise
model f*() is linear, The formulations of y(6) and W¥(,6) for this class of nonlinear
models are similar to those for the linear case. In fact, a nonlinear model of eqn.(15)

~ can always be rearranged into a predictor form

$(++1,8) = F(8;2(1))9(1,8) + G(O)h(z(1))
Y(116) = H(8)¢(1,8)
where the eigenvalues of the matrix F(6;z(1)) are O (with multiplicity)“ and the zeros of

(42)

the polynomial C*(s) given in eqn.(30). Notice that although F(8;z(1)) depends on z() its

eigenvalues do not. This is best illustrated using an example:

Y1) = 0y9(1=1) + 0,9(1-2) + O3u(t-1) + 8,°(1~1) + Osy(--Dy(t=2)u(1-2) +
By (- 1)u(t-1)u(t=2) + 078(:~1,0) + 0e(1-2,0) + £(1,0)

Define
. y(=1)
0, y(-2)
9, u(t-1)
gs y(=1)u(t-1) N0
- |4 - 3 - | u@
0= o, 000 = D b D= yu)|
06 W=1)y(-2)u(-2) S0
0, V20— 1)u(t-1)u(1-2)
Les_ £(-1,0)
€(t-2,0)
Then
(00 0 0 0 0 0 ¢ o0 0 10 0 0
1 0 0 0 0 0 9 o0 O 0000
0 0 0 0 0 0 o 0 O 0100
0 0 0 0 0.0 o0 0 0 0010
F@zn=10 0 0 0 0 0 0 0o 0| G®=|0001]|
0 0 0 ¥y 0 0 o0 0 O 0000
0 0 Y(u@) 0 0 0 0 0 O 0000
6, 8, =-B; O -0, 65 -, -6, —O; 1000
00 0 0 06 0 0 1 0 0000

and  H®) = (81, 8, 0, 0, 6, 05, B, 67, 65).
The eigenvalues of F(8;z(n) are O (with multiplicity 7) and the two zeros of
C'(s)=s*+6;5+05. The underlines in the above example indicate that a "trick" has been
used. The term y(1)y(--1)u(-1), which is the one-step-ahead state of y(-—1)y(—2)u(-2), can
be represented as the product of y(r) and y(~-1)u(+-1), and hence, y(-1)u(t~1) is included

i
i
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as a "state". If the model includes all the possible terms, this kind of trick will not be
needed. For example, representing y2(Nu(t)u(t~1) as the product of y*(u() and u(r-1) does
not require the introduction of any new term because u(--1) is already an element of
(1,0).
Similar to the linear case, the augmented predictor model for NARMAX models

of the form of eqn.(15) is

E(#+1,0) = F(0;2())§(1,0) + G(OA(z(1)) 43)

[g:(ggfg)]=g<e>¢<,,e) |
The stability region D, of this predictor coincides with eqn.(29). It now becomes clear
that analysis of the recursive prediction error estimator for NARMAX models of the
form of eqn.(15) can follow the exact lines given in (Ljung, 1977 Ljung and
Stderstrdm, 1983), and the previous convergence results for the linear case can be
applied directly.

4.3. Invertibility of noise models

In a general NARMAX model, the noise is multiplicative with the input and
output, and the convergence analysis for the linear case does not apply directly. It is
important therefore to investigate if it is possible to extend the previous analysis to
NARMAX models with a more complex noise structure f(.), and this leads to a new
definition of invertibility called m or model invertibility.

Before introducing the concept of m-invertibility the ideas of the differential
equation method are briefly discussed. Since, for 8eDy, F®) is exponentially stable,
exponential stability of the time-varying difference equation (34) will be guaranteed if
(k) varies in a sufficiently small neighborhood of 8, and for sufficiently large ¢ and
some M, the influence of k), k=t~M-1,..,0 becomes very small, that is,

&) = §4,0(-1),....6(0)) = E(1,8(-1),...8(-M)) (44)
Furthermore, because y()—0 as ¢, for sufficiently large ¢ v) will be -arbitrarily
small. From the algorithm (19), it is seen that {8¢)} will change more and more

slowly, and

0e-y= -+ =M =9 (45)
As a consequence, the time-varying difference equation (34) behaves more and more
like the time-invariant difference equation (32), and problems like convergence w.p.l.,

possible convergence points and asymptotic behaviour of the recursive algorithm can

thus be studied in terms of the associated differential equation (39) (Ljung, 1977). In
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summary, the stability of the predictor (27) is vital for the analysis using the associated
differential equation.

Consider specifically the ARMAX model (16). The stability of the predictor
requires that C(g7") is stable, that is, C'(s) has all zeros inside the unit circle. This is
often referred to as C(é“) being invertible in the literature of time series analysis and
stochastic control. It is not difficult to see why the convergence results for the
NARMAX model with linear noise terms eqn.(15) is the same as that of the ARMAX
model; they both have the same noise model structure. Furthermore, for NARMAX
models where the noise model has an ARMA structure

£ = Lo 0) (46)
the convergence analysis for the linear case can again be applied directly. An
investigation into the consequences of C(g!) being invertible leads to the results we

seek. For a particular realization of the stochastic process {z()}, assume that two

sequences {€9(,0)}, i=1,2, are generated by

e9(1,0) = (1 = C(g))e®(1,0) + Ag™ () — B(g™\)u(r) 47)
with any two different initial conditions

e0),....e(=n+1), i=1,2 (48)
Then

[£N(1,0) — £@(1,0)12 = 0 as t—oo (49)

because the influence of initial conditions decays exponentially. For almost all
realizations of {z(9}, eqn.(49) will hold w.p.1. This suggests a new definition of
invertibility called m-invertibility that will also cover the general nonlinear model. The
concept is similar to that introduced by Granger and Andersen (1978) for time series

analysis but the two definitions are not the same.

Definition: m-invertibility

Assume that the nonlinear model (1) has been parametrized (not necessarily using a
polynomial expansion) with a parameter vector . For given observations of {z(n}, let
{e9(1,0)}, i=1,2, be generated by |

£0(4,6) = y(t) — V(=10 Y (t=-n)u(=1),0oou(t-1,) €D (0=1,0),....£O(¢=n,,0)) i=1,2 (50)
with initial conditions given by eqn.(48). Then model (1) is said to be m-invertible if

E[Ae(t,0)]* = E[e")(1,0) — e®(1,0)]* = 0 as t—00 (51)

Condition (51) guarantees that the two sequences e¥(;,0), i=1,2 become identical as

t—e w.p.1. regardless of their initial conditions. If the true system is exactly described
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by the model, the above definition of invertibility coincides with that given by Granger
and Andersen (1978), and eqn.(51) becomes

Ele(t) — (1,0)]’>0 as t—o0 (52)
which implies that very good estimates of the unobserved system mnoise can be
obtained at least for large ¢ Notice however that given an underlying process
{2(}={(¥(0)u())T} and a model parameterized by 6 (which may not be anything related
to {z(}) then m-invertibility says that if the generation of €(1,8) is stable then the model
is invertible. This is easier to interpret if e(,0) is thought of as the output of a
nonlinear finite-dimensional filter

0(+1,0) = F8:5(4,0),2(r))
£(1,0) = h(6;(1,0)) } (53)

M-invertibility means that this nonlinear filter is exponentially stable. For the
NARMAX model (13), it is clear that m-invertibility is a property of the noise model
f() only. This property is concerned with the stability of the noise model.

Although many practical systems can be modelled in the form of eqn.(15) it is
unlikely that the linear noise model f() has sufficient generality. A convenient

extension to the model in eqn.(15) is the NARMAX model with a bilinear form for )

YO = LOE=1),0y(0=ny)u(t=1),...,u(t-n,);8) + Z cie(ti,0)
=1

n, n, ny n,
+ 3 ¥ du(-De(—,0) + 3. Y hyy(=i)e(t—j,0) + €(1,0) (54)
=1 =1 j=l

The invertibility conditions for certain types of bilinear time series models have been
investigated (e.g. Granger and Andersen, 1978; Quinn, 1982; Subba Rao and Gabr,
1984). These results can be extended to NARMAX models with similar bilinear forms

of noise model f*(). Consider for example a simple case of model (54)

YO = fFOU=1),0y(t-ny)u(t=1),..,u(t-n,);0) + (0 + Bu(-1))e(~1,0) + £(1,0) (55)
Then -
Ae(1,8) = — (0 + Bu(t=1))Ae(t~1,0) with initial condition Ae(0) (56)
or
1 ,
Ae(1,0) = (-1)'Ae(0) (ot + Bu(O))-f'I (o + Bu(i)) 57)
=1

Using the same analysis presented by Granger and Andersen (1978) for the time series
model

¥(0) = By(=1)e(t-1) + e(r) (58)
it can be shown that
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{
(Ae(++1,0))* = p'f] (o + Bu@i)? < p[%z': (o + liu(i))z] (59
=1 =1 .

where p = (Ae(0))X (o + Bu(0))2. If

tim L (o + Buce)? (60)

N—seo N =1
exists w.p.1. and this limit is less than 1, then clearly

E[A(1,8)1* 0 as t—o0 (61)
Denote a function ‘

80,20 = g, | (62)
where g(.) is differentiable w.r.t. 6 and z(¢). It is known that

imL S g, = 7 exists wp.l : 63
Jim 775 8= g exists wp.l. (63)

if the following two conditions are satisfied

N —
-,172;, (g: — Elg)=0 w.p.1. as N—oo 64)
=
N
%Zl E[g]—F as N—yoo 65)
.

(see, for example, Ljung and Sbderstrdm, 1983, Section 4.3.4). Condition (64) is very
mild and can be assumed to hold (it corresponds to assumption (g) in Section 4.1.).
This leads to the conclusion that a sufficient condition for model (55) to be m-

invertible is

N
Ef(o + Bu())?] = lim -1-2 El(o + Bu()?1 < 1 (66)
N N =1
If {u(n} is stationary, E[(o + Bu(1))*] is independent of ¢, and condition (66) becomes

El(o. + Bu®)® < 1 (67)
Notice that this condition depends upon the input as well as the parameters.

Model (54) is a special case of the models in which £*() is linear in e(t—i,e’), 1<i<n,:
y(t) =f(y(t_l)>---iy(t—ny),u(t_l)wou(t"nu);e) + c(y(t_l)w-:y(t—ny)’u(t"l)w‘»u(t_nu);q~1)£(t’e) (68)
where
COU=1)cy(t-ny)u(t=1),....u(t-n)ig ") = 1 + E EY(-1),ny (=R ) u(t=1),...u(t-n,))g ™ (69)
=t

and  &((t-1),..¥(t-n))u(t-1),..,u(t-n,))’s are polynomials. The analysis developed for
bilinear f*(.) can be applied to this class of models. For example, consider the model

YO = POU=1),y (=) u(t-1),....u(t-1,);0) + 0y (~1)e(t~1,8) + £(1,0) (70)
Using a similar argument as that used for eqn.(55), a sufficient m-invertibility

condition is derived

?E' (] < 1 (71)
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This condition depends upon the statistical properties of {z(1)} as well as the parameter

o,
If the power of e(~i,0), Isi<n,, in f() of eqn.(13) is raised to a value larger than

one it is unlikely to produce an invertible model. To demonstrate this, assume that y(r)
was generated by

YO = POU1) sy (t-1)U(1=1), 000, (t-1,);0) + 0£2(1-1) + e(t) (72)
Substituting e(r) by e(1,6) + Ae(,,8) and using

8(1’9) = J’(f) "f@’(t—1)»---:}’(t"ny),u("l),---,u(f—nu)ie) - %2(1—1,0) (73)
yields '

Ae(,0)= —20£(+~1,0)Ae(~1,0) — o(Ae(i~1,0))? 7 (74)

As pointed out by Granger and Andersen (1978), the solution oflleqn.(74) has an
explosive component. It follows that {e(:,0)} generated by eqn.(73) will diverge from
{e)} and thus the model (72) is noninvertible. Notice that this does not mean that
systems like eqn.(72) do not exist in reality. It does imply however that attempt to fit

noninvertible models may lead to explosive prediction errors

So far only the invertibility conditions for polynomial NARMAX models have
been discussed. Other nonlinear parametric models can however be studied in a similar

manner. The analysis for the nonlinear output-affine model (Chen and Billings, 1988b)

r 2r+
A U1, U= VY (=Y (U (1), (1) 1+ Zl a(u(t=1),...,u(t-r))e(t-1,0)

t)= = i=r+2 e 7
" Borip(U(t=1)y..u(t-)) (1.6) (75)

where a(.), i=1,..,2r+2 are polynomials of degree L, for example can follow the same

lines for the model in eqn.(68) because the both models are linear in e(,). Consider a

more general nonlinear parametric model

_ 5(y(t—l),...,y(t-n,),u(l—-1),...,u(l—nu),£(t-l,9),...,8(!—-71,,0))
A1) YU 1) (1) -1, 0), e 18))
where b(.) and a() are polynomials of degrees L, and L, respectively. This model is

referred to as the nonlinear rational model in (Billings and Chen, 1987). The analysis

()

+ €(1,0) (76)

for model (76) is more complex but the techniques used will be the same. For example

0.9 + €%(+-1,0)
1+ yX(1-1) + e%(1-1,0)
is m-invertible because

yn= £(1-1,0) + £(1,0) (77)

0.9 + eX(1-1,6) -
1+ yX(-1) + €%(-1,0)

(78)
but

0.9 + eX(1-1,0)
1+ yA(t-1) + €2(+-1,0)

Y1) = £2(1-1,0) + £(1,0) (79)
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is noninvertible and this can be verified using a similar procedure as that for analysing
model (72).

4.4. Extension of the convergence analysis to more complex noise models

As discussed above, the feasibility of the associated d.e. approach depends upon
the stability of the predictor model. For a NARMAX model (13), the stability of the
predictor coincides with the stability of the noise model f%.). The analysis of Section
4.3. reveals that a general NARMAX model may not always give a stable predictor in
the sense that its noise model may not always be m-invertible. If the model is
restricted to be of the form of eqn.(68) however it is possible to extend the associated

d.e. approach for convergence analysis of the recursive estimator so that it applies to
this case. Define ' '

D, = {0 | CO(t=1),.oy(t=11y)u(t=1),...,u(t=1,);g”") is m-invertible } (80)
The analysis results for the linear case can be extended to the model (68) at least in

principle.

D, now depends upon 6 as well as the statistical properties of {z(}. For non-
adaptive control, given an underlying process the statistical properties of {z()} are fixed
by the experimental conditions and D, can then be viewed as depending upon 6 only.
The difficulty is that in general the exact shape of D, may not be known even though it
exists. Without knowing the range of D, it may not be possible to implement some sort

of projection mechanism to ensure 8(eD,.

In some simple situations D, can however be written down and the stability of the
estimated &(.; ) can be tested. Consider model (55) again. Assume that u(r) is
generated in open loop with Efu(s)] = 0 and E[u*(1)] = 62 Then

D,= {60’ +p%cl<1} (81)
Compare this with a first order MA noise model C(g")=1 + qq“, whose D, is

D;={0|-1<a<1} (82)
The implementation of a projection rule in such a situation is straightforward.

In the original theorem (Ljung, 1977) it is only required that 8¢ belongs to D,
infinitely often w.p.1. A projection is included to guarantee this boundedness
condition,. Many recursive algorithms nevertheless work well in practice without
incorporating some kind of projection mechanism. The situation would however
become serious if a stable region D, did not exist. It is therefore necessary that the
noise model is not too complex. By this it is meant that the noise model fY.) in

eqn.(13) should be linear in e(). The noise model can however be nonlinear in the
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input and the output, even nonlinear in the parameters. If the noise model is allowed to

be as general as possible the associated d.e. approach will not be applicable.

5. Pseudolinear regression
Another class of recursive parameter estimators are based on the pseudolinear
regression, If the prediction can be written as

$(116) = 676(1,6) (83)
a pseudolinear regression estimator is given as

e(t) = y() — (B-1))"6(1)

R(@t) = R(-1) + YOIO0OT(1) — R(-1)] x (84)

8() = 8¢-1) + YORT (W(1)e() :
A typical example is the recursive extended least squares (RELS) algorithm applied to
the ARMAX model (16). More general algorithms involving filtered ¢(s) and &(r) have
also widely been used in practice. Algorithm (84) can be interpreted as an
approximate prediction error method in the following way. If the implicit 6-dependence

in ¢(1,0) is neglected, an approximate gradient of the prediction is obtained as

do
Replacing W() in algorithm (19) by ¢(r) yields the estimator (84).

T
[dz(tle)} - 00) (85)

In linear system identification, it is well-known that convergence conditions for
pseudolinear regression algorithms are more restricted than those for prediction error

estimators. Take RELS, for example, two further assumptions are required:

(i) The true system belongs to the model set, that is, there exists a 6° such that the
data is generated according to the model

A%Ag ™) = BYg ) + CgHe(®) (86)
" 1 1. . . .
_ L 1
(ii) T 2 is strictly positive real, that is,
1 1 '
Re{ T 2} >0 -n<o<n &7

Then 8(s) converges w.p.1. to the set
Dc = {9 | E-[E(t,e) - e(’)]z = 0} (88)
as t—e0, Notice however that a means of projecting 8(f) into D, (condition (e) in Section

4.1.) is not required as proved by Solo (1979).

Because the prediction (1) for the general polynomial NARMAX model is linear
in the parameters, Section 2, the RELS algorithm can be readily extended to this case

(Billings and Voon, 1984). It is of interest to investigate whether the convergence
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results for the linear case can be carried over for polynomial NARMAX models. For
model (15), the answer is obviously yes. Assume that there exists a 6° such that the
true system is described by

YO = LPOU1)0y =y u(t=1),.u(t-n,);0% + c*’(q—l)e(f) (89)
If condition (87) regarding the true system is satisfied, 8(+) will converge to D, defined
in eqn.(88) w.p.1. This can easily be verified using the associated d.e. approach as

given in (Ljung and Sbderstrdm, 1983). The only difference will be that whereas for
the ARMAX model

El(10)¢(1,6)] = Gp(6) (90)
will exist provided the limits

Elu()u(t-k))
E[e(z)e(z—k)]} Oon

exist, (since ¢(,0) consists of elements obtained by filtering » and ¢' through constant
linear filters) for the NARMAX model (15), the existence of limits (91) will not be
enough to guarantee the existence of limit (90) because ¢(1,8) is nonlinear in the input
and output. For the more general model (68), convergence analysis using the
associated d.e. method is feasible in principle. This will be investigated in a future
study.

6. Simulation study

All the simulation studies assume that, as in the linear case, the structure of the
model has been determined by some preliminary analysis on the system. There are
several ways of achieving this when the system is nonlinear (Billings and Fadzil, 1985;
Billings, Chen and Backhouse, 1988).

Example 1. This is a simulated first-order example. In order to show the robustness of
the recursive prediction error method, the system to be identified was chosen to be
open loop unstable, and was operated in closed loop:

¥(t) = 1.2p(t-1) + 0.2u(~1) = 0.8¢(r-1) + 0.1y°(-=1) — 0.1y(-1)u?(t—1) — 0.2y(-—Du(t~1)e(t-1) + e(r)
The feedback law used was given by

u(t) = w(t) — 2.0y(s)
where w(f) was an independent sequence of uniform distribution with mean zero and
variance 1.0. The system noise e(r) was a Gaussian white sequence with mean zero and
variance 0.04. An input-output sequence of 1000 points were generated. A calculation
gives

LN 08 - 02y(-1yu(e-1))* = 0.5
L3 -0.8 - 0.2y(-1yug-1))2 = 0.
599 Y )
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This indicates that the noise model in the data generation is  invertible for the
particular realization of {z(r)} obtained (see the derivation of a sufficient m-invertibility

condition for model (55) in Section 4.3.). This realization of {z(s)} is plotted in Fig.1.

Using MO=AA(-1) + (1 = Ag) Wwith initial conditions 24=0.99, A(0)=0.95, P(0)=1000.0/
and 6(0)=0, the recursive prediction error algorithm discussed in Section 3 was used to
estimate the parameters. The results obtained are given in TABLE 1. The values of a
normalized loss function

A 2 8
Vi) = ELE ‘G”f" 1 s=pe)

e

are shown in Fig.2. The dashed curve in Fig.2 is the asymptotically expected loss
under the assumption that 8(r) is asymptotically Gaussian distributed with mean 6° and
covariance equal to the Cramer-Rao lower bound. The evolution of 8(» is shown in
Fig.3, where the dashed lines indicate the true values of the parameters. As in the
recursive identification of linear models, it is seen that the convergence of parameters

in the noise model is slower compared with that of the other parameters.

Example 2. This is a large pilot scale liquid level system. The input was a zero mean
Gaussian signal. A description of this process is given in (Billings and Voon, 1986).

The inputs and outputs of the system are illustrated in Fig.4. The data set consists of
1000 points.

Using a combined procedure of forward-regression orthogonal and prediction
error estimation coupled with correlation and chi-squared model validity tests (Billings,
Korenberg and Chen, 1988; Billings and Chen, 1987; Billings, Chen and Backhouse,
1988), the off-line identification shows that the system can be represented adequately
by the following NARMAX model

y(t)= 0.56276y(t~1)+0.40016y(1-2)+0.4158 1u(t—1)-0.061813u(-2)+0.2094 1 e(t~1)
—0.028464e(1-2)+0.042886e(1—3)~0.050201y(t-1)y(t~2)-0.37836y(¢~1)u(t~1)
+0.15928y(1-1)u(t-2)-0.037551y(1=2)y(1-3)-0.27654y(1-2)y(t-3)u(t~2)
+0.065076y(1-2)y(1-3)u(t—3)+0,10562y* (¢~ 3)u(1~2)-0.12220u(t-1)u(t-2)+e(1)

The purpose of the present study is to compare the performance of the recursive
prediction error algorithm with its corresponding off-line algorithm using the same
model structure. With initial conditions A¢=0.99, A(0)=0.95, P(0)=1000.0/ and 6(0)=0, the
recursive prediction error estimator produced the estimates of the parameters very close
to those given by its off-line counterpart, as can be seen in TABLE 2. The loss

function V(8(»)=Ele%(1,8(1))] and some of the parameters in the on-line case are shown in

Fig.s 5 and 6. The two models obtained in off-line and on-line identification both
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have an invertible C(g!) (TABLE 3).

7. Conclusions

A recursive prediction error estimator for on-line identification of parameters in
NARMAX models has been presented. It has been shown that convergence analysis
for the linear model can be extended to NARMAX models. The application to both
simulated and real data has been demonstrated.

In order to apply the associated d.e. approach for convergence analysis, the filter
that generates the prediction should be exponentially stable. For the NARMAX model,
the stability of the filter coincides with the stability of the noise model. M-invertibility
has been introduced to define the stability of the noise model. The analysis shows that
while terms which are nonlinear functions of the input and output are necessary to
describe the dynamics of highly nonlinear systems the noise model should be restricted

to be linear in the prediction errors

Although a polynomial expansion is used to provide a parametric representation
of the NARMAX model in the present study, alternative expansions such as the
rational parametric model (Sontag, 1979; Billings and Chen, 1987) are also possible.
Furthermore the output-affine model (Sontag, 1979; Chen and Billings, 1988a) can be
thought of as a special parametric case of the NARMAX model. These two nonlinear
models are essentially nonlinear in the parameters. The recursive prediction error
method can readily be applied to these two parametric models where the predicted
output can be viewed as the output of a nonlinear finite-dimensional filter. Because the
output-affine model is linear in the prediction errors the stability of the filter is
equivalent to the invertibility of the noise model, and the associated d.e. approach can
be employed to analyze the convergence properties of the estimator (Chen and
Billings, 1988b). For the rational model, the situation is more complex and further
research is required to analyse this estimator.
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TABLE 1. Results of Example 1
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terms parameters estimates true values
y(-1) 6 0.12075E+1 1.2
u(t-1) 0, 0.19718E+0 0.2
e(-1) 0, -0.71458E+0 -0.8
y(-1) 0, 0.16287E+0 0.1
y(t-1)u?(t-1) 05 -0.10835E+0 -0.1
y(—Du(t-1)e(t-1) 05 -0.14298E+0 -0.2
final loss function=0.999944
TABLE 2. Results of Example 2
terms parameters on-line off-line
y(-1) 0, 0.53832E+0 | 0.56276E+0
y(t-2) 9, 0.42759E+0 | 0.40016E+0
u(t-1) 0, 0.41146E+0 | 0.41581E+0
u(t-2) 0, -0.50026E-1 | -0.61813E-1
e(t-1) 0s 0.22269E+0 | 0.20941E+0
e(-2) B 0.89100E-2 | -0.28464E-1
e(t-3) 8, 0.55900E-1 0.42886E-1
y(=1)y(t-2) 65 -0.50813E-1 | -0.50201E-1
y(=Tu(t-1) 0y -0.37157E+0 | -0.37836E+0
y(t—1)u(t-2) 010 0.15142E+0 | 0.15928E+0
Y(t-2)y(1-3) 0y -0.37312E-1 -0.37551E-1
y(=2)y(t-3)u(t-2) 012 -0.26366E+0 | -0.27654E+0
Y(E-2)y(t=3)u(t-3) T 0.40384E-1 0.65076E-1
YA(t-3)u(1-2) 014 0.10379E+0 | 0.10562E+0
u(t-1)u*(1=2) 615 -0.12399E+0 | -0.12220E+0
variance of residuals 0.20184E-2 0.20046E-2

TABLE 3. Zeros of C'(s) (example 2)

zeros T= 0+ ¢ (=v=-1) | |5 = Vo + ¢*
on-line -0.464 0.464
0.120+0.326i 0.347
0.120-0.326i 0.347
off-line -0.467 0.467
0.129+0.274: 0.303
0.129-0.274i 0.303
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Fig.1. Inputs and outputs of Example 1

1+2 E 0 output

Fig.2. Loss function (normalized) of Example 1

1,69F 04

1,00E 0 | , + - - - = - . '
60 999



-24 -

‘Fig.3. Evolution of estimates (Example 1)
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Fig.3. Evolution of estimates (Example 1)
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Fig.3. Evolution of estimates (Example 1)
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tputs of Example 2
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Fig.6. Evolution of some estimates (Example 2)
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Fig.6. Evolution of some estimates (Example 2)
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