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Abstract

A unified identification theory for nonlinear systems which can be
represented by cascade, multiplicative and feedback connections of linear

dynamic and static nonlinear subsystems is presented.

Introduction

Whilst a few years ago it was considered an acceptable practice to largely
ignore the effects of nonlinearity on all but a few systems there is now an
increasing awareness of the need to study, analyse and exploit nonlinear
behaviour in systems design, CAE and modal analysis. A‘prergquisite to the
analysis of nonlinear systems must be the gevelopment of méfﬂods of measurin

. of such systems from input output meéasure-
or characterising the dynamical behaviour/and this has been the objective of ment

1,2,7

nonlinear systems identification which has been an active area of

research for some years now.

The aim of the present paper is to briefly review some identification results
for block structured nonlinear systems. Although the results are not new3,
they have been known to the control engineering community for some years,
they do not appear to have been noticed by researchers in other branches of
engineering. A few authors such as Bendat and Piersol4 have studied very
special block structured systéms which contain just sguare law operators.
The results of the present study however show that the identification of a
wide class of block structured systems can be unified in a very simple way
by exploiting the theory of separable processess. It would therefore appear
timely to translate these results, which were developed in the time domain,
into the frequency domain and to provide a unified theory for the spectral
analysis of block structured nonlinear systems.

A detailed derivation of the results is given elsewhere and will not be
repeated here. Our objective will be to present the main features of the
results and to emphasise how they can be applied and interpreted in non-

linear spectral analysis.

2. Block Structured Systems:

1 , .
Block structured systems are systems which can be represented by inter-
connections of linear dynamic models and static nonlinear elements. Although

these systems can, under fairly mild conditions, be represented by the



Volterra or Wiener series this approach tends to camouflage the very simple
relationships which can be derived between the inputs and outputs of such
systems. The basic philosophy underlying the study of block structured systems
has been to try and identity each of the component subsystems in a manner

which preserves the structure of the system under investigaticn6. This approach
means that the identified model has a physical interpretation in relation to

the real system and leads to identification algorithms which are much simpler

1l
than the functional series based methods '2

Block structured systems have been studied by several authors, and an historical
development of the field has been given elsewherel'B, One of the first signi-~
ficant developments was by Korenberge'9 who analysed cascade systems and who
derived two correlation results by analysing a Volterra representation of the
system. Billings and Fakhouri 5.6 were able to generalise these results by
introducing the theory of separable processes and showed how they could be used
to determine the ordering of the linear dynamic and static nonlinear components
or the system structure. This approach allowed the results for a whole family
of cascade systems to be unified and provided a theoretical base on which to
extend the ideas to feedback lO, multiplicative 11 and other block structured

2,13 ,
systems '™Y, It is this latter approach which will therefore be reviewed

in the present paper.

2.1 Cascade Systems

Because cascade block structured systems contain just two components, linear
dynamic elements and static nonlinear characteristics, the easiest way to analyse

them is to study each of these components in isolation initially and then to
combine them.

The linear dynamic subsystems can of course be represented by the convolution

integral

o

x(t) = foh(Tl)u(t:Tl)dTl (1)
or the Wiener-Hopf egn

¢ux(1)m foh(tl)¢uu(1—Tl)dTl (2)

where ¢ux(T) and ¢uu(T) represent the cross and auto-correlation functions
respectively. It will be assumed that the nonlinear sybsystems can be rep-
resented by a single valued instantaneous nonlinear element F[;] so that an

input x(t) would produce an output

y(t) = F[x(t)] (3)



which in theory could be represented as polynomial expansion

k .
i
yt) = 1 v,x (8) (4)
. i
i=1
Let f(xl,Xz;T) be the second order probability density function of the process
x{(t) and define

g(x,,0) =jtmxlf(xl,x2;o) ax (5)

1

If this function separates as

g(xz,c) = gl(xz)gz(o)-Vx,o (6)
then x(t) is said to be a separable process 445 ihere
gl(xz) = xzf(xz) i gylo) = g2(0)¢xx(0) (7
9, (o) ¢__ (o)
XX

Fortunately, the separable class of random processes is fairly wide and
includes the Gaussian process, sine wave process and pseudorandom binary

5
sequences .

Define the cross-correlation between the input and output of F[_l as

by (O =Lf° x Flx,] £0x) 3, 50) dx 8, (8)

Substituting from egn's (5) and (7) yields

¢Xy(o) = | F[XZ] g, (x,) g,(o)ax,
= ¢XX(0) fF[x2] xzf(xz)dx2
¢xx(o)
¢xy(0) = CF ¢xx(0) (9)

where CF is a constant.

Equation (9), which is known as the invariance property,l4, shows that ¢xy(0)
is directly proportional to ¢xx(o) for any static nonlinear characteristic

F(.) providing x(t) is separable.

The results of eqn's (2) and (9) xepresent the building blocks which can be

5
used to construct a unified theory of spectral analysis for cascade systems .

2.1.1 The General Model

Consider the extension of these results to the cascade system illustrated in

6
Fig.l which is usually referred to as the general model .



—] h (1) > FL.] h, (t)
ul(t) x(t) y(t) \ + z(t)

Y

Fig.l The General Model

The objective is to identify hl(t)’hz(t) and F[l] from measurements of ul(t)
and z(t) only; the internal signals x(t) and v (t) are not available for

measurement.

This can be achieved by computing the first and second degree correlation

functions.

Considering the first degree correlation function initially the additional
assumption that separability is preserved under linear transformation is re-

quired to ensure that if u, (t) is separable then x(t) the input to the nonlinear

1
5
element is also separable

FProm Fig.l
y(t) = jh2(@)y(t—e)de=F{jhl(Tl»ﬁ@—rl)dxl}

=fQ(t,T ,u. ,h)u (t—Tl)dT

17171 1 1
so that
= -0, h -0- +
z(t) ffhz(G)Q(t 0,7, u /b )u, (£-6-T,)@6dT,+ V(L) (10)
where Q(.) is a function of t,Tl,ul and hl(t),which can be evaluated by

deriving the Volterra expansion for z(t). The first degree cross-correlation

function between u(t) and z(t) is defined as

4 (&) =[Jn (&) o(t=6,7 ;u b Iu

1 l(t—@—’rl)u(t—e) dt_do

1

+ v(t)u(t-€) (11)

where the bar indicates time average. Correlation with u(t) which is a
function of the input ul(t) is deliberate, the reason for this choice will

become apparent shortly.

If u(t) is separable with respect to x(t) then from the invariance property

eqn (9)

¢uy(u) = CFG¢ux(o) (12)



holds across the nonlinearity where CFGis a constant called Booton's

equivalent given. Expanding (12) using the results from (10)

Jolt Tlul,hl)ul(t T )u(t-o0)d T,

=C - -
o fhl(Tl)ul(t T ult-o0)dr, (13)
and substituting into (1l) yields

% (e =<:Fijh2(®)hl(Tl)¢uul(€-@-Tl)d®dT

uz 1

+ ¢UV(E) (14)

This result represents an extension of the Wiener-Hopf eqn to a class of non-
5,6
linear systems ' . Taking the Fourier Transform of edn (14) and assuming that

the noise is zero mean and independent of u(t) yields

S Z(jw) = C

pg Hp(0) B

l(j )Suul(w) (15)

Providing the input ul(t) to the general model Fig.l is separable under linear
transformation therefore egn (15) will hold for all static nonlinear character-
istics F{.]. Indeed inspection of egn (15) shows that the nonlinear character-
istic only affects the constant CFG in egn (15) andiconsequently the experi-
menter may be misled into believing that the system under investigation is

linear when in fact it may contain a severe nonlinearity

To derive the second degree correlation function for the system in Fig.l the
2

additional assumption that u” (t) is separable with respect to u(t) will be

required so that by repeating the analysis for egn (9) with this additional

assumption yields

2y (9) = Copg® 2,39 (16)

across the nonlinear element Fﬂ}]in Fig.l where C_.. is a constant. This is
5

known as separability under double nonlinear transformation and although this

is not a general property of all separable processes it does hold when the

input ul(t) is Gaussian. Defining the second degree correlation function

42, () = [[n, (0)QTE-8, 7, ,u /b Ju (t-0-1))

ﬁ2<t~e)d®dwl

+u2(t-e)v(t) ‘ (17)

and utilizing the invariance property eqn (16) for double nonlinear transforms



by following exactly. the same analysis that was used in egn (13) vyields

4’u22 (e) = cFFfofhz(e>hl<Tl>hl<T2>ul(t-e-¢l>ul<t-e-wz>

2
1 - dr._d
g (t E)dTl T, o)

+¢.2,(€) (18)

The noise term ¢u2v(e) tends to zero when v(t) is zero mean and independent
of u(t). Egn (18) provides a second relationship which, apart from the scele-
factor CEFo is independent of the nonlinear element F[.]. Finally, setting
ul(t) = u(t)+b where u(t) is a zero mean Gaussian signal with a spectral
density of P watts per cycle, b is a non zero constant representing the dc
shift in ul(t) and correlating with z’ (t) = z(t) - z(t) egn's (14) and (18)

reduce to

by (E) = Co fhl(Tl)hz(E—Tl)dTl (19)

, 2
$ 5 v (e) = fhz(T )h (e-7,)dt

FFG 1

Providing hl(t) is stable bounded inputs bounded outputs CFG and CFFG are

constants given by

2, 2
- + as
Cpo™ PYg 2Py2bfhl(®)de+3y3p jhl (©)
2
+ b .es
3Py, ffhl(Tl) h (1)) dr dr, + (21)
2 2

Copg = 2Y,B +6v,bP fhl(e)ae+ ... (22)

Taking the Fourier transform of egn's (19) and (20) yields

S (jw) =¢C

uz’ FG l(jw) H (Fw) (23)

S 2 ' (Jw) = (jw) H (Jw) (24)

FFG 2
where H, (jw) is the Fourier Transform of h2 (t) such that
Hy(Jw) = 1) fH (38) B, (Ju-3€) ag

2n
Notice that the estimates egn's (23) and (24) are obtained by injecting an
input u(t)+b, u(t) is zero mean Gaussian b#o, into the system recording the
output z(t) and then computing the cross-spectral densities between u(t) and
z’(t), and u2(t) and z’(t) respectively. The estimates can therefore be readily
obtained using a standard spectrum analyser with the only additional reguirement
that the input is squared to compute Su2z,(jw). The input u(t)+b is used to

ensure that the results are valid for both even and odd nonlinearities.



The dc offset b ensures that all terms in egn's (21) and
5,6

i C
(22) contribute to CFG and FFG

Equations (23) and (24) provide two equations in terms of the two unknowns
Hl(jw) and H2(jw). Estimates of the linear system frequency response functions
u. B (jw) and u2H2(jw) can be obtained to within scale factors y, and yu

11 15,6,16 ! 2 ;
a least squares decomposition routine '7!7Y, Once the linear subsystems in

by using

Fig.l have been identified the problem is reduced to fitting a polynomialG, a
series of straight line segments 17 or any other appropriate function to the
nonlinear characteristic. Identification based on this analysis thus effectiveiy
decouples the estmation of the linear and nonlinear subsystems and this means
that even systems with very violent nonlinearities can be readily identifiedl7.
This is a distinct advantage compared with the Volterra or Wiener functional
series based methods which could be applied to the system of Fig.l. Application
of the functional series methods however destroys the structure of the system,
provides virtually no insight into the operation of the system and if the non-
linearity F[:] were violent would require the identification of at least the
third, fourth and perhaps even an infinite number of kernels to provide an
adequate description of the systeml'2’7.

The results of egn's (23) and (24) are in fact estimates of the first and second
order Volterra kernels for the general model. So that even though the Vblterra
series for this sytem may contain a large number of higher order terms they all
collapse under the theory of separable processes to the form of egn's (23) and
(24) for this model structure. This providesasimple and elegant extension of
the results for linear systems and demonstrates that systems within this class
can be identified in a manner which provides a great deal of insight into the

operation of the process.

The results can be extended to the case with pseudo random binary inputs 13

and an analysis showing the influence of record length, mean level b, power and
bandwidth of the input, decomposition algorithm and noise on the accuracy of
the estimates together with recommendations regarding the choice of these

variables is available in the literature 16.

The results do of course apply to all subclasses of the general model and

these are studied below.



2.1.2 The Wiener Model

The Wiener model18 which is illustrated in Fig.2 consists of a linear system

followed by a static nonlinear element.

|5 ® > ] |——
ul(t) y(t)=z(t)

Fig.2 The Wiener Model

The Wiener model can clearly be obtained from the general model Fig.l by setting
hz(t)=6(t) so that y(t) = z(t) and the results of egn's (19), (20) and (23),
(24) become

¢uz,(€) = Cou hl(s) (25)
2
b g 1lE) = Cppyghy (©)
u z
such that
Suz (Juw) = CFWHl(jw)
S 5 4 (Jw) = CFFWH3(jw) (26)
u 2z .
H,(Jw) = l/zﬂle(jE)Hl(j£)~j€)d€
where C_ =

= = i '
- CFG )CFFW CFFG and these are defined by egn's (21) and (22)

Identification of the Wiener model is therefore straightforward., Computation of
the cross-spectral density Suzfjgﬁus provides an estimate of Hl(jw) irrespective

of F[.]. The nonlinear element can then be modelled as the second stage of the
. 18
algorithm ~.

2.1.3 The Hammerstein Model

19,20

The Hammerstein model which is illustrated in Fig.3 consists of a zero-

memory nonlinear element followed by a linear dynamic subsystem.

Y

—p— | F[.] ho(f)
ul(t) z(t)

Fig.3 The Hammerstein Model

Selling hl(t) = §(t) in egn's (19), (20) and (23), (24) yields



¢ z/(e) = CFth(e)

Ta (27)
= h
$ 5 ‘(e) 2CFFH 2(e)
uz
such that
. - H (-
Suz,(jw) CFH 2(Jw)
{28)
5, '(Jw) = CFFHHZ(Jw)
u z
2 .2
= Py_+2pPy_b+
and CFH PYl 2PY2 3Y3(P +b P)+.....
_ 2 2

Identification of the Hz(jw) and F[.] is therefore straightforward using
Suz,(jw) only.

2.1.4 The Linear Model

If the general model is now reduced to a linear system by setting F[.J =1

= = i>1 i
(Yl l'Yi ovi lxggne%?gf%)%hen the results of eqn's (19), (20), and (23) and

(24) yield
by (€) = fhl(Tl)hz(E-Tl)dTl
¢ 5 (e) =0 V¥ ¢
uz'

and

S g0 (30) = B (30)H, (Ju)

S 5 y (Jw) =0
Uz

2.1.5 Structure Detection

All identification algorithms, specially those developed for nonlinear systems,
should include a procedure which indicates the structure of the system under
investigation. For the class of systems considered above this consists of
determining the position of the nonlinearity with respect to the linear blocks.
Billings and Fakhouri5 showed that this information is implicit in the cross
correlation and spectral estimates derived above, eqn's (19), (20) or (23) and
(24).

The system is linear iff

¢, () =0Ve (31)
u 2z
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or equivalently § , y(Jw) = O W w
u z

The second degree correlation or spectral density function thus provides a
simple and convenient test for nonlinearity. Alternative tests for nonlinearity

2
based on output measurements only are available in the literature l.

If the system has the structure of a Hammerstein model, them from eqn's (27) and
(28)

¢uz'(e)
= Constant ¥ € (32)

¢ 5 , ()

u sz

or equivalently

s, Gw)

uz
————— = Constant ¥ w (33)
S  (Jw)

2
u z

If the system has the structure of a Wiener model, them from egn's (25) and (26)

(6, (€))°

[ DTS 14
T2 5 (e) onstant € (34)
u 'z

or equivalently

fsuz'(jg)suz'(jw—jg)dg= Constant ¥ w

8, , (Guw)

uz
Finally, if none of the above conditions holds then the system may have the
structure of the general model. This however is a necessary but not a sufficient
condition which must be confirmed by analysing the residuals after hl(t), hz(t)
and F[ﬁl have been identifiele. Alternatively, a test devised by Chen et al 2
as an extension of the above ideas could be used but this is considerably more

involved since it requires two-dimensional FFT's.

2.2 Feedback and Multiplicative Systems

The simplicity of the above results for cascade systems motivated . study of
feedbacklo, multiplicativell and other block structured nonlinear systems3’l2.

As in the case of the general model the objective was to identify the individual
elements of the system from input/output measurements only such that the structure
of the process is preserved and truncation errors normally associated with a
finite Volterra series description are avoided. Unfortunately, the results for

these systems are not quite so straightforward.
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For example the unity feedback system illustrated in Fig.4 can be identified by
extending the cascade system results and computing the first and second degree
cross correlation or spectral density functionslo. However, multilevel inputs
must be used and this can result in a tedious experimental procedure and complex

identification algorithms.

v(t)

u(t)+

b

c(t) » F[.] h(t) + z(t)

h 4

"Fig.4 Nonlinear Feedback System

A similar algorithm can be derived for the Sm modell2 illustrated in Fig.5 which
consists of a series of general models with reduced nonlinear elements comnected

in parallel with the outputs summated.

Yyhy, (B)
(t) o v ()2 ho_(t)
o 2°° o 22
. . ‘
m
(t) Y () hmm(t)

Fig.5 The Sm Model

To identify the individual component subsystems h j(t), from measurements of

i,
u(t) and z(t) only, for the multiplicative or factorable Volterra systemll

illustrated on Fig.6 however requires a slightly different approach.

500

a0

» (1)
3,2 s,

wit)

ln)‘,(i)

- . L

w(t)

s st s

. h";‘(t)

=)

» (1)

18,81

Fig.6 The factorable Volterra model.
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Consider a factorable Volterra system which is composed of kernels up to order
2%. If the input to this system is a compound inputll.

(%
u(t) = I x.(t) ) (36)
j=1

where xj(t), J=1,2,...08 are zero mean independent processes with auto-
correlation functions ¢ x (1) = B, G(T), 9=1,2,...2% then estimates of the

linear subsystems hi 3(t) can be easily obtained.
7

Computing the output correlation function Wig % z'(Ol,c) based on a compound
input egn (36) yields 1 4 L
00 Y 28
Y y(o_,0) = {2'"(t)x_(t-0_ ) I x,(t—o)%/&(ll—l)!( TR}
1 1 1, i n
X. eeeX .2 i=2 n=1
1 L8
22 23
= I {h (o ) Ih (o)}
i=1 i,8% ity j, 28
3
28
=1 2 110) (37)

Xyeoo X% 09

Thus computing w (o ,o) based on a compound input and the total system

10X 2!
output z'(t) = z(f - %%ﬁ) has effectively isolated the 22'%h order kernel, or

the subsystem with output zll(t) in Pig.6 This result holds exactly even for
compound prbs inputs . The most surprising part of the result is the fact
that wzl(o /0) is always a second orxder correlation function. The dimensionality

1
of the correlation functions does not increase with the order of the kernel as

2
is the case with the Lee and Schetzen 3 and all other algorithms. This is a

direct consequence of the compound input.

Once wzg (cl,c) has been measured the individual subsystems h, (t)

X '..X,Q,Q,z' ll 1,2,2,
can be estimated by using a least squares routine to decompose eqgn.(37). The

predicted output of the 28'th order subsystem can then be computed

e 28

z,,(t) = f...fhl'zﬁ(tl)...hzglzk(tzz) (3?1 llel(t t,))

(38)
dtl....dt22

and a reduced system output zz! (t) = z'(t)-z] (t) can be defined.

22-1 28
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Repeating the above procedure the (£4-1)'th kernel can now be identified by
22-1
X, e0oX zz!

computing the (QR—l)'FE system output correlation function ¢
(cl,o) and estimating hi zz-l(t)' i=1,2,...28-1 etc. The lin&ar sysE%ms
H

28-1
associated with all the remaining kernels or subsystems can be computed in an

analogous manner,

Notice that the algorithm works backwards estimating the highest order kernel
or subsystem first. This means that an estimate of the highest order kernel in
the system must be available. If this is known however, from some simple tests
on the system, then any order kernel can be obtained using second order corr-

elation functions or equivalently a 2-D FFT algorithm only.

3. Simulation Result

5
Many simulation results are available in the literature;'G'lo'll’12 and it would

serve no useful purpose to repeat these here. Because all the previous
simulations have been concerned with the estimation of the equivalent system
impulse response in the time domain it is however worthwhile considering a
few representative simulations in the freguency domain. Two systems, a

Hammerstein model and a Wiener model are therefore considered below.

The Hammerstein modeiiillustrated in Fig.7a was simulated for a range of
Gaussian inputs u(t)+b, where GTE5=0.0,b=o.l andAc;=O.©1,ci=9.O9 and 0§=O.49.

In each case 1000 data pains were generated and ¢uz,(T) and ¢uu(T) were computed.
An FFT algorithm together with a Hamming spectral window was then applied to the
first 128 lags of the correlation functions. Fig.7b provides a comparison of
the estimates Shé'(jw)/suu(jw) for each input and the theoretical frequency
response function of the linear subsystem H(jw). As expected from egn (28)

the gain estimates are, except for a constant multiplying factor, egqual to

H{jw) : because

5 0 (30) Cog B(I)

P

Suu(ju))
where P = Suu(jw) is the power spectral density of the Gaussian input. This
also shows that all the phase estimates should be equal. Theoretically the
estimates should differ by the constant term '

2
= y_+ + P+
CFH/P Yl 272b 3y 3 3B Y3

where yl=o.5, 72 = O.O,Y3 = 2 so that for case B, P =cB = 0,01, b

n
©
‘—l

&
L] - = - 2
CFH/P 0.6
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For case C, P = UC = 0.09, b = 0.1

C
L. P = 1.
cFH/ 1.1

and for case D, P =0_ = 0.49, b = 0.1

o
. P = 3,
CFH/ 3.5

These differences in the constant terms show that theoretically the gain
estimate for case C should be 4.48dB above case B and case D should be 10.05dB
above case C respectively and this is confirmed by the simulation results in

Fig.7b.

The Wiener model illustrated in Fig.8a was also simulated for the same range of
Gaussian inputs and spectral estimates were computed in exactly the same way as
in the Hammerstein example,Fig.8b provides a comparison of the estimates
Suz|(jw)/suu(jw) for each input and the theoretical freguency response function
of the linear subsystem H(jw). Clearly the gain estimates are,except for a
constant scale factor)equal to H(Jjw) and the phases are very similar as predicted
by egqn(26). Theoretically the gain estimates should differ by the constant

scale factor

2
= + 6]
o / ' 2y2bfh(6)d + 3y3pjh (6) a6

2
+...
+ 3Y3b ffh(Tl)h(Tz)dTlde

2
= 0.5,y.=0,y.,= 0.2 =7, =18.
L = 0:5,7,70,v,= 0.2, fh(Tl)dTl 5,/h (1,)dt =18.88 such that for case B

CE;/P=O.95, for case C C;W/P = 6.388. These differences suggest that theoret-

when Y

ically the gain estimate of case C should be 5.81dB above case B and case D
should be 10.733B above case C respectively and this is confirmed by the

simulation results in Fig.8b.

4, Conclusions

A unified theory for the identification of nonlinear block structured systems
has been presented. It has been shown that such systems can be identified in
terms of the individual component.subsystems often using very simple extensions

of the well known correlation and spectral analysis algorithms.

The algorithms provide an alternative to the functional series methods based
on the Volterra or Wiener expansions. Providing the system can be represented
by one of the models in the block structured systems class the individual com-
ponent subsystems can be identified in a manner which preserves the system

structure and provides valuable insight into the operation of the system.
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Even systems with very violent nonlinearities such as dead zone or saturation17
can be identified. Because the algorithms decouple the identification of the
linear and nonlinear component subsystems and essentially extract all the
information from the first tWo Volterra kernels problems associated with
truncationerrors, multidimensional transforms and excessive computational
requirements which are the curse of functional series methods are avoidedl’z.
Like the functional series methods which are based on Gaussian inputs the block
structured algorithms are designed tq_work with certain classes of input signal,
separable processes or compound inpués. Whilst early implementations of the
algorithms suggested that typically 10,000 data points were required to obtain
reliable estimates later analysis showed that by modifying the implementations
slightly excellent estimates could be obtained with just a few thousand data
pairsle’25'26’26. It should be emphasised that forlkrevity these modifications

were not discussed in the present paper.

The results show quite clearly that whilst classical correlation and spectral
analysis are excellent tools for analysing linear systems they must be applied
with caution to systems with nonlinear characteristics. The results of previous
sections have shown how averaging can be exploited to make certain nonlinear
effects go to zero for certain classes of input. Classical correlation or
spectral analysis for cascade systems for example yields estimates which are,
apart from a scale factor, quite independent of the nonlinear characteristics.
The nonlinearity, no matter how severe, becomes invisible with this type of
analysis, it averages out to zero. The danger is that the extension of linear
averaging techniques to nonlinear systems can lead to a totally false inter-
pretation of the results. This will be all the more severe if the analyst has
only one set of data to study because experimentation on the process is
expensive. It would be very easy in such a situation to come to a totally mis-
leading conclusion because certain terms have averaged out for that particular

input.

27
The modern parametric methods avoid many of these problems but much work
remains to be done before nonlinearity can be measured in our systems and exploited

in our designs.
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