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Abstract: Feed-in tariffs (FiTs) in the UK have been introduced to stimulate growth in small-scale 

renewables such as photovoltaics and micro-wind. They form one of the UK’s key policies to 

decarbonise electricity by 2030. However, the evidence used to inform the policy was predominantly 

related to costs, capacity and deployment; not contribution to meeting decarbonisation targets. This 

paper employs an integrated hybrid lifecycle assessment method, which overcomes boundary 

limitations of traditional process-based assessments, to measure the full lifecycle emissions of solar 

PV and micro-wind technologies eligible under FiTs. Environmental assessments of policies often 

don’t take account of the lifecycle emissions of technologies, therefore underestimating their 

emissions contribution and overestimating the success of policies towards decarbonisation targets. 

Considering the full lifecycle emissions, the paper assesses the effectiveness of FiTs for driving the 

UK’s low carbon transition. The results demonstrate that, while there is still significant variation and 

uncertainty with such estimates, even with the most conservative figures, both the technologies can 

offer substantial emission savings compared to fossil fuel alternatives when installed in suitable 

locations. However, the renewable resource of installation sites is critical to the carbon intensity that 

the technologies can offer. Under a poor renewable resource their impacts can be as high as fossil 

fuels alternatives. As FiTs makes no distinction between installation sites this should form part of the 

assessment of funding. Finally, despite their potential for carbon reduction, with the full lifecycle of 

the considered technologies taken into account, a target of 50 gCO2e/kWh is not possible with the 

current technology generation efficiencies. The paper concludes that a complete re-assessment of 

the role of technologies in the decarbonisation of electricity is required to take into account the full 

lifecycle impacts to gain a more realistic picture of the mitigation potential. 

Highlights 

 We apply novel lifecycle analysis methodology to solar PV and micro-wind technologies 

 We explore the implications of lifecycle emissions for meeting decarbonisation targets 

 A 50 gCO2e/kWh target cannot be achieved for the case studies considered 

 Availability of renewable resource is critical to the carbon intensity of electricity generation 
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 The effectiveness of feed-in tariffs for driving decarbonisation in the UK is evaluated 

Key words: Energy, Hybrid integrated input-output lifecycle analysis, Feed-in Tariffs, 

Microgeneration, Decarbonisation. 

Nomenclature 

CCS   -  Carbon capture and storage 

CSP   - Concentrated Solar Power 

FiTs   - Feed-in Tariffs 

gCO2e   - Grams of carbon dioxide equivalent 

IPCC   - International Panel on Climate Change 

kWh / MWh / TWh - Kilowatt hour / Megawatt hour / Terawatt hour 

kWp   - Kilowatt peak 

LCA   - Lifecycle analysis 

m   - metres 

m/s   - Metres per second 

PV   -  Photovoltaic 

UK   - United Kingdom 

1 Introduction  

Carbon budgets have been devised to ensure the UK is on track to meet its legislative 80 % 

greenhouse gas emission reduction target by 2050 from 1990 levels [1]. Reasonable evidence exists 

that electricity generation will have to be at 50 gCO2e/kWh for electricity by 2030 in order to meet 

these targets. The UK’s electricity intensity in 2010 stood at 494 gCO2e/kWh [2] and has climbed 

since then as the proportion of coal in electricity generation has increased. Of the 382 TWh of 

electricity generated in 2011, 7 % was from renewable sources (26 TWh) [3]. The Committee on 

Climate Change suggests that 30 – 40 GW of additional low carbon supply is needed to meet the 

decarbonisation target by 2030 [4]. 

Feed-in tariffs (FiTs) are one of a package of policies aiming to drive innovation in low carbon 

technologies and stimulate growth by providing price certainty in the market. Feed-in tariffs are 

available for a range of renewable electricity generating technologies up to a 5 MW rating and are 

the main incentive for the installation of micro-generation technologies. Since their introduction in 

April 2010 they have caused a revolution in uptake of solar photovoltaics (PV), resulting in significant 

growth in installations to the current installed capacity of over 1.5 GW by the end of May 2013 

(rising from under 1 MW of capacity before its introduction) [5].  



 

3 
 

FiTs do not discriminate between different generation technologies, despite the fact that the 

lifecycle emissions in their production could vary significantly. For example, where technologies are 

deployed in locations with a poor renewable resource the carbon intensity per kilowatt hour 

generated increases due to the fact that their lifecycle emissions are fixed. The implications of this 

have not been considered in discussions related to the possibility of achieving an electricity 

emissions target of 50 gCO2e/kWh. There is a major concern that past analyses of the lifecycle 

emissions of micro-generation technologies provide a significant underestimate of emissions. This 

paper addresses these issues by: 

 Employing a novel Integrated Hybrid Lifecycle Analysis (LCA) to calculate the lifecycle 

emissions of PV and micro-wind case studies. 

 Developing a number of scenarios that forecast the changing carbon intensity of PV and 

micro-wind supply chains up to 2030. 

 Considering the extent that micro-generation technologies and supporting policy incentives 

contribute towards decarbonising the electricity sector in the UK. 

1.1 Aims and objective 

The objective of this paper is to determine the carbon payback of solar PV and small-scale wind 

technologies under different installation conditions. It then goes on to assess the extent to which the 

FiTs scheme encourages the maximisation of their decarbonisation potential. FiTs forms part of a 

policy framework to decarbonise the UK energy system, however, the evidence used to inform the 

policy was predominantly related to costs, capacity and deployment; not the contribution to 

meeting decarbonisation targets. When calculating the UK’s electricity intensity it is important to 

recognise and monitor the embedded emissions of such technologies to ensure that their full impact 

is taken into account. The following aims are met: 

 To conduct a detailed lifecycle assessment measuring greenhouse gas emissions of solar PV 

and micro-wind  using integrated hybrid LCA; 

 Considering the full lifecycle emissions, to determine whether or not decarbonisation policy 

includes an overly optimistic appraisal of the role of technology in emissions reduction now 

and in the future; and 

 To assess the feasibility of FiTs contributing towards such a low emission target for 

electricity generation in the UK. 
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2 Materials and Methods 

The following section outlines the methods used to conduct the analysis of micro-wind and solar PV 

generation technologies. A context for existing studies of such technologies is given and the need for 

use of the integrated hybrid LCA methodology is outlined. Finally, the case study data and 

assumptions about the technology life cycle are detailed. 

2.1 Context and Background - Lifecycle Impact of Energy Technologies  

Lifecycle assessment (LCA) methods are intended to capture the resource inputs and environmental 

impacts at every stage in the lifecycle of a process or product, in this case electricity production from 

solar PV and micro-wind. It is a flawed assumption to presume that renewable energy technologies 

are zero carbon as they rely on existing fossil fuel infrastructure for material extraction, fabrication, 

assembly, delivery and so forth. Without conducting a lifecycle analysis of the full supply chain 

impacts of energy technologies, only the direct emissions from combustion will be captured, leading 

to an underestimate of their impact. Lifecycle assessment is the dominant method for quantifying 

the environmental impacts generated throughout a products lifecycle.  

A review of lifecycle emissions of energy technologies by the International Panel on Climate Change 

(IPCC) [6] indicates the potential lifecycle emissions of renewable electricity generation technologies 

in comparison to conventional fossil fuels (Table 1). It should also be noted that, particularly for wind 

technologies, reviews show that power ratings tend to result in higher carbon intensity of electricity 

generation [7]. Whilst this perspective attaches emissions to renewable electricity technologies, they 

are still overwhelmingly more favourable than production from fossil fuels. 

 Energy Source 

 Bio-
power 

Solar Geothermal  Hydropower Ocean Wind Nuclear  Natural 
gas 

Oil Coal 

PV CSP 

Min. -633 5 7 6 6 2 2 1 290 510 675 

Max. 75 217 89 79 43 23 81 220 930 1170 1689 

CCS 
min. 

-1368        65  98 

CCS 
max. 

-594        245  396 

Table 1: Aggregated LCA results (gCO2e/kWh) from electricity generation technologies 
[6] 

It is difficult to compare the results of each technology due to methodological diversity, differing 

data sources and technological characteristics assumed across studies. For example, both process-

based and economic input-output methods are used for life cycle analysis; when bottom-up product 
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specific inventories are not available they are compiled from different life cycle databases; and 

processes deemed significant to be included in an inventory are subjective (compiler judgement). 

Some studies adopt a cradle-to-gate perspective where decommissioning activities are excluded; 

others include these but make different assumptions on recycling and disposal options.  Published 

standards for LCA (ISO14040 and PAS 2050) provide guidelines, but no consistent method is defined. 

A methodology that reduces discrepancies between comparable studies is therefore desirable. 

Hybrid LCA methods provide an opportunity to overcome elements of error inherent in traditional 

LCA methods. Supply chains associated with energy technologies are numerous and complex. 

Additionally, their global nature means pressures are dispersed, creating a large and distant web of 

suppliers and a near-infinite number of possible production layers. Conventional LCA methods have 

had to set a system boundary since it is near impossible to collect process-specific data for such a 

large number of possible supply chain paths. As a result, some upstream activities are excluded from 

the analysis leading to significant truncation errors. It has been estimated that up to 50 % of the 

impacts can be ‘lost’ [8, 9]. This underestimation is compensated for by using economy-wide data in 

the form of input-output analysis. However, whilst the input-output method characterises a 

complete ‘boundary-less’ system, it is constrained by aggregated sector representation. In the 

context of energy technologies, electricity is represented as one economic sector, not distinguishing 

between specific technologies.  

Published in the late 1970s [10], but becoming more applied in the last decade, is the emergence of 

a new breed of hybrid methods to overcome the limitations of boundary truncation errors whilst 

maintaining product specificity. Conceptually hybrid methods combining process-analysis and input-

output analysis have been relatively well documented [11-16]. These began as a ‘tiered hybrid 

analysis’ where additional upstream emissions were added using input-output analysis missed from 

process-based inventories. This later developed to a completely integrated hybrid LCA where a 

process database is embedded in an input-output table and all interactions between individual 

processes and economic sectors or industries are modelled in a consistent framework.  

In theory, a fully integrated hybrid LCA is favoured, however due to computational complexity 

applications are sparse [11]. To our knowledge Wiedmann et al. [17] were the first to apply an 

integrated multi-regional hybrid LCA using the case study of supply chain emissions of wind power 

generation in the UK. Acquaye [18] applied the same model to an emissions assessment of biodiesel 

adding additional estimates for emissions originating from land use change. The same model is 

applied in this paper. 
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2.2 Integrated hybrid input-output method 

The integrated-hybrid LCA model described in Wiedmann et al. [17] is applied to calculate the 

lifecycle emissions of case study solar PV and micro-wind generation technologies. This methodology 

allows a more comprehensive environmental evaluation of the use of micro-generation technologies 

and their corresponding policy incentives. A brief description of the method is given here and the 

reader is referred to Wiedmann et al. for a detailed technical description. The technical 

characteristics and data sources for this application are described in detail below. Figure 1 illustrates 

the methodological framework employed to conduct the LCA.  

 

Figure 1: Methodological framework of lifecycle analysis. 

A total requirements matrix links an m*m process matrix describing the inputs of goods to processes 

in physical units (Agp) to an n*n input-output technology matrix derived from financial transactions 

between economic sectors (I-A*
ss). This is done via an n*m upstream matrix (Cu) and an m*n 

downstream matrix (cd). Commodity flows from the input-output sectors cut-off from the process 

inputs matrix complete the upstream component, and physical goods produced by specific processes 

used in the background economy (the input-output system) complete the downstream component. 

The trade interactions of all processes and products globally are integrated into a two-region UK-

centric model. The total requirement matrix H can be written as equation (1): 

   [
       
        

 ]    (1) 
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Negative numbers indicate inputs to processes and positive numbers indicate outputs of a process. 

The process matrix is populated by a 3931*3931 matrix from ecoinvent v.2.1 (2009)1 data and a two 

region supply and use table representing 224 economic sectors2. Using a multi-region model extends 

the national boundary to account for international trade. Only sectors in the input-output table 

deemed to have been cut-off in the process matrix are retained upstream. It has been assumed that 

the electricity generated is used by the transmission sector.    

Greenhouse gas emissions3 are calculated by pre-multiplying H with direct emissions data and post-

multiplying by demand for the good in question (electricity from micro-renewables), represented by 

equation (2): 

  [    ]        [ ]  (2) 

B and B* are vectors representing greenhouse gas emissions from each process and the emissions 

intensity of each economic sector respectively. For example, electricity generated by the micro-

generation installation will have zero emissions (unlike combustion of fossil fuels) however 

emissions will be associated with resource inputs such as steel or silicon production. y is a vector 

specifying the level of demand for the process or sector of interest. Direct emissions are re-

proportioned to the final good (micro-generation electricity) via the interactions represented in the 

integrated matrix. Results can be separated from the process and input-output model; therefore 

process only results can be compared to those employing the hybrid method. To enable comparison, 

emissions associated with 1 kWh of each energy technology are calculated (and not the total 

capacity of both).  

Solar PV and micro-wind generation technologies eligible for FiTs and most representative of present 

and near-future UK use are selected and characterised according to the variables identified in Figure 

1. A process-based system inventory of first order inputs for each technology is collated in physical 

units. Where first-hand data is available from a company this is applied and each input is allocated to 

the equivalent goods represented in ecoinvent to determine a unique production recipe; where data 

                                                           
1 Ecoinvent is a supplier of life cycle inventory data, http://www.ecoinvent.org/ 

2 The dimensions of the two region supply and use input-output table are 224 * 4 = 896  

3 The greenhouse gases considered are those considered in the Kyoto Protocol, namely carbon 

dioxide, methane, nitrous oxide, Hydrofluorocarbon, perfluorocarbons and sulphur hexafluoride. 

These are reported in CO2 equivalent quantities based upon their global warming potential. 

http://www.ecoinvent.org/
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is not available a relevant process from the ecoinvent database is selected4. The case studies used 

for solar and wind resource assessment are outlined below (sections 2.3 and 2.4). 

2.2.1 Data sources 

Data has been collected for the case study of solar PV and micro-wind systems for material 

composition, technology manufacture, transportation, energy consumption and waste generation 

within the manufacturing process from companies operating within the UK and Europe. Assumptions 

have also been made for the processes of materials extraction and production, as well as the 

installation based upon consensus within the literature and ecoinvent database. It is assumed that 

all components are produced from newly extracted materials and don’t contain any recycled 

content. The impact of all materials and products used in the infrastructure has been included. We 

acknowledge that in reality, the technologies considered may contain some recycled content which 

would bring down the overall life cycle impact of the product however due to uncertainty in the 

proportions, a worst-case scenario of no recycled materials has been assumed. Where specific 

transportation distances were not available distances have been assumed for manufacture within 

Europe or the UK (as appropriate). An outline of the distances used within the study for solar PV and 

micro-wind systems are detailed in Table A.1 and Table A.2 in the appendix respectively. After 

connection to the grid, the transmission and distribution of the electricity have not been taken into 

account. This is usually not technology dependant and therefore not necessary for this study. 

Disposal of the technologies has not been considered in this study. 

2.3 Case study: solar PV 

Single crystalline cells are considered most representative of the type of panels which will be 

predominantly used in the UK in the coming years [19] and since solar PV installations have little 

variation between designs [20], a typical monocrystalline silicon installation is therefore considered 

as the case study. Data was taken directly from the ecoinvent database v.2.1 (2009). The case study 

installation consists of 22.1 m2 of laminated panels sized 125 cm2 which are each made up of 72 

single crystalline silicon solar cells and has a total capacity of 3 kWp.  

2.3.1 Material Composition 

Figure 2 shows the composition of materials used in a single solar PV crystalline panel. A detailed 

lifecycle inventory for the panel is detailed in Table A.5 of Appendix D. Solar glass makes up the 

majority of the material within the panel, with aluminium and steel contributing 25% of the 

remaining materials. Electronics and silicone make up only 1% each. 

                                                           
4 Represents a range of European processes  
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Figure 2: Material Composition of the considered solar PV single crystalline panel 

2.3.2 Operational lifetime 

Manufacturers offer a warranty for a system for 25 years. However, the International Energy Agency 

solar PV LCA guidelines (2009) and published academic literature [21] suggest that the modules are 

more likely to degrade in efficiency as opposed to meeting a “fixed catastrophic failure point” and 

will therefore operate for longer than 25 years.  A 30 years lifetime with an age related level of 

efficiency degradation has therefore been assumed for this paper (see section 2.3.3). 

The main maintenance necessity for solar PV installations is the replacement of inverters which 

convert the DC current generated by the panels into grid compatible AC current. The ecoinvent 

database states that the average lifespan of an inverter is 12.5 years  but there is variation due to 

factors such as differences in durability [22]. To account for inverter lifespan variation, an average 

use of 2.4 inverters is assumed over an installation’s lifetime. Aside from occasional cleaning of the 

modules (which has negligible impact) it is assumed that no other maintenance is required since 

solar PV panels have no moving parts. 

2.3.3 Solar resource at installation site 

Levels of horizontal irradiation5 in the UK range from 750 kWh/m2/year in northern Scotland to 1100 

kWh/m2/year in southern England. Different levels have been considered over this range to reflect 

the variation in UK conditions. As well as the level of irradiation, the output is also dependent on the 

panel area, performance ability and durability of the panels. For this study, panel size is 125 cm2 and 

                                                           
5 Solar radiation received on a given surface area over a given time period 

Silicone 
1% 

Plastics 
4% 

Copper 
5% 

Solar glass 
64% 

Aluminium (& 
alloys) 
18% 

Steel 
7% 

Electronics 
1% 
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the installation was assumed to have a lifetime of 30 years, an efficiency of 14.4 % and a 

performance ratio of 0.75.  

Degradation due to aging of the system was also considered [20, 23]. Degradation of the panel 

results in a linear reduction in performance over its useful lifetime. Despite system degradation 

being identified as an important area of assessment for photovoltaic electricity LCA, it is often 

neglected in studies. The degradation factor6 effectively reduces the average performance over the 

system lifetime of 30 years by 20 %. 

The total electricity output over the 30 years is given by equation (3): 

                         (3) 

Where K = total electricity output over the panel’s lifetime (kWh); A = area of the panel (m2);     

panel efficiency (%); Rp = performance ratio; L = panel lifetime (30 years); d = average degradation 

factor; Ij = annual irradiance at installation site (kWh/m2). 

Table 2 details the calculated system generation (kWh). 

Annual 
irradiance, Ij 
(kWh/m2) 

Initial Annual 
Output (kWh) 

700 1,557 

800 1,780 

900 2,002 

1000 2224 

1100 2447 

Table 2: Expected electricity generation (kWh) for different annual irradiance values 
(kWh/m2) 

2.4 Case studies: micro-wind  

There are wide variations in micro-wind turbine designs and their material compositions, resulting in 

varying lifecycle analysis results. Three case study micro-wind turbines have been considered within 

this study, all of which are suitable for connection to the grid (see Table 3). This does not take 

account of the numerous turbine designs that are eligible for FiTs but is intended to give an initial 

indication of the carbon intensity of electricity from micro-wind technologies.  

Turbine Characteristics Description 

A Swift 1.5 kW horizontal 
axis turbine by the 

Turbine A was originally considered in a study by Rankine et 
al. [24] at the University of Edinburgh. It has five blades and a 

                                                           
6
 The degradation factor is given as  ( )           (   ), where t is the life of the panel in years  
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Edinburgh-based 
manufacturers 
Renewable Devices 

diffuser ring which reduces the noise created by the turbine 
as it turns. The material composition considered is for a 
standard wall-mounted turbine with a 5 m aluminium mast. 
The original study obtained detailed inventory information 
from the turbine manufacturers, enabling a high level of 
accuracy within the data. 

B 2 kW vertical axis turbine 
from a French 
manufacturer7 

Data was sourced through personal communication with the 
manufacturer as well as from publically available technical 
specifications. Where specific data was not available 
approximations have been used by scaling data from the 
inventory of turbine A based upon weight (see Table A.3 in 
the appendix). The final data used within the analysis was 
checked and approved by the manufacturers as a realistic 
approximation. 

C 6 kW vertical axis turbine 
from a French 
manufacturer7 

See turbine B (Table A.4 in the appendix). 

Table 3: Micro-wind turbine descriptions 

2.4.1 Material composition 

Figure 3 and Figure 4 show the proportions of materials used in both turbine models. The masts of 

the turbines account for the most significant proportion of the turbines’ materials. Turbine A has an 

aluminium mast whereas Turbines B and C have galvanised steel masts. The turbine blades are 

composed of carbon fibre reinforced epoxy resin and this makes up the next biggest contribution to 

the turbine materials. 

 

Figure 3: Material Composition of Turbine A (1.5kW) 

                                                           
7
 The name of the manufacturer has been kept anonymous within this paper at their request 
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67% 
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Figure 4: Material Composition of Turbines B and C. Both models have been assumed to 

have the same proportions. 

2.4.2 Performance 

The manufacturers of each turbine publish the expected power output that would be achieved at a 

given wind velocity. Figure 5 displays the power curves for turbines A, B and C. All three turbines 

begin to generate electricity with a wind speed of 3 m/s. The cut-out wind speed of turbines B and C 

is 20 m/s whereas turbine A does not cut out until a wind speed of 21 m/s. 

 

Figure 5: Expected power output of each turbine (kWh) for a given wind velocity 

2.4.3 Operational lifetime 

At present there is insufficient data to make accurate estimations of wind turbine lifetimes since 

there are very few turbines that have reached the end of their working life [25]. Manufacturers 

estimate lifetimes that range from 10-30 years [26, 27] and this could vary with differing 

maintenance regimes and installation sites. There could also be variation in the lifetime of parts 
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within each turbine. This study assumes turbine lifetimes as specified by the manufacturers. Turbine 

A is estimated to last 20 years and Turbines B and C are estimated to last 30 years. 

Regular maintenance of turbines is thought to prolong their useful life and maintain their efficiency. 

Unfortunately, there is little information regarding maintenance requirements provided by 

manufacturers and there is a similar lack of field studies to provide real life data [24-26]. In 

accordance with most studies to date, maintenance has been omitted from the study. 

2.4.4 Resource at installation site 

The electricity generated by a wind turbine is determined by the power in the wind. The wind’s 

power  is proportional to the wind speed cubed and therefore understanding the wind speed at an 

installation site is critical to calculating the likely generation of a wind turbine. Estimating wind 

speed is complex due to the temporal variability of wind speeds over seasons and years, as well as 

the spatial variability of wind speeds due to the impact of features such as buildings or terrain 

changes.  

Typically, power generation from wind turbines is calculated based upon approximations for the 

mean annual wind speed and the distribution of wind speeds over the course of a year. This study 

has used a Weibull distribution to approximate the annual wind speed distribution since it is 

representative of a large number of wind regimes [28].  

The distribution of wind velocities at a site over the period of a year can be represented using the 

family of Weibull probability distributions [29]. The distribution is given by equation (4): 

                             ( )                     ( )  
 

 
(
 

 
)
   

 
 (

 

 
)
 

  (4) 

Where V = the wind velocity (m/s);                       ;                [29]. The shape 

factor and scale factor are used to tailor the Weibull distribution for a particular installation site.  

In order to examine the impact of differing wind resources at installation sites a number of average 

annual wind speeds have been considered. For simplicity of analysis, a general shape factor 

representative of potential UK installation sites was determined as k=1.89 and scale factor or c = 

1.124, based upon a study of a number of UK sites in rural, coastal, suburban and urban settings 

[28]. The expected annual generation for a variety of average annual wind speeds has been 

calculated using the power curves published by the manufacturers (Table 4). The annual generation 

of each turbine (K) for an average annual wind speed ( ) is calculated using equation (5): 

 ( )   ∑   (  )
  
      (  )                           (5) 
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Where  ( ) = annual generation (kWh) for a site with average annual wind velocity of   (m/s); 

 (  )    Weibull probability distribution of wind velocity    given   ;  (  ) = power output from the 

turbine at wind velocity (kW) according to the manufacturers’ published power curves (Figure 5). 

Average wind speeds below 3 m/s are not considered since the cut-in speed of turbines A, B and C 

for beginning to generate electricity are between 3 m/s – 4 m/s. 

 Annual generation (kWh) 

Average annual wind speed (m/s) Turbine A  Turbine B Turbine C 

3 73 122 485 

4 245 296 1035 

5 535 584 1897 

6 913 998 3109 

7 1324 1510 4572 

8 1715 2049 6082 

9 2045 2544 7437 

10 2296 2947 8514 

Table 4: Estimated average annual generation (kWh) for varying average annual wind 
speeds in the UK 

2.5 Methodology for Scenarios 

The carbon intensity of the technologies will change over time with the introduction of renewable 

technologies in the electricity sector combined with improvements in carbon intensity across other 

sectors. To give a more useful interpretation of the emission payback time on micro-renewables, a 

number of scenarios have been constructed with varying levels of decarbonisation in the electricity 

and other sectors. The aim of this analysis is to recognise that the lifecycle emissions of micro-

generation technologies are likely to reduce over time.  

The scenario methodology employed is consistent with the approach described in Barrett and Scott 

[30]. In summary, the methodology considers the changing carbon intensity of the UK and trading 

partners taking into account historical changes over the past 20 years, future potential opportunities 

for improvements in individual sectors and government policies specifically related to the 

decarbonisation of the electricity sector. 

The scenarios are not an attempt to forecast the future, but recognise a range of possible outcomes 

of an uncertain future. With this in mind, the scenarios show the highest and lowest possible carbon 

intensity of both micro-wind and PV based on the outcomes of a number of uncertain variables, 

these being the rate of decarbonisation of the electricity sector in the UK and abroad, carbon 

intensity of production by sectors in the UK and abroad and the location of production.  
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3 Results and analysis 

The following section presents the results of the integrated hybrid LCAs for the case study 

technologies. The implications of these results are then considered for various natural resource 

scenarios in the UK to gain an understanding of where the technologies offer a carbon emissions 

reduction. Finally, scenarios for future emissions and their implications for the LCA results are 

considered. 

3.1 Solar PV - lifecycle emissions 

Lifecycle results for solar PV are presented in Figure 6. In this instance, for the sake of comparison of 

the two methods, both the process and integrated hybrid method results are shown. It can be seen 

that adoption of the integrated hybrid method, to overcome truncation error, results in an emission 

increase of 20 % of the process method results. Wafer construction contributes 50 % of emissions 

using the process analysis, and its share reduces slightly to 47 % when using the hybrid method. 

Installation is the second highest contributor at 15 % and 17 % respectively. An improvement in 

efficiency in these two areas is therefore most likely to make a significant reduction in the embodied 

emissions associated with solar PV installations. 

The remainder of the results will utilise the integrated hybrid method. Using an integrated approach 

over a pure process or input-output approach has shown to yield truer results in terms of the detail 

of physical flows combined with system completeness. However, this does not escape uncertainties 

associated with data sources and model assumptions. Wiedmann et al. (2011) specifically discuss 

uncertainty relating to the models used in this paper. Examples of uncertainty in the hybrid model 

relate to the process inventory, the manipulation of input-output tables and the conversion between 

monetary and physical data when integrating the two datasets. Exclusive to this study error will also 

arise from assumptions about the grid intensity, which is assumed to remain constant throughout 

the lifetime of the micro-generation technologies. When comparing with other studies Wiedmann et 

al. (2011) showed that the capacity in terms of power output, disposal and recycling assumptions, 

and the location of production and operation of generation technologies will lead to the most 

significant differences in results.  
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Figure 6: Emission results from single silicon solar PV installation (3kWp) comparing 

process-based and hybrid-based results. 

3.1.1 Current carbon intensity of solar PV 

The energy output of solar PV depends on the irradiation received. The carbon intensity at different 

rates of irradiation is given in Figure 7 and is compared with the intensity of electricity from micro-

wind in the policy analysis section (3.3). As is expected, the higher the irradiance received, the lower 

the carbon intensity. The value of the carbon intensity decreases from over 160 gCO2/kWh in areas 

with the worst irradiance in the UK to around two thirds of that value in areas with the best 

irradiance in the UK. 
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Figure 7: Carbon intensity of solar PV for different levels of average annual irradiance 

3.2 Micro-wind – life cycle emissions 

Lifecycle results for micro-wind are presented in Figure 8. The larger the turbine, the higher the 

resource input and the higher the embodied emissions. The mast material of each turbine makes up 

the largest proportion of the embedded emissions. In turbine A, the mast is composed of aluminium, 

in comparison to turbines B and C which are composed of mainly steel. The second notable 

difference between turbine A and turbines B and C is the emissions embodied in transport, where 

turbine A is manufactured in the UK and therefore has to be transported a shorter distance to 

installation site (Appendix B).  
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Figure 8: Emissions results from micro-wind comparing through the integrated hybrid-
based method. 

 

3.2.1 Current carbon intensity of micro-wind turbines 

The carbon intensity of generation from the three micro-turbines has been calculated based upon 

expected generation at a site with a given average annual wind speed. Figure 9 details the resulting 

carbon intensities. At low annual average wind speeds of 3 m/s the carbon intensity of the turbines 

are nearly 1000 gCO2/kWh in the case of turbines A and C, and reach as high as 2000 gCO2/kWh in 

the case of turbine B. This is significantly higher than the existing electricity from the grid which 

stood at 494 gCO2/kWh in 2010 [2]. However, from average annual wind speeds of 4 m/s or higher 

turbines A and C match or reduce the carbon intensity of their generated electricity compared to the 

grid. Turbine B achieves this from average wind speeds of 5 m/s. Unlike solar PV, the reduction in 

intensity is more exaggerated at lower wind speeds due to the cubic relationship between power 

and wind speed. Despite the similarities between the design of turbines B and C, the lower rated 2 

kW turbine B generates more carbon intensive electricity since its material composition is not 
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reduced relative to its reduction in generation capacity. Maximising the power output of the turbine 

(i.e. locating them in higher average annual wind speeds) minimises the carbon intensity.  

 

 

Figure 9: Carbon intensity of the three case study turbines for a range of annual average 
wind velocities (m/s) 

It should also be noted that empirical studies from across the UK have shown that average annual 

wind speeds are unlikely to reach the higher end of this range apart from in the most ideal locations 

at over 10 m above canopy height [28, 31]. Therefore, most installation sites would have average 

wind speeds of 6 m/s or less. 

3.3 Emissions payback and Future Intensity 

Carbon payback period represents the time period of energy generation from micro-wind or solar PV 

that must take place to offset the losses incurred in the installation period (i.e. the lifecycle 

emissions). Renewable energy sources offset their embedded CO2e by replacing electricity 

generation from a carbon intensive source (e.g. fossil fuels). The carbon payback period for micro-

wind and solar PV replacing grid electricity are calculated.  

The number of years required to offset the embedded carbon of a technology at a specific site is 

given by equation (6): 
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Where T = time to payback CO2e (years);      = Embedded CO2e of the turbine (kg CO2e) ;       = 

intensity of the UK electricity grid (kgCO2e/kWh); ai = average annual generation at the installation 

site given an average annual wind speed of i (kWh/year). 

The carbon intensity of the UK electricity grid mix in 2009 is used and assumed to be maintained 

throughout the years of payback (0.494 kg CO2e/kWh); [3232]. Note that the annual generation for 

solar PV has been calculated to reflect panel efficiency degradation with time. This creates a time 

dependence factor in the sum of annual generation.  

Carbon payback period for micro-wind and solar PV at different wind speeds and annual irradiance 

respectively are given in Table 5. 

Average annual wind 
velocity (i) 

4 m/s 5 m/s 6 m/s 7 m/s 8 m/s 9 m/s 10 m/s 

Turbine A– 1.5 kW  8 4 2 2 1 1 1 

Turbine B – 2 kW  25 12 7 5 4 3 2 

Turbine C – 6 kW  14 7 5 3 2 2 2 

Solar PV: Annual 
irradiance (Ij) 

- 700 
kWh/m2 

800 
kWh/m2 

900 
kWh/m2 

1000 
kWh/m2 

1100 
kWh/m2 

- 

Solar panel– 3 kWp - 9 8 7 6 6 - 
Table 5 : Carbon payback time (years) required for sites of varying average annual wind 
speed and annual irradiance 

The embodied carbon, and hence carbon to pay back, will vary depending on the design and 

material composition of the technology. Output capacity and site conditions will influence the 

carbon payback time. Taking a direct comparison between turbines B and C reveals the higher the 

output capacity, the shorter the payback period, especially in less favourable conditions. At low wind 

speeds it could take up to 25 years to offset the carbon from infrastructure requirements of wind 

turbines compared to just a year or two at sites with high wind speeds. The variation is less for the 

solar sites modelled ranging between 6 - 9 years.  

3.4 Uncertainty and Future Emissions 

According to the methodology outlined in section 2.5, scenario analysis of the lifecycle analysis 

results has been conducted to establish the potential impact of improvements in the carbon 

intensity of electricity used to produce the technology. 

3.4.1 Solar Scenario 

Figure 10 provides the results for the scenarios in 2030 showing the carbon intensity of production 

in comparison to the level of annual irradiance. The scenario analysis suggests that by 2030, 

assuming no improvements in generation efficiency, solar PV would be produced with a carbon 

intensity 10 % lower than 2012. Further savings in carbon intensity are therefore highly dependent 
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on future generation efficiency improvements and decarbonisation of the electricity grid, in the UK 

or elsewhere. To achieve the lower carbon intensity figure shown here (50% reduction by 2030) 

would require an almost complete decarbonisation of electricity generation to 50g of CO2e/kWh. 

Figure 10 highlights that attention should be given to the placing of solar PV installations so that the 

maximum irradiation possible can be received to ensure carbon intensity is minimised.  

  

Figure 10: Solar PV: Three scenarios (low/central/high electricity carbon intensity) for 
the carbon intensity of a 3 kWp solar PV installation in 2030. 

3.4.2 Wind Scenario 

A similar situation can be seen for wind (Figure 11), where again high levels of electricity 

decarbonisation are needed to achieve the lower carbon intensity figures. Wind turbines have the 

added challenge that they are predominately made from steel or aluminium. Allwood (2012) [33] 

provides compelling evidence of the difficulty in achieving significant gains in the carbon intensity of 

steel and aluminium production.  

In addition to the limited opportunities for carbon intensity improvements, the decarbonisation 

rates of the electricity sector are very ambitious and more closely reflect ambitions of EU countries 

as opposed to emerging economies. Both solar PV and wind turbines are global markets with high 

levels of production in China, where electricity generation is heavily dependent on coal. Therefore, 

the more modest reductions presented in the scenarios demonstrate a more feasible outcome. This 

makes future performance efficiency gains of solar PV technology essential to achieving a target of 

50 gCO2e/kWh. 
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For wind turbines this is clearly heavily dependent on average wind speed and this factor remains as 

the most important variable that dictates the carbon intensity of small scale wind turbines. 

 

Figure 11: Micro-wind: Three scenarios (low/central/high electricity carbon intensity) 
for the carbon intensity of turbines A, B and C in 2030. 

4 Discussion 

Technologies such as micro-wind and solar PV could be thought of as infrastructure technologies 

which enable the capture of renewable resources. Their impacts are generated through their 

production, installation and maintenance rather than in their operation. It is therefore essential to 

account for these when assessing the carbon intensity of electricity generation to offer an accurate 

comparison with fossil fuel alternatives. Here, the use of the integrated hybrid LCA methodology has 

resulted in lifecycle emissions that are in the higher-end or exceed the ranges given in the IPCC 

Special Report shown in Table 1. Whilst the hybrid method captures emissions that would otherwise 

have been lost to truncation error, methodological diversity and inconsistent boundary setting 

makes it difficult to determine the reason for differences between studies. The fact that the 

considered case studies are at the micro-scale further adds to the higher carbon intensities. 

However the results clearly indicate the importance of accounting for the full lifecycle emissions of 

these technologies, particularly at the micro-scale, to ensure carbon savings are achieved through 

their deployment. 

Choosing the most efficient technology is primarily determined by the installation site conditions 

and resource requirements. Micro-wind is favourable in areas with high average wind speed (greater 
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than 7 or 8 m/ s) where the carbon payback period becomes only a few years. However, sites with 

these higher wind speeds are extremely rare. At more realistic wind speeds of around 6 m/s carbon 

intensities are comparable to nuclear and fossil fuels with carbon capture and storage and when 

wind speeds are less than 5 m/s carbon intensities of micro-wind even become comparable to some 

estimates of fossil fuels, such as gas. There is less variation in solar across the considered levels of 

irradiation, with solar PV being preferable to wind (and significantly preferable to fossil fuels) in 

areas where wind is less powerful or frequent. At the optimum level of irradiation in the UK the 

carbon payback period of solar PV is about six years. 

Current FiT policy does not discriminate between technologies on the basis of the renewable 

resource at an installation site. To achieve a lower carbon intensity of electricity, however, would 

require prioritisation of more favourable sites. Criteria to ensure technologies are only deployed in 

favourable sites would incentivise appropriate use and move the UK closer to reaching a 

decarbonised electricity system.  

Further consideration should be given to the role of policy mechanisms for influencing supply chain 

decisions such as the material composition of products or their manufacturing locations. As the 

electricity intensity of different nations begins to change the supply chain of technologies will 

become crucial in determining which scenario of electricity carbon intensity will apply.  

5 Conclusions  

The lifecycle emissions of technologies provide a significant challenge to meeting electricity 

generation carbon intensity targets of 50g CO2e/kWh by 2030. A complete re-assessment of the 

target should be undertaken based upon the full lifecycle impacts of technologies. Alongside this 

there must be a comprehensive accounting system that considers the impacts of policies to 

discourage perverse technology choices that do not offer the required carbon savings. 

In line with this, there is a need for complete and impartial assessment of the lifecycle emissions of 

technologies. Techniques such as the integrated hybrid LCA used here have the capacity to pick up 

impacts that would otherwise be lost to the truncation error inherent in process LCA methods. 

Further research is required to develop these methodologies for wider use.  

The extent of the role for micro-generation in the UK electricity mix is still unclear but its ability to 

offer carbon reductions, make use of otherwise untapped renewable energy resource, and offer 

resilience to future communities is already apparent. However, policies such as FiTs need to ensure 

that installations are only incentivised where there are genuine carbon savings to be made. Lack of 
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inclusion of lifecycle emissions, combined with the significant variation in performance of micro-

generation technologies, provides an overly optimistic interpretation of the contribution of these 

technologies to decarbonisation targets.  
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8 Appendix 

A. Solar PV Transportation Data 

Table A.1 details the assumed transportation distances and weight (tkm) of products transported 

during the manufacture of a solar PV installation. It is assumed that the cells are manufactured 

within Germany. 

Transport stage Contribution 
(tkm) 

Components to inverter factory  45.7 

Components to cell factory 1.83 

Components to panel factory  11.05 

Components & personnel to installation site 848.3 

TOTAL 906.88 

Table A.1: Solar PV transportation assumptions 

B.  Micro-Wind Transportation Data 

Table A.2 details the assumed transportation distances and weight (tkm) of products transported 

during the manufacture of the case study micro-wind turbines. It is assumed that turbine A is 

manufactured within the UK and turbines B and C are manufactured in Europe (as appropriate) 

Turbine Model A B C 

Transport stage Contribution (tkm) Contribution (tkm) Contribution (tkm) 

Materials to turbine factory 22.5 272.5 503.4 

Turbines to installation site 35 695.6 1364.5 

Installer transport impact 1.2 6.4 40 

TOTAL 58.7 974.5 1921.3 

Table A.2: Micro-wind transportation assumptions 

C. Scaling Factors for Data Approximation 

For turbine B the data has been scaled up from turbine A by the ratio of the weights of the two 

turbines. Table A.3 details the the scaling factor used: 

Turbine A (1.5kW) total weight 115 kg 

Turbine B (2 kW) total weight 595 kg 

Weight ratio / scaling factor 5.17 

Table A.3: Scaling Factors used to approximate data for Turbine B (2 kW). 

The technical specifications for turbines B and C indicated that the increase in capacity between the 

turbines does not result in an equal increase in mass of the materials. Each section of the turbine 
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increased by different proportions. The scaling factors were calculated for the different sections 

independently and used to scale the data up where necessary. These scaling factos are outlined in 

the Table A.4. 

 Scaling factor 

Superior Rotor Tube and Blades 1.62 

Mast (9 m) 2.33 

Mechanical Parts 1.79 

Electronic Components 1.14 

Table A.4: Scaling Factors used to approximate data for Turbine C. 

D. Solar PV lifecycle inventory 

Table A.5 details the lifecycle inventory used to conduct the LCA analysis for a typical 

monocrystalline silicon solar PV panel. This data has been taken from the ecoinvent v.2.1 (2009) 

database and censored according to confidentiality restrictions for the database. X’s represent digits 

within the data. 

 [G2030] 

[P1653] 

inverter, 

2500W, 

at 

plant[RER

] (-)[RER] 

(unit) 

[P2880] 

photov

oltaic 

cell, 

single-

Si, at 

plant[R

ER] (-) 

[P2889] 

photovo

ltaic 

panel, 

single-

Si, at 

plant[RE

R] (-) 

[P1647] 

3kWp 

slanted-

roof 

installatio

n, single-

Si, panel, 

mounted, 

on 

roof[CH] 

(-) 

[G5] copper, at regional storage[RER] (kg) -x.xx 0 -x.xxx 0 

[G7] steel, low-alloyed, at plant[RER] (kg) -x.x 0 0 0 

[G27] sheet rolling, steel[RER] (kg) -x.x 0 0 0 

[G54] polystyrene foam slab, at plant[RER] (kg) -x.x 0 0 0 

[G101] transport, lorry >16t, fleet average[RER] (tkm) -x.x -x.xxx -x.xx -xxx 

[G103] transport, transoceanic freight ship[OCE] (tkm) -xx.x -x.xxxx 0 -xxx 

[G133] transport, freight, rail[RER] (tkm) -x.xx -x.xx -x.xx 0 

[G146] electricity, medium voltage, production UCTE, -xx.x -xx.x -x.xx 0 
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at grid[UCTE] (kWh) 

[G464] corrugated board, mixed fibre, single wall, at 

plant[RER] (kg) 

-x.x 0 -x.x 0 

[G465] disposal, packaging cardboard, 19.6% water, 

to municipal incineration[CH] (kg) 

-x.x 0 0 0 

[G631] disposal, polystyrene, 0.2% water, to 

municipal incineration[CH] (kg) 

-x.xx 0 0 0 

[G805] disposal, polyethylene, 0.4% water, to 

municipal incineration[CH] (kg) 

-x.xx 0 0 0 

[G826] polyvinylchloride, at regional storage[RER] (kg) -x.xx 0 0 0 

[G846] aluminium, production mix, cast alloy, at 

plant[RER] (kg) 

-x.x 0 0 0 

[G1532] section bar extrusion, aluminium[RER] (kg) -x.x 0 0 0 

[G1539] wire drawing, copper[RER] (kg) -x.xx 0 -x.xxx 0 

[G2047] styrene-acrylonitrile copolymer, SAN, at 

plant[RER] (kg) 

-x.xx 0 0 0 

[G2048] printed wiring board, through-hole, at 

plant[GLO] (m2) 

-x.xxx 0 0 0 

[G2049] connector, clamp connection, at plant[GLO] 

(kg) 

-x.xxx 0 0 0 

[G2050] inductor, ring core choke type, at plant[GLO] 

(kg) 

-x.xxx 0 0 0 

[G2051] integrated circuit, IC, logic type, at 

plant[GLO] (kg) 

-x.xxx 0 0 0 

[G2052] transistor, wired, small size, through-hole 

mounting, at plant[GLO] (kg) 

-x.xxx 0 0 0 

[G2053] diode, glass-, through-hole mounting, at 

plant[GLO] (kg) 

-x.xxx 0 0 0 

[G2054] capacitor, film, through-hole mounting, at 

plant[GLO] (kg) 

-x.xxx 0 0 0 

[G2055] capacitor, electrolyte type, > 2cm height, at 

plant[GLO] (kg) 

-x.xxx 0 0 0 

[G2056] capacitor, Tantalum-, through-hole 

mounting, at plant[GLO] (kg) 

-x.xxx 0 0 0 
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[G2057] resistor, metal film type, through-hole 

mounting, at plant[GLO] (kg) 

-x.xxx 0 0 0 

[G2058] metal working factory[RER] (unit) -x.xxE-09 0 0 0 

[G2059] fleece, polyethylene, at plant[RER] (kg) -x.xx 0 0 0 

[G2060] disposal, treatment of printed wiring 

boards[GLO] (kg) 

-x.x 0 0 0 

[G152] nitric acid, 50% in H2O, at plant[RER] (kg) 0 -x.xxxx 0 0 

[G388] sodium hydroxide, 50% in H2O, production 

mix, at plant[RER] (kg) 

0 -x.xxx 0 0 

[G394] ammonia, liquid, at regional storehouse[RER] 

(kg) 

0 -x.xxxxx 0 0 

[G396] solvents, organic, unspecified, at plant[GLO] 

(kg) 

0 -x.xxxxx 0 0 

[G405] argon, liquid, at plant[RER] (kg) 0 -x.xxxx 0 0 

[G427] calcium chloride, CaCl2, at regional 

storage[CH] (kg) 

0 -x.xxxx 0 0 

[G433] nitrogen, liquid, at plant[RER] (kg) 0 -x.xx 0 0 

[G434] oxygen, liquid, at plant[RER] (kg) 0 -x.xxx 0 0 

[G437] hydrochloric acid, 30% in H2O, at plant[RER] 

(kg) 

0 -x.xxxx 0 0 

[G438] titanium dioxide, production mix, at 

plant[RER] (kg) 

0 -x.xxE-

06 

0 0 

[G439] sodium silicate, spray powder 80%, at 

plant[RER] (kg) 

0 -x.xxxx 0 0 

[G441] hydrogen fluoride, at plant[GLO] (kg) 0 -x.xxxx 0 0 

[G525] phosphoric acid, fertiliser grade, 70% in H2O, 

at plant[GLO] (kg) 

0 -x.xxxxx 0 0 

[G526] isopropanol, at plant[RER] (kg) 0 -x.xxxx 0 0 

[G562] disposal, waste, Si waferprod., inorg, 9.4% 

water, to residual material landfill[CH] (kg) 

0 -x.xxx 0 0 

[G565] tetrafluoroethylene, at plant[RER] (kg) 0 -x.xxxxx 0 0 

[G570] silicone product, at plant[RER] (kg) 0 -x.xxxxx -x.xxx 0 

[G571] natural gas, burned in industrial furnace low-

NOx >100kW[RER] (MJ) 

0 -x.xx -x.xx 0 
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[G606] acetic acid, 98% in H2O, at plant[RER] (kg) 0 -x.xxxxx 0 0 

[G623] water, completely softened, at plant[RER] (kg) 0 -xxx 0 0 

[G681] light fuel oil, burned in industrial furnace 

1MW, non-modulating[RER] (MJ) 

0 -x.xx 0 0 

[G769] polystyrene, expandable, at plant[RER] (kg) 0 -

x.xxxxx

x 

0 0 

[G2065] photovoltaic cell factory[DE] (unit) 0 -x.xxE-

07 

0 0 

[G2875] ethanol from ethylene, at plant[RER] (kg) 0 -

x.xxxxx

x 

0 0 

[G2964] single-Si wafer, photovoltaics, at plant[RER] 

(m2) 

0 -x.xx 0 0 

[G2970] metallization paste, front side, at plant[RER] 

(kg) 

0 -x.xxxx 0 0 

[G2971] metallization paste, back side, at plant[RER] 

(kg) 

0 -x.xxxxx 0 0 

[G2972] metallization paste, back side, aluminium, at 

plant[RER] (kg) 

0 -x.xxxx 0 0 

[G2973] phosphoryl chloride, at plant[RER] (kg) 0 -x.xxxx 0 0 

[G2974] treatment, PV cell production effluent, to 

wastewater treatment, class 3[CH] (m3) 

0 -x.xxx 0 0 

[G69] disposal, plastics, mixture, 15.3% water, to 

municipal incineration[CH] (kg) 

0 0 -x.xx 0 

[G71] tap water, at user[RER] (kg) 0 0 -xx.x 0 

[G72] lubricating oil, at plant[RER] (kg) 0 0 -x.xxxxx 0 

[G140] disposal, used mineral oil, 10% water, to 

hazardous waste incineration[CH] (kg) 

0 0 -x.xxxxx 0 

[G172] disposal, municipal solid waste, 22.9% water, 

to municipal incineration[CH] (kg) 

0 0 -x.xx 0 

[G399] nickel, 99.5%, at plant[GLO] (kg) 0 0 -x.xxxxx 0 

[G577] methanol, at regional storage[CH] (kg) 0 0 -x.xxxxx 0 

[G614] acetone, liquid, at plant[RER] (kg) 0 0 -x.xxx 0 
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[G648] vinyl acetate, at plant[RER] (kg) 0 0 -x.xxxxx 0 

[G656] treatment, sewage, from residence, to 

wastewater treatment, class 2[CH] (m3) 

0 0 x.xxxx 0 

[G835] brazing solder, cadmium free, at plant[RER] 

(kg) 

0 0 -x.xxxxx 0 

[G1223] solar glass, low-iron, at regional storage[RER] 

(kg) 

0 0 -xx.x 0 

[G1224] tempering, flat glass[RER] (kg) 0 0 -xx.x 0 

[G1410] aluminium alloy, AlMg3, at plant[RER] (kg) 0 0 -x.xx 0 

[G1925] polyethylene terephthalate, granulate, 

amorphous, at plant[RER] (kg) 

0 0 -x.xxx 0 

[G2073] photovoltaic panel factory[GLO] (unit) 0 0 -x.xxE-

06 

0 

[G2074] ethylvinylacetate, foil, at plant[RER] (kg) 0 0 -x 0 

[G2076] disposal, polyvinylfluoride, 0.2% water, to 

municipal incineration[CH] (kg) 

0 0 -x.xx 0 

[G2079] glass fibre reinforced plastic, polyamide, 

injection moulding, at plant[RER] (kg) 

0 0 -x.xxx 0 

[G2900] 1-propanol, at plant[RER] (kg) 0 0 -x.xxxxx 0 

[G2969] photovoltaic cell, single-Si, at plant[RER] (m2) 0 +1 -x.xxx 0 

[G2978] polyvinylfluoride film, at plant[US] (kg) 0 0 -x.xx 0 

[G33] electricity, low voltage, at grid[CH] (kWh) 0 0 0 -x.xx 

[G279] transport, van <3.5t[CH] (tkm) 0 0 0 -xx.x 

[G2030] inverter, 2500W, at plant[RER] (unit) +1 0 0 -x.x 

[G2031] electric installation, photovoltaic plant, at 

plant[CH] (unit) 

0 0 0 -x 

[G2035] photovoltaic panel, single-Si, at plant[RER] 

(m2) 

0 0 +1 -xx.x 

[G2041] slanted-roof construction, mounted, on 

roof[RER] (m2) 

0 0 0 -xx.x 

[G2018] 3kWp slanted-roof installation, single-Si, 

panel, mounted, on roof[CH] (unit) 

0 0 0 +1 

Table A.5: Lifecycle inventory of a monocrystalline silicon solar PV panel 
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Unfortunately a corresponding table cannot be provided for the micro-wind case studies due to a 

restricted publishing agreement with the manufacturer. 


