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Abstract

This paper presents a study of how different vibration modes contribute to
the dynamics of an inclined cable that is parametrically excited close to a
2 : 1 internal resonance. The behaviour of inclined cables is important for the
design and analysis of cable-stay bridges. In this work the cable vibrations are
modelled by a four-mode model. This type of model has been used previously
to study the onset of cable sway motion caused by internal resonances which
occur due to the nonlinear modal coupling terms. A bifurcation study is
carried out with numerical continuation techniques applied to the scaled and
averaged modal equations. As part of this analysis, the amplitudes of the
cable vibration response to support inputs is computed. These theoretical
results are compared with experimental measurements taken from a 5.4 m
long inclined cable with a vertical support input at the lower end. In general
this comparison shows a very high level of agreement.

Key words: Cable vibration, internal resonance, sway motion, modal
interaction, bifurcation analysis.

1. Introduction

Inclined cables are used to support the bridge deck in cable-stay bridges.
The cables are typically lightly damped, and when the bridge deck oscillates it
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provides a support motion input to the cable. This type of excitation can lead
to large amplitude vibrations of the cable [1]. A case of particular interest
is when an internal resonance occurs between the in-plane and out-of-plane
modes of vibration of the cable. This phenomenon was studied in [2] by using
nonlinear Mathieu-type equations to model parametric resonance between
the in-plane and out-of-plane modes of vibration of the cable [3, 4, 5, 6]. The
most significant resonance occurs when the associated modal frequencies of
the second in-plane and first out-of-plane mode are at a ratio of 2 : 1. Close
to resonance, relatively small deck inputs are sufficient to trigger the out-of-
plane sway motion of the cable. This onset of sway motion can be formulated
as a stability problem. In this case, zero sway motion is considered a stable
situation, and the onset of sway motion can be interpreted as the loss of
stability of the zero solution. This approach has been considered by many
authors; see for example [7, 8, 9, 10, 11, 12, 13, 14, 15] and references therein.
The general formulations for cable dynamics are discussed in [16, 17].

In this paper the Warnitchai equations [18] (see also [19] for a detailed
derivation) are used to model the vibration of the cable. It is assumed that
the longitudinal vibrations of the cable can be neglected, so that the planes
of interest are vertical (in-plane) and sway (out-of-plane). Four modes are
included in the model, two in-plane and two out-of-plane, which enables the
important low frequency dynamic behaviour to be modelled [11, 12]. The
Warnitchai equations are scaled and averaged using the same procedure as
previously presented in [13, 14, 22]. Then a bifurcation study is carried
by means of numerical continuation [20] with the software package AUTO
[21]. In this way, the stability boundaries for the zero-sway solution can be
computed in the form of a series of resonance (or Arnold) tongues. The dis-
cussion concentrates on the 2 : 1 resonance tongue; additional resonances are
discussed in [14]. Furthermore, by using AUTO, coupled solution branches
that involve non-zero out-of-plane solutions are detected and their stability
properties identified.

In addition to computing the resonance tongues [23, 24, 25], here, ampli-
tude information within the tongue is also computed and compared to ex-
perimental results. These experimental test were carried out on an inclined
5.4 m long cable [26]. The modal data from the model was transformed into
displacement values for the mid and quarter points of the experimental cable.
When compared, the simulation and experimental results show a high level
of agreement for most parts of the curves [27]. A discrepancy between sim-
ulated and experimental results occurs close to tip of the resonance tongue



where more complex dynamic effects are expected to occur. Such effects are
not fully captured by the four mode model, but can be explained using the
results of the bifurcation study.

The remainder of this paper is structured as follows. In Section 2 the
equations of motion for the inclined cable model are presented as derived via
scaling and first-order averaging. Section 3 describes the experimental set-up
and tests conducted in the laboratory. Section 4 describes the bifurcation
study and numerical continuation analysis, as well as a comparison with
experimental measurements. Conclusions are drawn in Section 5.

2. The theoretical model

The modal equations of motion for an inclined taut cable derived by
Warnitchai et al. [18] are used here as the basis for the theoretical inves-
tigation. These modal equations are then scaled and averaged as described
in [13, 14] (see also [19] for a description of the averaging technique) to give
equations relating to the amplitude of response of each mode. The averaged
equations are the basis for the bifurcation study described in Section 4. For
completeness, we set out the main steps of this derivation.

A schematic of the cable is shown in Fig. 1, where v and w are out-of-plane
(sway) and in-plane (transverse) displacements of the cable, respectively, and
 is the angle of inclination measured from the horizontal line in the gravity
plane. Axial vibrations of the cable are neglected in this model since they
occur at much higher frequencies. The cable is rigidly supported at the upper
end and a vertical support input is included at the lower end.

2.1. Modal equations

In the Warnitchai et al [18] derivation, the dynamic response of the cable
is split into a quasi-static motion (which ensures that the moving boundary
condition at the lower support is met by considering the movement of a
mass-less tendon between the supports) and a modal response

va(@,t) = v, 0) =D dul@)ya (L),

wa(e,t) = wy(e,t) + wale,t) = wy(z,0) + ) da(@)z(t), (1)



where the subscripts d, ¢ and m relate to dynamic, quasi-static and modal
displacements, respectively, the spatial functions ¢(x) and ¥ (x) are the in-
plane and out-of-plane linear modeshapes of a cable with fixed ends, and
yn(t) and z,(t) their corresponding time-dependent generalised coordinates.
The in-plane quasi-static motion is given by

=g (£) - LSO (1) (2]
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where the second term on the right-hand side is due to the change in the
tension in the cable affecting the static sag of the cable [18, 19]. Furthermore,
0, is the static stress acting along the x-axis and

E L g i a2 2 (Y 6 (3)
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where A\? is Irvine’s parameter [16]. The system may be linearized assuming
that the sag is small compared to the length of the cable, the dynamics along
the cable are insignificant and the amplitude of vibration is small compared
with the sag [28]. By using the modal decomposition as the mode shapes
of this linearized system, the Galerkin technique can be used to derive the
modal equations of motion for the nonlinear cable dynamics [29]; here the
assumption that the amplitude of vibration is small compared to the sag is
relaxed by using a nonlinear compatibility expression. The resulting modal
representation of the out-of-plane cable motion for the n'® mode may be
expressed as

Myn (i + 28yn@yndn + wWhn) + > Vektin (Ui + 22) +

¥ (4)
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and the in-plane cable motion as

Mzn (Zn + 2€znwznz.n + Wgnzn) + Z VnkZn (ylz + le) +
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In these equations my, = m,, = m = pAl/2 is the effective mass and the
parameters Vug, Bnk, Tn, Co and o, are given by

EArin?k? EAmnyn? (14 (=1)k E,Ar*n?
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Where A is the cross section area of the cable. The mode shapes for the
out-of-plane and even in-plane modes of the linearized system are given by

¢, = sin <n7r%) for n=1,2,3,..., (7)

1, = sin <n7r%) for n=24.6,.... (8)

For the odd in-plane modes the mode shapes are more complex; however,
as is discussed in [19], for taut cables they may be approximated to sine
functions of the same form as the out-of-plane modes. Finally, the out-of-
plane and in-plane natural frequencies, w,, and w.,, respectively, are given
by

nr [og nm
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Here k,, is due to the effect of sag and given by

ey = < 2 ) (1+ (=1)m+h)*, (10)
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assuming a sinusoidal mode shape.

The study presented here concentrates on forcing frequencies close to
the second natural frequency 2 =~ w.o = wye. This can trigger the 2 : 1
resonance case in the first in- and out-of-plane modes due to the nonlinear
nature of the system. Therefore, these four modes will be considered. Note
that wy,1 = wso /2 and w,; are slightly larger than half the second natural
frequency.

2.2. Scaling and averaging

The technique of scaling and averaging (see for example [19, 30]) is now
applied to the four modal equations of motion in- and out-of-plane for n =



1,2. We review here the three steps in this procedure; details can be found
in [13, 14].

Step 1 Each modal equation is written in the standard Lagrange form [30]
Uz + an‘vi = Efi(vh V2, U3, U4, ’[)17 ’[}27 /1'137 ’D47 57 5) (11)

where {vy, va, v3, v4} = {Y1, 21, Y2, 22} and {wy1, Wy, Wes, wia b = {wr, wi, 2w1, 2w }
with wy = wy;. In this formulation the small parameter € has been introduced,
indicating that the damping and nonlinear terms are assumed to be small.
Equations for the functions f; can be derived by comparing Egs. 4 and 5
with Eq. 11. Note for the case of ¢ = 2, f contains the frequency detuning
term k‘lwlzl where, since k; is small, k; has been expressed as k; = Gk‘l

(recalling that w,; = w11+ kq).

Step 2 Because the forcing is close to the second natural frequency of the
cable, the forcing frequency 2 is written as Q = 2w;(1 + ) where p is the
frequency detuning parameter, which may be expressed as u = ¢ since it
is small. Applying the time transform 7 = ¢(1 + p) allows Eq. 11 to be
rewritten as

" 2 /! /! !/ AN/ A~ 2
v+ wivp = €] fi(v1, v, vz, vy, V7, VY, V5, vy, 0,0") + 2fiws;v;] = €g;, (12)

where {}' is the derivative with respect to 7 and the terms of order €* have
been ignored.

Step 3 Making substitutions of the form

Vi = Uy COS(WyiT) + Vs SIN(WiiT), V) = W[ —ie SIN (Wi T) + Vi cOS(WyiT)]
(13)
into Eq. 12 results in equations for the dynamics of the amplitude content
of the modes

€ . €
vl = ——sin(wyT)gi, vl = — cos(wuT)gs (14)
Vi Wi

(see [19, 30]). Since Eq. 14 indicates that the derivatives of v;. and v;s are
small (of order ¢') the equations can be averaged. Specifically, this means
that the equations are averaged over a period of oscillation at frequency w;
while treating the v;. and v;s terms within g; as constant over the oscillation.
This averaging over a period of oscillation at frequency w; in the transformed



7T-time domain is equivalent to averaging over two periods of oscillation at
frequency € in the t-time domain.
The resulting averaged equations are:
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where My = y? 4yl 422 +22, My = y2 +y3 +22.+22,, Cy = 3M;+8M; and
Cy = My 4+ 6M,. Furthermore, k = k1 /2, Wyr = vpr/m, N, = 21, sin6/m,
B = (ycos60/m and § = A cos(Qt); see Table 1.

3. Experimental cable set-up

Having defined the analytical model, we now introduce the physical cable
experiment that was used for this study [31, 32]. The inclined cable used
in the experimental tests for this study is shown in Fig. 2. It is 5.4 m
long, has diameter 0.78 mm and is inclined at 22.6°. To improve the scaling
characteristics of the cable, 21 lead masses have been added to increase its



mass. The masses are spaced every 250 mm, except the first and the last
ones which have distance 200 mm from each end; Fig. 2b. As the analysis
is restricted to only the first and second modes, the added masses do not
play a significant role in modifying the mode shapes and can be considered
as equivalent to a distributed weight along the cable.

The masses are also used in the acquisition of data during the experi-
mental tests, namely as targets that the high-speed camera system follows.
Specifically, two masses — one in the middle and the other a quarter dis-
tance along the cable — are used to measure the vibration of the cable. This
data is acquired using an Imetrum Video Gauge System (VGS) consisting of
two cameras, one to record in-plane motion and the second to capture the
out-of-plane motion.

The cable is fixed at the top where it is possible to adjust the static tension
prior to each test, and all results shown here are for a value of T,=286 N. At
the lower end the cable is connected to a short steel beam via a multiaxial (six
DoF) load cell and a vertical LVDT (linear variable differential transformer)
with limit displacement of ==10mm. The actuator, shown in Fig. 2¢, has 10
kN maximum force and +150mm displacement. The hydraulic system uses
an oil pump with 100 1/min capacity and pressure of 23 MPa.

The system used for the input and output data involves three computers.
Computer 1 is used to control the hydraulic actuator, and this is where the
required forcing amplitude and frequency for different kinds of tests can be
specified. Computer 2 is used for data acquisition of all instruments except
the VGS. The third computer is used to record the motion of the cable from
the VGS.

During a test, the actuator imitates the deck motion and excites the cable
with a sine wave input. Data is recorded using the VGS, load cell and LVDT.
The data is post-processed to compute the steady-state amplitudes for the
mid- and quarter-point cable displacements in both the in- and out-of-plane
directions. Two important quantities are measured in the experiment: (i)
the forcing amplitude value at which any out-of-plane motion begins, and
(ii) the steady state maximum amplitude per forcing period. A discussion
of how this experimental data compares with a bifurcation analysis of the
scaled, averaged model is given in the next section.



4. Bifurcation study

The connection between the solutions of system of Eqgs. (15) and the
vibration response of the cable is given by the amplitude contributions of the
four different modal amplitudes, which are defined as:

o 7y = /2. + 23, for the second in-plane modal amplitude;
o 7 = \/z}. + 2%, for the first in-plane modal amplitude;
o Vo = /y2 + y2, for the second out-of-plane modal amplitude;

o Vi = /yl. + y?, for the first out-of-plane modal amplitude.

The main parameters of interest of the system of Eqs.(15) are the amplitude
of excitation A (measured in metres) and the detuning u between the fre-
quency of the actuator and the second natural frequency of the cable. In
order to work with non-dimensional values for the actuator amplitude, we
consider throughout the normalized quantity A/L, where [ is the unten-
sioned length of the cable which was . = 5.4 m in the experiment, here
L = ( the support separation distance.

Our goal now is to investigate how the contributions of the different modal
amplitudes Z,, Z7, Yz and Y] of Egs. (15) change as a function of A and p. To
this end, we present in Figs. 3 and 4 stability diagrams in the (x, A/L)-plane
that explain how the different modal amplitudes contribute to the overall
behavior. The curves in Figs. 3 and 4 represent transitions that are due to
changes of stability of individual modal amplitudes; they have been computed
with the numerical continuation package AUTO [21]. These transitions are
known bifurcations [33, 34], and we find two types of bifurcations in the region
of interest (u, A/L) € [0,0.0015] x [—0.03,0.07]. The first is the saddle-node
(or fold) bifurcation, where a stable and an unstable branch of solutions meet;
secondly, we find branch point bifurcations that correspond to the onset of a
further modal amplitude which then contributes to the solution.

Figure 3 shows loci of fold bifurcation points of the Z,-amplitude as the
grey curve labelled F,, as well as black curves By, and By, of branch point
bifurcations of the Y;-amplitude and of the Z;-amplitude, respectively. These
bifurcations are observable because they correspond to stable solutions. In
the lower region (below these curves) the stable solution of Eqgs. (15) has only
a contribution of the Zs-amplitude (that is, Z; = Yo = Y7 = 0), meaning that
the response of the cable consists of purely the second in-plane mode. When
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the curve I, (between the points C and K) is crossed as A/L is increased,
we encounter the fold bifurcation and this stable solution disappears. As a
consequence, there is a sudden transition to an entirely different stable solu-
tion that has contributions of the Zs-amplitude and both the Ys-amplitude
and the Yi-amplitude, meaning that the cable now features out-of-plane mo-
tion. How this new solution arises is discussed in Section 4.1 below. Crossing
a branch point bifurcation curve in Fig. 3 has less dramatic consequences.
When the curve By, is crossed for increasing A/L one finds an onset of the
contribution of the Z;-amplitude, while still Yo = Y; = 0; hence, the cable
dynamics is still in-plane. Similarly, when the curve By, is crossed for in-
creasing A/L the Y;-amplitude starts to contribute, while still Z; = Y, = 0;
in other words, one observes the onset of the first out-of-plane modal ampli-
tude. Time series plots either side of the By, curve are shown in [13] for a
three-mode model.

The bifurcation curves shown in Fig. 3 are the transition curves that one
encounters first in the experiment when A/L is increased for fixed detuning
1. Indeed, these curves agree well with the experimental measurements. The
squares are the last measured points where Z; = Y, = Y] = 0, and the tri-
angle where a contribution Y; # 0 of the first out-of-plane Y;-amplitude was
identified for the first time (when increasing A/L). Similarly, the diamonds
indicate that a non-zero contribution of the first in-plane Z;-amplitude was
first observed. Given the gradual onset of the corresponding modal ampli-
tudes, these measurements points agree well with the curves By, and By,,
respectively.

How the curves shown in Fig. 3 arise can only be understood when
they are considered as part of a stability diagram that also shows bifur-
cation curves that correspond to unstable solutions which arise from pure
Zy-solutions. This is shown in Fig. 4, where the curves Fy,, By, By, and
By, are seen to form a complicated structure. Throughout, parts of curves
that correspond to bifurcation of stable solutions are drawn as solid curves,
while parts of curves that correspond to bifurcations of unstable solutions are
dashed. Notice the solid curves from Fig. 3 are parts of the corresponding
bifurcation curves. More specifically, the fold curve F, has a cusp point C
and extends past the point K, where it meets the curve By, ; apart from the
part of Fz, between C' and K that was shown in Fig. 3. Note also the part
of curve Fy, between C' and the point P corresponds to the bifurcation of
a stable solution. However, this fold bifurcation is almost immediately fol-
lowed by the curve By, of branch point bifurcations of the second out-of-plane
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Ys-amplitude.

Notice that the curve By, is solid and corresponds to bifurcations of
an attracting solution; see the enlargement in Fig. 4b showing (. A/L) €
[0,0.00011] x [—0.03,0.07]. Hence, the region of stability of the stable solution
in between F, from C to P and the solid part of By, is extremely narrow, and
as a result it is very difficult to observe a stable solution with a contribution
of only the Ys-amplitude; this is why these solid parts of Fz, and By, are not
shown in Fig. 3. Nevertheless, we detected the onset of the Ys-amplitude in
an experiment for p = 0.02; it is represented by the upside-down triangle.
Notice further that the curves By, and By, extend past the points N and K,
respectively, where they indicate that the corresponding modal amplitude
starts to contribute to an unstable solution.

As the excitation is close to the cable’s second natural frequency, Zs-
amplitudes persist in all the coupled responses that were observed. The
bifurcation analysis shows three types of coupled responses, namely (Z2, Z1),
(Z2, Y1), and (Z, Y1,Y3). For each value of p, there is a value of A/L above
which, only Y;-amplitudes will be present in addition to the Zs-amplitudes.
In Fig. 3 these values are represented by the By,-branch point bifurcation
curve where the stable Zy-solutions meet (75, Y7)-solutions. For u larger than
0.0036 on the right from the point N in Figs. 3 and 4, this transition is not
direct and there are other coupled amplitudes that could be excited. Between
N and K, the transition is to (Zs, Y7, Ys)-amplitudes, while to the right
of point K, first it will be (Zs, Z;) and then again (Zs, Y], Y2)-amplitudes.
To clarify these transitions in Fig. 5, the stability diagram of (Zs, Y7, Ys)-
stable solutions in (i, A/L)-plane is shown. It shows the borders of stable
(Z3, Y1, Ys)-solutions in the same way as Fig. 3 shows the borders of stable Zy-
solutions. The transition from (Z3, Y7, Ys)-amplitudes to (Z,, Y )-amplitudes
occur at the branch point curve B!. The latter arises from the same point N
shown in Fig. 3. Also, in Fig. 5 the following bifurcation curves can be seen:

e ! and F? fold bifurcation curves and H' Hopf bifurcation curve, at
which unstable (Zs, Y7, Y2)-solutions meet stable (Zs, Y7, Y2)-solutions;

e B? branch point bifurcation curve, at which stable (Z,, Y5)-solutions
meet stable (Z3, Y], Ys)-solutions, where the first ones of these arises
from By,-branch point curve, see Fig. 4.

In Fig. 5 the points N, M and () represent the borders between the different
bifurcation curves. Point R is cusp bifurcation point but because it is so close
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to H', it looks like H' meets F? at R (which in the sense of this stability
diagram could be assumed). Note the response amplitudes in (Zs, Y7, Ys)-
mode is not a pure 2:1 internal resonance. However, this type of internal
resonance is a transition between the response in pure Z, modal amplitudes
and 2:1 internal resonance between Z, and (Zs, Y7)-amplitudes, that occur
for A/L large enough.

At the points N, K, P, M, () different bifurcation curves cross each other,
which indicates a bifurcation of codimension two [34]. As a result the nature
of at least one of the bifurcation curves switches from involving a stable an
unstable solution.

Overall, the bifurcation curves Fy,, Bz, By, and By, from Fig. 3 and
Fig. 4 also, B, B2, F'', F? and H' from Fig. 5 form a consistent stability per-
spective in the (u, A/L)-plane that explains the nature of the transition from
pure Zy-response to coupled (Zy, Y;)-response. Finally, the overall solution
structure can be represented by surfaces of solutions over the (u, A/L)-plane,
when an appropriate norm is used to represent the respective solutions; how-
ever this is beyond the scope of this paper.

4.1. Amplitudes of vibration

The stability diagrams in the (u, A/L)-plane shown in Figs. 4 and 5
feature quite a number of bifurcation curves in the region of positive p. Some
of these bifurcations give rise to additional branches of stable solutions, which
are connected to the known stable solutions discussed above by branches of
unstable solutions.

In Figs. 3 and 4 all the bifurcation loci that could be detected when
the pure Zy-solutions are continued are shown. In [13, 14] the Z,-bifurcation
curves were obtained by using properties of the Jacobian matrix of the vector
field, defined by the cable differential equations. Later the curves were ex-
amined experimentally and in simulations. In the present paper the coupled
solutions that arise from the branch points of the non-coupled Z,-solutions
are followed by AUTO, as was done in [22|. In the present work, different
types of solution branches were detected, the amplitudes that different modes
add to the response were defined and then, the displacements of the cable
were predicted.

These solution branches that involve non-zero out-of-plane solutions, can
be seen in Fig. 6 which shows the one-parameter bifurcation diagram of
Egs. (15) for fixed o = 0.02; here solution branches, computed by numerical
continuation in A/ L, are represented by the norm || N|| = \/Z7 + Z3 + Y2 + Y2/L

12



(which measures contributions from all four modal amplitudes of the cable).
Stable parts of solution branches are shown as black curves, and unstable
parts as grey curves. The continuation started for A/L by following the solu-
tion curve [y, where only the second in-plane amplitude Z5 has a contribution
to the vibration response of the cable. At A/L approximately 1.56 x 10~ a
branch point B; to another solution branch [, is detected; beyond this point
the solution curve [; becomes unstable, while the branch [, is stable, where
the first in-plane amplitude Z; has a contribution as well as Z,. At A/L
approximately 1.8781 x 10~* there is branch point B, where Iy and [; meet
and branch [; regains stability until the fold point F} is reached.

In terms of the dynamics of the cable, moving A/L beyond 2.0372 x 10~*
there is a jump to another stable solution branch, namely the branch I3
where we find responses from all the modal amplitudes considered except
Z1. The shaded area in Fig. 5 is made by branches, like I3, that involve
stable (Zs, Y7, Ys)-solutions. At A/L approximately 3.9989 x 10~* a branch
point Bj is detected where 3 meets the solution branch [, along which the
first out-of-plane modal amplitude Y; is coupled with Z,. This branch is
stable until the branch leaves the A/L range of interest in Fig. 6. Note that
the stable branches [3 and [ are connected to the stable branches [; and [5 via
branches of unstable solutions. More specifically, there is an unstable part
of I; that extends beyond the fold point F; and past a second fold point F5.
Near F5 one finds a branch point bifurcation to an unstable branch where the
modal amplitudes Y5 and Z, contribute. This unstable branch is connected
to the stable I3 by the Hopf bifurcation point H € H*' (see Fig. 5). Finally,
the unstable part of Iy, to the left of the branch point By € B! extends
past a fold bifurcation and connects to the former branch. The fact that all
of these branches are connected allowed us to continue them (irrespective
of their stability), yielding an consistent one-parameter bifurcation diagram.
It is a particular strength of the continuation approach that new branches
of (stable) solutions can be found in a systematic fashion. It should be
noted that Fig. 6 shows the solution branches that are connected to the
zero excitation amplitude solution of Eqs. (15) for fixed p. In the region of
interest, other solutions may be found that do not intersect with the ones
shown in Fig. 6.

In order to facilitate the physical interpretation of the stable branches,
Fig. 7 shows the contributions of 75, 71, Y5, and Y; modal amplitudes to the
stable branches [,—{4 in separate panels. This allows us to see clearly how
much a particular modal amplitude contributes to the cable steady-state
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vibration response. As Fig. 7a shows, the modal amplitude Z, contributes
to all stable branches; as A/L grows, the response of the cable in Z5 grows
until the fold point F} is reached. The contributions of all other modal
amplitudes are zero, except for a small contribution of 7Z; along the branch
lo; see Fig. 7Tb. As was mentioned before, when A/L is increased beyond F},
the only available stable solutions is that on branch I3, which features strong
contributions from Y3 and Yi; see Figs. 7c and d. The contribution of Y; then
vanishes when the branch point Bj is reached, and along the branch [, only
the modal amplitudes Z5 and Y7 are active. Notice that at the frequency
considered p = 0.02, except along the small branch [, the modal amplitude
7 does not contribute to the stable dynamics of the cable.

4.2. Comparison between analysis and experiment

The experimental parameters are given in [14]. The Young’s modulus
of the steel cable was very slightly modified from the standard assumued
value of 210GPa to best fit the first in-plane natural frequency resulting in
a modified value of214GPa being used. This resulted in excellent agreement
of the first four natural frequencies in both planes, the first two of which in
each plane are shown in Table 2.

In the experiments we measure the amplitudes of the in-plane displace-
ment w and the out-of-plane displacement v at the mid-point and the quarter
point of the cable, we define their maximums with W and V respectively.
Each test has been repeated five times to ensure accurate measurement. The
measurement variation is in the order of 1-2%.

To allow for a comparison between our bifurcation analysis and experi-
mental data we show in Fig. 8 the stable branches in terms of the maximal
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displacements as given by

(5)- e 2o g (ha). o
v (%,A) _ %(A) (),

% (g,A) - %(A), where

% (g,A) —0 2651%,

% (g,A) ~ 0.19062.

Here we take into account the contribution of the quasi-static motion w, (2),
produced by the actuator of the cable [14, 19] to the in-plane displacement w.
Furthermore, because we consider the maximum displacement, low damping,
and no phase lag in response of the cable, in the equation for w,, we use A/L
instead of §/L = (A/L) cos(§2t).

The in-plane quarter- and mid-point displacements along the stable branches
l1—l4 are shown in Figs. 8a and b, and their out-of-plane quarter- and mid-
point displacements in Fig. 8c and d. The white circles are measured exper-
imental data points. For each data point the experiment was started at the
rest position of the cable for the associated value of the excitation amplitude
A/L. After transients died down, the in-plane and out-of-plane amplitudes
at the quarter- and mid-points of the cable were measured; the maximum
excitation amplitude that was considered was A/L = 2.33 x 1074, In all
panels of Fig. 8 the measured amplitudes agree very well with the predicted
values. In particular, the measurements shows that, up to the fold point £
at A/L ~ 2.0372 x 107%, the cable indeed displays practically zero in-plane
amplitude at the mid point L/2, as well as no out-of-plane dynamics.

What is more, beyond the point I} the cable response changes its nature
and out-of-plane modal amplitudes start contributing. Indeed, we measured
nonzero out-of-plane amplitudes V(L/4) and V(L/2), as well as a consid-
erably higher amplitude at W (L/4). This experimental observation agrees
well with the theoretical prediction. However, the prediction of the actual

15



measured amplitudes is less accurate for A/L > 2.0372 x 107%, that is,
for solutions along the stable branch [3. While V(L/4) is predicted quite
accurately, there is some mismatch in the measurements of W (L/4) and
V' (L/2); notice further that there is also a measured amplitude contribution
of W(L/2). We remark that, when out-of-plane dynamics of the response
is present as well, determining the displacement at the in-plane and out-of-
plane amplitudes at quarter- and mid-points reliably over a long period of
time is quite a bit harder. We suspect that this difficulty may arise because
of a weak interaction between the out-of-plane Yi-amplitude and quasi-static
in-plane motion. Notice further that the experiment needs to be run longer
to allow transients to die down, which also introduces an additional level of
uncertainly concerning the exact measured amplitudes.

In spite of these technical difficulties, overall Fig. 8 clearly shows that
the displacements of the cable, even for A/L above Fi, are predicted well
by the stable parts of solution branches found by numerical continuation for
the averaged system (15) representing the vibration response of the vertically
excited cable. More specifically, with the continuation technique it is possible
to predict accurately when the response of the cable changes from uncoupled
in-plane modal amplitude dynamics to dynamics with a contribution of the
out-of plane modal amplitudes. Moreover, it is possible to predict from
the four-mode model exactly which modal amplitudes are involved in these
coupled responses and with which amplitudes.

5. Conclusions

In this paper we have presented a study of the nonlinear vibration of an
inclined cable that is excited at its lower attachment point. This type of
cable vibration is of interest because inclined cables are used to support the
bridge deck in cable-stay bridges. Previous work had identified the lower
stability boundaries for out-of-plane, sway motion in terms of the excitation
amplitude and frequency, and validated them experimentally. In this paper
we extended this work by (i) determining the stability diagram in the plane
of excitation amplitude versus detuning, (ii) showing how additional stable
branches are connected to known solutions via unstable branches, and (ii)
deriving quantitative amplitude information for the modal displacements of
the cable. These theoretical results are in good agreement with experimental
measurements that go further than those in [13, 14] in that they also show
the computed modal displacements of the cable.
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Figure Captions

Figure 1: Schematic representation of an inclined cable with vertical
input motion at the lower attachement point.

Figure 2: Apparatus for inclined cable experiment: a) side view, b)
looking along cable from bottom, c) hydraulic actuator and load cell.
The cable is 5.4 m long, has diameter 0.00078 m and is inclined at 22.6°.
The lead masses are applied to increase the cable mass for more real-
istic scaling. Deck excitation is simulated with the hydraulic actuator
positioned at the lower attachment point.

Figure 3: Partial stability diagram of Eqs. (15) in the (4, A/L)-plane
showing a curve F, of fold bifurcations of Z; and curves By, and By,
of branch points of Z; and Y7, respectively. Also shown are measured
data points; here O indicates the largest A/L-value where only Z; was
detected, A\ where Y; was detected for the first time, & where Z; was
detected for the first time, and V that Y5 was detected.

Figure 4: Stability diagram of Eqgs. (15) in the (u, A/L)-plane showing
all bifurcation loci of Z;-mode response: the curve F, of fold bifurca-
tions and curves By, By, and By, of branch point bifurcations; along
solid parts of curves the bifurcation concerns a stable solutions and
along dashed parts it concerns an unstable solution. The measured
data points are repeated from Figure 3; panel b) is an enlargement for
small A/L.

Figure 5: Partial stability diagram of Egs. (15) in the (u, A/L)-plane
showing the following bifurcation curves of (Zs, Y7, Y2)-solutions:

F*' and F? - fold bifurcation curves, H' - Hopf point bifurcation curve.
At F', F? and H', unstable (Zs, Y7, Y5)-solutions meet stable (Z,, Y7, Y3)-
solutions. B! and B? - branch point bifurcation curves. At B!, stable
(Zs, Y1, Ya)-solutions meet stable (Zs, Y7)-solutions, while at B?, stable
(Z3, Ya)-solutions meet stable (Zs, Y7, Y3)-solutions.

Also, shown are the points N, M, Q, R which represent the borders
between the different bifurcation curves.

Figure 6: One-parameter bifurcation diagram of Egs. (15) for u =
0.02, showing solution branches represented by their norm ||N|| =
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2P+ Z3+ Y2+ Y2/L for AJL € [0,6 x 107%]. The stable solu-
tion branches 1~ (black curves) are connected via unstable solution
branches (grey curves), which meet at bifurcation points; specifically,
The By, Bs, and Bs are branch points (denoted by W), F; and F; are
fold points (denoted by ®), and H is a Hopf bifurcation point (denoted by *).

Figure 7: Mode contributions to the stable branches (-1, from Figure 6,
showing the contribution of a) Z,, b) Z1, ¢) Ys, and d) Y;.

Figure 8: Comparison of theoretical maximum displacement with ex-
perimental measurments for 4 = 0.02. Shown are measured data points
of displacement (denoted by O), together with theoretical values along the sta-
ble branches l;-14 of a) w(%)/L, b) w(%)/L, ¢) v(%)/L, and d) v(%)/L.
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Table 1: Cable parameters; note that B, ¢ and s are nondimensional.

N, [HZ2/m)]

ng [1/(81?(1)2}

wy [rad/s|

B

§

K

1.04x1074

5.19x107%

20.4852

0.2939

0.002

0.0234
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Table 2: Cable natural frequencies.

wyr [rad/s] | wye [rad/s] | w1 [rad/s] | ws.e [rad/s|
Experimental | 3.25 - 2w 6.51-27 3.34 - 27 6.51 - 27
Theoretical 3.25- 27 6.50 - 27 3.33 - 27 6.50 - 27
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Figure 1: Schematic representation of an inclined cable with vertical input motion at the
lower attachement point.
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(b)

Figure 2: Apparatus for inclined cable experiment: a) side view, b) looking along cable
from bottom, ¢) hydraulic actuator and load cell. The cable is 5.4 m long, has diameter
0.00078 m and is inclined at 22.6°. The lead masses are applied to increase the cable
mass for more realistic scaling. Deck excitation is simulated with the hydraulic actuator
positioned at the lower attachment point.
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Figure 3: Partial stability diagram of Eqs. (15) in the (u, A/L)-plane showing a curve
Fy, of fold bifurcations of Zs and curves Bz, and By, of branch points of Z; and Y7,
respectively. Also shown are experimental data points; here O indicates the largest A/L-
value where only Zs was detected, /A where Y; was detected for the first time, & where
71 was detected for the first time, and V that Y> was detected.

27



=~

0.5F

I

0.5F

. ¢ . . D)
-0.02 0 0.02 0.04 0.06 W

Figure 4: Stability diagram of Egs. (15) in the (i, A/L)-plane showing all bifurcation loci
of Zy-mode response: the curve Fy, of fold bifurcations and curves Byz,, By, and By,
of branch point bifurcations; along solid parts of curves the bifurcation concerns a stable
solutions and along dashed parts it concerns an unstable solution. The experimental data
points are repeated from Figure 3; panel b) is an enlargement for small A/L.

28



x10-3

A

L

1F
0.5F

F2
N
l:l L i Il
0 0.02 0.04 0.08 H

Figure 5: Partial stability diagram of Eqgs. (15) in the (u, A/L)-plane showing the fol-
lowing bifurcation curves of (Zs, Y, Y2)-solutions: F'' and F? - fold bifurcation curves,
H' - Hopf point bifurcation curve, at F'*, F2 and H*, unstable (Z2, Y1, Ya)-solutions meet
stable (Za, Y1, Ys)-solutions; B! and B? - branch point bifurcation curves, at B!, stable
(Z5,Y1, Ys)-solutions meet stable (Zs, Y7 )-solutions, while at B2, stable (Z3, Y3)-solutions
meet stable (Zs, Y7, Y2)-solutions. Also, shown are the points N, M, Q, R which represent
the borders between the different bifurcation curves.

29



x 1073

x 1074

N
>

Figure 6: One-parameter bifurcation diagram of Egs. (15) for u = 0.02, showing solution
branches represented by their norm ||N|| = \/Z? + Z3 + Y? + Y2 /L for A/L € [0,6 x

10*4], The stable solution branches [1-14 (black curves) are connected via unstable solution

branches (grey curves), which meet at bifurcation points; specifically, The By, Ba, and B3
are branch points (denoted by W), F| and Fb are fold points (denoted by @), and H is a
Hopf bifurcation point (denoted by ).
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Figure 7: Mode contributions to the stable branches l;—4 from Figure 6 (1 = 0.02),
showing the contribution of a) Zs, b) Z1, ¢) Ya, and d) Y;.
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Figure 8: Comparison of theoretical maximum displacement with experimental measur-
ments for yu = 0.02. Shown are measured data points of displacement (denoted by O),
together with theoretical values along the stable branches l;-14 of a) W (£)/L, b) W(%)/L,
0) V()/L. and d) V(4)/L.
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