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Vibration problems are naturally formulated with second-order equations of mo-
tion. When the vibration problem is nonlinear in nature, using normal form analysis
currently requires that the second-order equations of motion be put into first-order
form. In this paper we demonstrate that normal form analysis can be carried out
on the second-order equations of motion. In addition, for forced, damped, nonlinear
vibration problems we show that the invariance properties of the first- and second-
order transforms differ. This leads to the conclusion that using the second-order
approach can be advantageous for forced, damped, nonlinear vibration problems.

Keywords: nonlinear vibration, normal form analysis

1. Introduction

This paper concerns a class of discrete nonlinear vibration problems for which the
equations of motion can be written as

M%+ Cx 4+ Kx+Tp(x,%,1) = P,r, (1.1)

where x is the N x 1 displacement vector, M, C' and K are the N x N mass,
damping and stiffness matrices respectively, I',, is a N x 1 vector of nonlinear terms
— which are assumed to be small — N is the number of degrees of freedom in the
system and an overdot represents differentiation with respect to time. The forcing
is assumed to be sinusoidal and is represented by P,r, where P, is a N x 2 forcing
amplitude matrix and r = {r, 7,,}7 is a 2 x 1 forcing vector with r, = /! and
rm = e 1 where Q is the forcing frequency, i = /=1 and the subscripts p and m
indicate the sign of the exponential term, plus and minus respectively.

The motivation for this paper comes from the problem of how to transform
(1.1) into a simpler form. In particular, the linearized, unforced, version of (1.1),
with I'; = 0 and P, = 0, can be transformed (with constraints) into a series of
uncoupled equations relating to the normal modes of vibration of the system. Each
of the resulting modes of vibration relates to the dominant physical configuration
of the system at the corresponding natural frequency. This link with the physical
problem allows the linear modal model to be used in combination with experimental
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2 S.A. Neild and D.J. Wagg

techniques, particularly for what has now become known as modal testing (Ewins
2000).

Historically, for the nonlinear problem, there has been considerable work carried
out on trying to identify nonlinear normal modes of vibration — a recent summary
of this work is given by Kerschen et. al. (2006) — see also Boivin et al. and Nayfeh et
al. An alternative, but related approach is to search for a simplifying transformation
of (1.1) using the method of normal forms. Comprehensive discussions of normal
form theory can be found in Arnold, 1988 and Murdock, 2002, and a survey of
recent developments is given by Stolovitch, 2009. Normal forms have been used
to treat a range of dynamics problems, see for example Hsu (1983), Fredriksson &
Nordmark (2000), Pelinovsky & Yang (2002), Leung & Zhang (2003) and Mayer, et.
al. (2004). Mathematical aspects of the normal form technique have been studied
by many authors, including Walcher (1993), Bruno & Walcher (1994) and Cicogna,
(1997)

In vibration problems, the relationship between system resonances and external
forcing is particularly important. The method of normal forms has already been
applied to forced nonlinear vibration problems, with the system equations expressed
in first-order form (Jezequel & Lamarque (1991), Nayfeh (2000)). In this paper we
apply the method of normal forms to forced nonlinear vibration problems with
the system equations expressed in second-order form. We demonstrate that the
invariance properties of the first- and second-order transforms differ. The invariance
properties of the second-order transform leads to simpler transformed equations,
which are therefore easier to solve. Two other modifications are described; (i) a
matrix formulation is used to simplify the normal form process, and (ii) a new
formula is derived for computing the terms in the Lie bracket.

These later two modifications have already been applied to first-order systems
(see Wagg & Neild (2009)) and are summarized in the next section which describes
the first-order normal form approach. In §3 the method of normal forms for equa-
tions in second-order form is presented. Section 4 compares the normal form tech-
niques (for equations in first- and second-order form) for a single-degree-of-freedom
system and then in §5 the method of normal forms, using equations in second-order
form, is applied to a two degree-of-freedom system. Conclusions are drawn in §6.

2. Method of normal forms for first-order systems
(a) General formulation

The first step is to rewrite the second-order equation of motion, (1.1), in first-
order form, using y = [xT %xT]7 (y has size 2N x 1), to give

y=Ay +1y(y,r) + Pyr, (2.1)
where
0 I 0 0
A= u—k M ] Ty ’{ —M T, (y,r) } By = { M-'P, } '
(2.2)

Now a linear modal transformation y = ®q can be applied, where ® is the
2N x 2N eigenvector matrix relating to A. The corresponding eigenvalues of A are
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Second-order normal forms 3

placed in the leading diagonal of a matrix forming the diagonal matrix A where, A =
®~1Ad. Note that the leading diagonal values of A will be termed A1, Ao, ..., Aaon.
Applying this linear modal transformation results in an equation of motion of the
form

a=Aq+Ty(qr) + Py, (2.3)

where the nonlinear and direct forcing terms are given by
y(q,r) = @'y (Pq,r), P, =3 'P,. (2.4)

The aim of the normal form method is to apply transformations resulting in an
equation in the form @ = Au+T',(u,r)+ P,r where the nonlinear and forcing terms
(T (u,r) and P,r respectively) have a simpler form than the original equations. In
addition, we seek the property that with the selection of a simple trial solutions for
u, Un, = Upert for u,, n =1,2,...,2N, leads to total cancellation of the time de-
pendent exponential terms. This results in a time-independent, spatial, relationship
which is usually referred to as the vibration modes of the system.

(b) Dealing with forcing terms

To simplify the forcing terms, we apply a transform of the form
q=v+[er, (2.5)
where [e] has size 2N x 2. Substituting this transformation into (2.3) gives
v+ [e]Wr = Av + Ale]r + Ty (v + [e]r, 1) + P,r, (2.6)

where W is a 2 x 2 diagonal matrix with the first and second leading diagonal terms
being iQ2 and —i) respectively. By grouping the r terms, (2.6) can be rewritten as

v=Av+TI,(v,r)+ Pr, (2.7)

where
Ly(v,r) =T4(v +[e]r,r) and P, = P, + Ale] — [e]W, (2.8)

which represents the relationship between the forcing matrices and the transforma-
tion matrix [e]. Equation (2.8) can be simplified by writing [é]+ P, = P, , where the
element in the n'® row (n = 1,2...2N) and k*" column (k = 1,2) of [¢], &, 4 can be
related to the corresponding element in [e] (e, k) using e, x = €n /(=M +12871Q).
It can be seen that when  is close to the nt® eigenvalue, resulting in —\,, +i%*~1Q ~
0, en r becomes large, and these are called near-resonance terms.

To deal with the resonant (or near resonant) terms, all those in [e] are set to
zero, with the corresponding terms in P, set to equal those in P,, see for example
Jezequel & Lamarque (1991). All the non-resonance terms in [e] are set such that
[é] = P, for these terms with the corresponding terms in P, set to zero. As a result,
only resonant terms remain in the forcing term P,r and, as will be seen in the
example discussed in §4 of the paper, setting the response frequencies w;.; to match
the relevant resonant forcing frequency leads to the desired cancellation of the time
varying exponential terms.

Article submitted to Royal Society



4 S.A. Neild and D.J. Wagg

Now the nonlinear term in the linear normal form representation of the equation
of motion, (2.7), is partitioned into a series of functions with reduced levels of
significance

Vv =Av+Iy(v,r)+ P,r where D,(v,r)=cfi(v,r)+fa(v,r) +---. (2.9)

Here ¢ is a small parameter and may be thought of as a bookkeeping aid — it allows
the tracking of the significance of each term.
The fourth step is to apply a further nonlinear transform, from v to u, given by

v=u+h(u,r) where h(u,r)=chs(u,r)+c?ha(u,r)+ - . (2.10)

This is often referred to as the near-identity transform (see for example Nayfeh
1993). Applying this, as yet unspecified, transform results in the dynamic equation

u=Au+T,(ur)+P,r where TI'y(ur)=ecgi(ur)+ega(ur)+---. (2.11)

Ideally T'y(u,r) = 0 such that the dynamic equation is linear. However, due to
the fact that the transformation is a near-identity transform, this is not usually
possible, and the aim is to simplify (2.11) as much as possible without invalidating
the assumption that the transformation is near-identity, such that h(u,r) is of order
€l

Eliminating v from (2.9) using (2.10), and then replacing 0 using (2.11) gives

d
egi(u,r) + P,r + EE (hi(u,r)) =

(2.12)
eAhi(u,r) +efi(u+chy + -+ ,r) + Por+ 0(62).
Now, equating the zeroth and first-order powers of ¢ gives:
0 P,r = P,r, (2.13)
e gi(u,r) + % (hi(u,r)) = Ahy(u,r) + f1(u,r), (2.14)

where a Taylor series expansion has been applied to f(u,r) such that f;(u+ chy +
-,r) = fi(u,r) + O(e!). Conditions for the higher order ¢ terms can also be
derived, however these are not considered here.

In considering the e! equation, it is assumed that the response frequency for each
state, wr1,wra . .. w2y (which may be positive or negative) for states ui, us. .. uan
respectively, is close to the natural frequency of the state. A 2N x 2N diagonal
response matrix T is defined in which the n'® diagonal element is iw,., for n =
1,2...2N, note that 1 = Tu. This allows the eigenvalue matrix A to be written in
terms of the response frequency matrix T and a detuning matrix A; A =T + A,
where the n'® diagonal element of A is A, — iwy,. The system is assumed to be
weakly nonlinear, so that for small damping values A\, ~ iwy, where wy, is the
undamped natural frequency of the n*® mode, and thus A is small — order €', which
on substitution in (2.14) leads to an €? term. This allows (2.14), the €' equation,
to be written as

gi(u,r) + % (hi(u,r)) = Thy(u,r) + f1(u,r) (2.15)
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Second-order normal forms 5

Now a vector u*, which contains all the combinations of u, (n = 1,2...2N), r,
and r,, terms that are present in fy(u, r) and is of length L, is defined. This allows
the f1(u,r), g1(u,r) and hy(u,r) terms to be expressed in matrix form

fi(u,r) = [flu*(u,r), gi(u,r)=[aJu*(u,r), hi(ur)=I[pu"(ur), (2.16)
where matrices [f], [a] and [b] are of size 2N x L. Substituting these expressions

into (2.15) gives

[a]u*(u, 1) + [b}% (u*(u,r)) — Yhlu*(u,r) = [flu*(u,r). (2.17)
(¢) A formula for the Lie bracket terms

Considering the ¢*" element in u* to have the form

2N

Wl = e pmen H usen, (2.18)
n=1

where the sg¢,, mg, and myg,, constants indicate the power of the w,, r, and ry,

terms respectively in u}. The ¢** element of the derivative vector in (2.17) may be

written as

d .y Oul . Oul oN [ ul .
= () = 05, — 08, + 53, {W’:lwmun} (2.19)
= i |y — )@+ 5, {snrn}] i (2.20)

where the relationship 1 = Tu has been used to write du,/dt = iwypu, for 1 <
n < 2N. Since the derivative of uj with respect to time is linearly related to uj,
from (2.20), the derivative of u* may be written as

d * A ]

T (u*(u,r)) = Tu*(u,r) (2.21)

where T is a diagonal matrix with, using (2.20), the ¢ diagonal element being

given by
2N

Yo=1i|(mep—mum)Q+ > {smwenl}] - (2.22)

n=1

Using this information, (2.17) may now be rewritten as

(la] + BT — TBl)u” (w,x) = [f]u”(u,v) (2.23)
Considering non-zero u*(u, r) solutions to this equation gives

= /]~ lal, where [ = [T — T[], (2.24)

where [b] is the Lie bracket. Using (2.22), the element in the n'® row and £*" column
of matrix [b], b, ¢ may be written as

2N
bn,é =i (mlp - m[m)Q + Z {Slnwrn} — Wrn, bn,l = Bn,ébn,l (225)

n=1
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6 S.A. Neild and D.J. Wagg

where b,, ¢ is the element in the n'' row and ¢! column of matrix [b].

It is desirable for g(u,r) to be as simplified as possible, therefore [a] should
contain as many zeros as possible. The restriction on this is that the transformation
must be near-identity, and so the terms in h(u,r) and therefore [b] must be small.
In the ideal case [a] = [0] is selected as an initial assumption. Then (2.24) and
(2.25) can be used to find the by, ; elements using by, ¢ = fy¢/Bn,c. However, this is
not possible if a 3, ¢ value is zero or approximately zero for the system parameters
under consideration. In both these cases b, ¢ is set to zero and, to satisfy (2.24),
Qn,e = fn,e is selected.

The key feature of the dynamic equation

a=Au+egi(u,r)+ P,r (2.26)

where €2 terms and higher have been assumed to be insignificant, is that only
resonant terms exist within gy and P, and therefore the equation can be solved
exactly using a trial solution where each term in u takes the form w,, = U,e'“m?.
This will be seen when an example is considered in §4.

3. Normal forms applied to second-order nonlinear vibration
problems

In the following analysis the same notation has been adopted as for the first-order
normal form to highlight the similar steps used in the two methods, however it
must be noted that the content and size of the various matrices and functions are
different.

(a) General formulation

For the second-order problem, standard linear modal theory can be used to first
transform (1.1) into a form in which the undamped linear terms are decoupled.
This is done using the undamped linear modes, which are the modes based on
the equation % + M ~!Kx = 0. This may be rewritten in eigen form as w2, p, =
M~'Kp, where py is the n'" modeshape (and eigenvector of M 1K) and w2,
is the corresponding square of the natural frequency (and eigenvalue). Now the
N x N matrix of modeshapes ®, in which the n'" column is pn, and the diagonal
eigenvalue matrix A, in which the n*® diagonal element is A, = w2, are defined.
Equation (1.1) may now be written as

(@TM®)g + (2T CP)q + (T K®)q + 7T, (®q, @q,r) = &7 P,r, (3.1)
in which x = ®q. Rearranging, and noting that by definition M 'K ® = ®A, gives
q+Aq+T14(q,q,r) = Pr, (3.2)
where
Lg(a,q,1) = (0T M) 10T (COG + Iy(0q, 04, 1)) (33)
P, = (®"Md)" 10T P,.

The damping terms, which are assumed to be small, are included within the non-
linear function I'y.
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Second-order normal forms 7

Now the transformation designed to simplify the forcing terms, in a similar way
to that used to generate the Jordan form for the first-order method, is applied.
Substituting the transform (2.5), where [e] now has size N x 2, into (3.2) gives

V+ [e]WWr + Av + Ale]r + Iy (v + [e]r, ¥V + [e]WTr,r) = P,r, (3.4)

where, as with the first order method, W is a 2 x 2 diagonal matrix with the first
and second diagonal values being i2 and —i€2 respectively. This may be written in
the form

v+ Av+Ty(v,v,r) = P,r, (3.5)

where the relationship between the nonlinear terms is
Ly(v,Vv,r) =Tg(v+ [e]r, v + [e]WTr, 1) (3.6)
and the relationship between the forcing and the transformation matrix is
e]WW + Ale] + P, =P, ~ [é] + P, =P, (3.7)

where the n'" row (n =1,2...N) and k* column (k = 1,2) of [¢] may be written
in terms of the corresponding element in [e] using e, j = €,/ (w2, — Q?) (recalling
that A\, = w?2,). As with the first-order method, when the forcing is close to a
natural frequency then the corresponding terms in [e] become large. These terms,
which are near-resonant terms, are set to zero in [e] and the corresponding terms
in P, are set to equal those in P, to satisfy (3.7). All the other terms in [e] are set
such that for these terms [é] = P, and the corresponding terms in P, are set to
Z€ro.

(b) Near-identity transform for second-order case

Now the near-identity transform can be applied using

V+ AV +Ty(v,v,r) = Por; Ty(v,v,r) = efi(v,v,r) + 2fa(v,v,r) +...,(3.8)
v=u+h(u,u,r); h(u,u,r)=chy(u,a,r)+ ha(u,a,r) +...,(3.9)
i+ Au+Ty,(ua,r)=Pr; T,(u,ir)=cgi(u,a,r)+cga(u,i,r) +..(3.10)

where (3.8) is the current dynamic equation, (3.9) is the transformation and (3.10)
is the resulting dynamic equation. Combining these equations to eliminate v gives

2

P,(r) — eg1(u,q,r) (hi(u,0,r)) + eAhy(u,u,r))+

+E@
d
efi(u+ehy + ""ﬁ+65(h1) +..,1) = Py(r) + O(e?)
(3.11)

Applying a Taylor series expansion to f; and equating zeroth and first-order powers
of ¢ gives

e P.,r = P,r, (3.12)

e gi(u,u,r) — g—; (hy(u,u,r)) = Ahy(u,a,r) + f1(u,u,r), (3.13)
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8 S.A. Neild and D.J. Wagg

To satisfy the ¢! equation the form of the response of the states wi,us...uy
needs to be considered. As with the first-order normal form approach the v.— u
transform removes non-resonant nonlinear terms resulting in a response for each
state uy,us...un at a single response frequency, wy1,wya, . ..w,n. However since
the differential equation in u is second-order the trial solutions for the states must
consist of both a positive and a negative complex exponential term. The state vector
u is therefore split into components u = up + up, allowing the trial solutions for
the nth state to be

Upp = (Unefie"/Q)ei“""t, Uy, = (Uneie"/Q)efi“’""t (3.14)

for 1 <n < N where w,, are positive. The amplitude of the wu,,,, states, U,el’" /2,
are the complex conjugate of the uy), states to ensure that u is real. This is required
to ensure that the ¥ representation of q and therefore x are real for all time
(noting that for the second-order representation the modeshape matrix, @, is real,
in contrast to the first-order representation, and so q must be real to ensure real x).
For convenience the trial solutions have been written such that u,, = Uy, cos(w,nt —
0,). The diagonal, N x N, response matrix T is now defined in which the n'"
diagonal element is iw,,. This allows the time derivatives of u to be written as;
u="T(up — um) and i = TY (up + um).

Now a frequency detuning matrix, A, is introduced to simplify the analysis
close to resonance. It is assumed that the response frequencies are close to the
linear undamped natural frequencies of the modes, wrp &~ wWppn. The n™ diagonal
elements in the eigenvalue matrix A and the square of the response matrix Y'Y are
w2, and —w?, respectively allows the detuning matrix to be written A = =YY + A,
where the n'? diagonal element of A is w2,, — w?,. Since wy, & Wy, for all n, A is
small — order ¢! and so the ¢! order equation, (3.13) may be written as

d2
gi(u,u,r) — 7o) (hi(u,u,r)) = —TThi(u,a,r) + f1(u,a,r). (3.15)

As with the first-order method, a vector u* (of length L) is defined, however
here it contains all the combinations of upp, Unm (1 < n < N), 7, and 7y, terms
that are present in fq(u,r). Using u = up + um and a = T(up — um), allows the
following matrix expressions to be defined

fi(u,u,r) =[flu*(up, um,r),
g1(u,a,r) =[aju” (up, Um,r), (3.16)
hl (u7 1:1, I‘) :[b]u* (upa Um, I‘)7
where [f], [a] and [b] are of size N x L. Substituting (3.16) into (3.13) gives
d2

aJu (p, tan, 1)~ 0] 5

(u" (Up, U, 1)) = ~TY D] (U, U, 1)+ [0 (Up, U, 7).
(3.17)

(¢) Formula for the Lie bracket terms in the second-order case

Considering the /** element in u*, and expressing it in terms of its states gives

N
* _ . Mup, _my Senp, Sp
uy =1y Cryim H {unp upbnm L (3.18)
n=1
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Second-order normal forms 9

Using up = Tup and Gy = —Tup, the time derivative of the ™ element of vector
u* may be written as
N
d ouy ,. ou; , . ou; . ou, , .
T (u)) = 51“:; (iQ)r, + ﬁ(*lQ)Tm + T; {(’Mjp (iwrn)tnp + aun‘;n (flwm)unm}
N
= i (mfp - mf'm)Q + Z {(anp - sﬁnm)w’l‘n}:| ’u’z7 (319)
n=1

Since the derivative of uj with respect to time is linearly related to uj, from
(3.19), the second derivative of u* may be written as
d2
de?
where T is diagonal matrix of size N x N in which, using (3.19), the /" diagonal
element is given by

(0" (up, U, 1)) = TTu" (Up, Upy, T) (3.20)

N
Ye=1i|(mep—mm)Q+ Y {(senp — Stnm)wrn}| - (3.21)

n=1

Using this information, (3.17) may now be rewritten as

([a] — [B]TY + TY[B])u* (up, Um, ) = [flu*(up, U, r). (3.22)
Considering non-zero u*(u, r) solutions to this equation gives
[b] = [f] — [a], where [b] =—[B]TT+TYb]. (3.23)
Using (3.21), the element in the n'" row and ¢** column of matrix [b], l;nj may be
written as
N 2
En,f = (mZp - Tnf'm)g2 + Z {(anp - Sﬁnm)w'rn} - UJ,Q«TL bn,f = Bn,ﬁbn,f
n=1

(3.24)

where b, ¢ is the element in the n'" row and £** column of matrix [b].
As with the first-order formulation, [a] and [b] can now be selected by considering
the size of the 8, ¢ terms. It is desirable for [a] to contain as many zeros as possible
so that the dynamic equation in u is as simple as possible. Therefore most of the
terms in [a] are set to zero and (3.23) is satisfied by setting by, ¢ = fn,¢/Bn,¢ for each
element. The exception to this is where 3, ¢ is zero or close to zero. In these cases

the corresponding [b] values are set to zero and [a] = [f] is selected.

4. A single-degree-of-freedom Dufling oscillator

As a first example, a single-degree-of-freedom Duffing oscillator is considered. The
equation of motion is given by
&+ 20w + wir + az® = Fcos(Q + ¢). (4.1)

where the system has light damping, the nonlinearity is small and the forcing is
close to resonance, Q &~ w,. The forcing may be rewritten in the form shown in
(1.1), Fcos(Qt + ¢) = P,r where P, = [p p] and p = Fe'?/2 (where p is the
complex conjugate of p).

Article submitted to Royal Society



10 S.A. Neild and D.J. Wagg

(a) First-Order Normal Forms

The first-order normal form for (4.1) has already been derived by Jezequel &
Lamarque (1991). Using either their approach, or the modified approach set out in
§2 the near identity transformation equation can be used to find the response x.
The component of this response at the forcing frequency, zq, is given by

3o
2iQ(A — A2)
3aU3
1612\ — A2)

To =ui +uz + (ufuz + uru3) + €127 + €217
(4.2)

U
= _(Tp +Tm) +

5 (rp +7Tm) + €1,2rm + €e217p.

This is based on the relationships calculated from the equations for the dynamics

3ai(er s — ea1)U? 4+ 2i(A1 — Ao) (M1 + X\o)U = 4Fsin(¢),  (4.3)
3aU% 4+ 9a(er 2 4 e2.1)U% = 2(A\1 — Xa)(—2iQ + A1 — A\o)U = 4F cos(¢),  (4.4)
which can be solved numerically to give the response amplitude U and relative

phase ¢ for given forping frequencies ). Note that for all these equations the trial
solution u; = (U/2)e*** and uy = (U/2)e™* have been used. We note also that

1 0 ﬁ] 1 [p 0 }
e] = _ ! 1 and P, = I I 4.5
[] )\1—)\2 |: ﬁ 0 )\1—)\2 0 —p ( )

where \; = Ay = wWn(—C+1i4/1 — (?) are the cigenvalues of the first-order linearized
system.

(b) Second-Order Normal Forms

As a one degree-of-freedom system the Duffing oscillator represented in (4.1) is
already in modal form. The transformation x = ®q is therefore a unity transforma-
tion (® = 1 with the corresponding cigenvalue A = w?2) and (4.1) may be written
in the form of (3.2),  + Aq + I'y(q, q,r) = P,r, where

l‘q(q’ q7 I‘) = 2Cwnq + Olqd

Pi—Po=[p 5 ]. (4.6)

Now the transform q = v + [e]r, (2.5), is applied. Using €, = (w2, — Q%)enk
(n =1, k = 1,2) it can be seen that, with the forcing close to resonance, both
terms in [e] become large compared to [€] indicating resonance terms. Therefore
[e] =[0 0] is selected and P, = P, is used to cnsure that (3.7) is satisfied. Since
[e] =10 0], (3.6) gives I'y(v,v,r) = Ty(v,v,r).

Provided the damping and nonlinearity are small, using (3.9) allows ', (v, v,r) =
ef1 (v, v,r) to be defined, giving

f1(v,v,r) = 2w,V + av®, (4.7)

where to indicate small terms the notation v = ed and ¢ = ¢ have been introduced.
The vector u* is defined such than the terms contained in u* allow f;(u, u,r) to be
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Second-order normal forms 11

written as f1(up + Um, Up + Um,r) = [flu*(Up, um,r), (3.16). So [f] and u* may
be written as

2i§wnwﬂ Uip
—2iwpwr1 Uim
A 3
T a * ulp
— u* = . 4.8
/] 34 ’ Ui, Uim (4.8)

3 ulpu%m

é U,

Note that in deriving these expressions the relationship a = T(up — um) is used.
Now [b] may be calculated using (3.24) to give

0011
0012

T _ 8(.031 b1,3
[b} - 0b174
Ob1,5

Sw?‘lbl,g

(4.9)

Note that if the detuning approximation from (3.13) to (3.15) had not been made
the 8w31~ terms would be 9w?; — w? indicating the potential for 1:3 resonance. To

satisfy [b] = [f] — [a], (3.23), while ensuring that the near-identity transform is
small, results in [a] and [b] matrices (defined in (3.16))

[ 2iéwnwrl
fQiCAwnw,«l
T 0 T
= b
] N
3&
0

Using (3.9), (3.10) and (3.16) allows the second-order differential equation in u
(0 + Au + ¢[aJu* = P,r) and the u — v transform (v = u + ¢[bju*) to be written

(4.10)

=32
8(.0,,.1

_ o O~ OO

as
ﬂlp + ﬂlm + wi(ulp + ulm) + 2icwnw'rl(ulp - ulm) (4 11)
+ 3au1pUim (U1p + Utm) = Prp + Prm .
and o
V1 = Ulp + Uim + —Q(U?p +ul,) (4.12)
8w'r1

respectively, noting that P, = P, (2.13) and A = w2. Adopting the trial solution
uip = (U)2)e = (U/2)r, and uiy, = (U/2)e " = (U/2)r, where U is real,
these may be written as

3

(w2 — QU cos(Qt) — 2¢w,QU sin(Qt) + sa cos(Qt) = Fcos(Qt + ¢) (4.13)

and
3

w = U cos(Qt) + ;2—521 cos(30t) (4.14)
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12 S.A. Neild and D.J. Wagg

where © = q = v = v;. Finally (4.13) can be harmonically balanced ezactly — as
the higher frequency terms have been removed in the transform from v to u to give
the time-independent equations

(W2 — QMU + = Fcos(¢), (4.15)
2w, QU = Fsin(e). (4.16)

The phase between the forcing and the response can be eliminated by squaring and
adding (4.15) and (4.16) to give a quadratic in Q2

F2
Q'+ (4{%}3 — gozU2 — Qwi) 02+ (wﬁ + §04U2w,21 + goz2U4

5 = - W) =0. (4.17)

This equation can be used to find valid solutions for forcing frequency given a range
of response amplitudes U and a forcing amplitude F' allowing the calculation of the
frequency response curve for U.

(¢) Comparison of the two solutions

Figure 1 (a) shows the amplitude of response at frequency €2 calculated using a
fourth order Runge-Kutta time-stepping simulation and the first- and second-order
normal forms. The forcing frequency of the simulation was slowly increased to follow
the upper branch of the solution and then slowly decreased from the maximum
frequency to follow the lower branch. For the first-order normal form solution the
frequency at which the peak response occurs is approximately 0.8% different to
that calculated using the time-stepping. However, the second-order normal form
solution gives an even closer approximation to the time-stepping simulation. Figure
1 (b) shows that the second-order normal form solution also captures the response
at three times the forcing frequency with a high degree of accuracy.

The difference in the first- and second-order methods comes from a difference in
their invariance properties. We explain the mechanism for this with the following
remarks:

Remark 1: In first-order form the eigenvalue decomposition results in the nat-
ural frequencies w, being split into two eigenvalue components iw, and —iw,
(wn(—C¢ £iy/1 —¢?) if damping is included). In contrast, the second-order form
has eigenvalues of w2 for each wy,.

Remark 2: The result of this is that the trial solutions for the first-order form
applied to a one-degree-of freedom system are u, = (U/2)e“t for n = 1,2 and
wWr1 = —wra = §), whereas for the second-order form its u,, = (U/2)(el“rnt 4 e~ iwrnt)
for n =1 and w1 = Q.

Remark 3: Consider an unforced, undamped system with I', consisting of just a
small linear detuning term

i+wiz+ T, =0, I, =wiaz, (4.18)
where o is order €. In this case N =1, L = 2 and
= 0 2iwy, ba ~
[bl1st-order = — i, bs 0 and  [Mlopgeorder = [ 0 0]  (4.19)
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Figure 1. A comparison between timestepping and normal form methods for computing
the amplitude of response of the single-degree-of-freedom Duffing example over a fre-
quency range spanning the natural frequency. Parameter values F' =0.03, o =1, w, =1
and ¢ =0.03. (a) response at the forcing frequency showing numerical timestepping (dia-
monds), first-order normal form (dashed line) and second-order normal form (solid line)
(b) response at three times the forcing frequencies, i.e. the response of the third harmonic,
showing numerical timestepping (diamonds) and second-order normal form (solid line).

So, for the second-order approach, the near-identity transform is invariant. (For the
near-identity transform v = u + ¢[bju* to be invariant, b; = 0, Vi). As a result, the
response frequency is exact; wy1 = wy(1 + ) where a = (2 + 2).

Remark 4: The reason for this invariance is that for the second-order form the
response of the n'® mode at the n'® response frequency is completely captured by
the n™ dynamic equation in u (the n*® row of the matrix equation 3.10), none
of the response is contained in the transform: When transforming from v to u,
the terms that remain in the n*® dynamic equation are those which have a time-
dependant component of the form et or e~ “r? once the trial solutions have
been made (these terms can be exactly harmonically balanced due to the form of
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14 S.A. Neild and D.J. Wagg

the trial solution, see Remark 2). This can be seen by considering the equation
defining resonant terms (i.e. terms that remain in the dynamic equation) which
is (mep — Mem )2 + 22[:1 {(senp — Senm)wrn} = ftwyry (3.24) — note the £+ on the
right-hand side.

Remark 5: In contrast, even for this example which contains no sub- or super-
harmonics, the first-order near-identity transform is not invariant. For the first-
order form, during the v to u transform, the terms that remain in the n'" dy-
namic equation are those which have a time-dependant component of the form
el“rnt once the trial solutions have been made. The terms with a et time-
dependant component once the trial solutions have been made must be removed
by the transform. In line with this, the equation defining the resonant terms is
(mep — mem )2 + Ziﬁl {$tnwrn} = wrn (2.25) — note the lack of + on the right-
hand side.

Remark 6: The first-order transform for the linear detuning example results in

< iwnp, 0 i uq B B a
u= [ 0 —iw, }u—i— % { . }, T = uy+ug 4an”(u1+ug), (4.20)

where w,1 = —wy2 is the natural frequency including small linear detuning. From the
dynamic equation the response frequency is predicted to be w1 = wy, (1 +v+72/2),
which is accurate to order €' but not exact. Taking a detuning of v = 0.075, similar
to that observed in the Duffing example, results in a frequency error of 0.26%, which
is of the same order as the error in Figure 1.

This indicates where the two transform techniques loose equivalence, leading
to a difference in accuracy when simulating resonant behaviour. We note that the
second-order method has further advantages:

Remark 7: A key operation in the transformation is to define [b]. This is done
using (2.24), (2.25) for the first-order and (3.23), (3.24) for the second-order. The
dimension of [b] is 2N x L in the first-order case but only N x L in the second-order
case.

Remark 8: The frequency response curve for U in the second-order case can be
found from (4.17). Iowever, in the case of the first-order normal form the relative
phase cannot be easily eliminated since it is contained within the e; 2 and e
terms as well as the terms on the right-hand side of (4.3) and (4.4). The frequency
response curve for U, for a given F, must therefore be solved numerically using
these equations.

5. Two degree-of-freedom oscillator
Consider the following two degree-of-freedom oscillator, written in modal form
41+ 2Cwnd1 + Wit + aqigz = f1cos(Qt) (5.1)
G2 + 2¢(2wn)d2 + (2wn)2q1 + Bqige = fo cos().

The forcing is close to the first mode natural frequency of the linearised system,
Q ~ w,, and for the linearised system, the second mode has twice the natural
frequency of the first mode. It is assumed that the nonlinear and damping terms
are small.
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This can be written as the matrix modal equation used for the second-order
normal forms, given by (3.2), by defining

2
_Ja _|ws O
q_{fm}’ A_[O 4w3}’

2¢wnq1 + aqiqe } P _ [ f1/2 f1/2 }
4wnGe + Barge |7 1 f2/2 fa/2 |7
o0t

(5.3)
Py(a,é,r) = {

with r, = €t and r,, =

Now the forcing transform given in (2.5), @ = v + [e]r, is applied to give a
dynamic equation in the form of (3.5), v + Av + I', = P,r. The matrix [e] and
the forcing function in (3.5), P,r, are selected using (3.7) and the relationship
énk = (w2, — Q?)en k. Noting that ;1 and e; 2 would be near-resonant terms if

the corresponding terms in P, were set to zero since the forcing is close to the first
natural frequency, [e] and P, are set to

_[o o0 _| A/2 f/2
A=|p ) n=| IR (5.4)
where E = f5/[2(4w? — Q2)]. To finish the forcing transformation the nonlinear
term I',(v,V,r) in the resulting dynamic equation, (3.5), must be derived using
(3.6) giving
o 2Cwn 01 + oy (v2 + Erp + Erp,)

Lo(v,v,1) = { Al (B9 + EQir, — EQiry,) + Bv1 (v + Ery + Erpy) (5:5)

The near-identity transform, (3.9), is now derived. Firstly, since the damping
and nonlinearity are small, using (3.9) gives I',(v, v,r) = efy (v, v,r) where

. 2wnB1 + Gvy(va + Erp + Ery,)
¢ _ ) T'p 5.6
l(V, v, I‘) { 4CUJTL(U2 —+ EQi’r’p — EQ]’I’m) + 5’[}1(1)2 + ET’p + E?”m) ( )

where to indicate small terms the book-keeping notation a = ea, g = /3 and
¢ = ¢¢ have been used. Using the substitution u = up + up, allows the nonlinear
term fy(u, @, r) to be written in the form given in (3.16), where [f] and u* are

2 wpwyii 0
~ . Ulp
—2CWnwrii R 0 Uim
0 4§c:)nw,«2i Uy
0 —4lwnwrai U
0 45%(2& r
0 —Alw, QEi o
T _ a o4 x _ U1pU2p
1 = & 3 , W= Uiplam (5.7)
aE BE U1pTp
aF BE U1pTm
& B u1mU2p
& B UImU2m
ar BE UimTp
&F éE UlmTm
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By considering each element in u* taking the form given in (3.18), the 2 x 14 matrix

[b] can be calculated using (3.24) giving

(0)b1,1
(0)b1,2
(W72~2 - 31)1)1,3
(W72~2 - W31)b1,4
(2% —wl)bis
(% —wh)bie

(2wr1 + wr2)wrab 7
(—2wr1 + wr2)wrab g
(Q + QWTl)flbl,g
(Q — 2wr1)Qb1,10
(—2wr1 + wr2)wr2bi 11
(2wr1 + wr2)wrabi 12
(Q — 2w,1) 0113
(2 + 2w,1)Q1 14

(Wi — win)ba1
(Wi — wih)b2,2
(0)ba,3
(0)b2,4
(€ —win)bas
(2 —wi)bae
(wrl + 2wr2)wr1b2,7
(Wr1 — 2wr2)wr1ba g
(2 +wr)? = wiz)bayo
(=92 + wr1)? = wi)b2.10
(Wr1 — 2wy2)wr1b2 11
(Wr1 + 2wr2)wr1b2,12
(-2 +wn)? — wio)b213
((Q+wr)? = whh)b2 14

Now matrices [a] and [b], which represent the order ¢! terms in the dynamic
equation in terms of u and the transform from v to u respectively (as defined in
(2.16)), can be derived. Recall that the expression [b] = [f] — [a], (2.24), must be
satisfied with the desire that as many clements in [a] as possible are zero, while
ensuring that the terms in [b] are small, non-resonant terms. In deriving these
matrices the response frequencies must be selected. Firstly, since the forcing is
close to the first natural frequency, the first response frequency may be written as
wr1 = (). Secondly, since the undamped linearised natural frequency for the second
mode is twice that of the first mode, and recalling that the response frequencies are
assumed to be close to the natural frequencies, the second response frequency may
be written as wye = 2w,1 = 2. Noting that [b] is related to [b] via (5.8), it can be
seen that the terms [1,1],[1,2],[1,5],[1,6],[1,8],[1,11],[2,3],[2,4], [2,9], [2, 14] are
resonant and so for these terms a,; must be set to f,; giving

26w, O 0o ] 0 0

—2(w, Qi 0 0 0
0 8Cwn Ol 0 0
0 —8Cwn Qi 0 0
0 0 0 —4¢w,NEi/3
0 0 0 4CwnQF/3
0 0 1 /8 B/5

o] = & 0 O3 I —5/3 » (59)
0 BE aL/3 0
0 0 —aF —BE/4
é 0 0 —5/3
0 0 /8 B/5
0 0 —aF —BE/4
L0 BE | | GE/3 0 |
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Figure 2. A comparison between timestepping and normal form methods for computing
the amplitude of response for the two-degree-of-freedom example. This plot shows the
results for the first mode of vibration. The parameter values are f; =0.004, f>=0.01,
a =3, 8 =10, w, =1, ¢ =0.025. (a) response at the forcing frequency (i.e. close to the
natural frequency of this mode), showing numerical timestepping (diamonds) compared
with second-order normal form (solid line) (b) response at twice the forcing frequency,
showing numerical timestepping (diamonds) and second-order normal form (solid line).
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Figure 3. A comparison between timestepping and normal form methods for computing
the amplitude of response for the two-degree-of-freedom example. This plot shows the
results for the second mode of vibration. The parameter values are fi; =0.004, f>=0.01,
a =3, 8 =10, w, =1, ¢ =0.025. (a) response at the forcing frequency, showing numer-
ical timestepping (diamonds) compared with second-order normal form (solid line) (b)
response at twice the forcing frequency (i.e. close to the natural frequency of this mode),
showing numerical timestepping (diamonds) and second-order normal form (solid line).

With reference to (3.10) and (3.16), the dynamic equations in terms of u may
now be written as

il + 2Cwn ity + wiug + a(urpliom + Uimusy) = %(rp + Tm) (5.10)

iig + 4Cwn s + 4wlug + BE(u1pTp + UtmTm) = 0 (5.11)

where the relationships 1 = Y(u, — u,,) with the n'" diagonal element in matrix

T being iwypn, wr1 = Q, wre =20, a =€q, f = eﬁ and ( = ef have been used.
Substituting the trial solutions, given in (3.14), into these equations and then

balancing the harmonic terms, cos(Q2t —61) and sin(Qt—06;) for (5.10) and cos(2Q¢t —
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62) and sin(2Q¢ — 65) for (5.11) gives exact relationships

Ui {(wi -0+ a% cos(201 — 92)] = ficos(6h), (5.12)
. Us . .
U, |:2§an + ()Z? Sln(201 — 92)] = f1 sm(@l), (513)
for (5.10) and
4(0.)2 - 92)U2 = *BEUl COS(GQ - 01), (514)
SCWTLQUQ = */BEUl Sin(ez — 91) (515)

for (5.11). These equations can be solved numerically, or recognising that the re-
sponse in u; will be significantly larger than that in us (since the frequency of uy
is wr1 = Q whereas its wyo = 2Q for uz) an approximate solution can be found in
two steps. Firstly, a crude approximation to the response of mode one is found by
ignoring the nonlinear terms in (5.12) and (5.13), and eliminating the phase lag 61
to give the amplitude of response

f
V(02 =922 + (20w Q)2

For the second mode, where the nonlinear terms can be viewed as a forcing, the
approximate amplitude of response can be found using

o BEU;

4y/(W2 — Q%)% + (2(wn2)?
along with (5.16). In addition, for this case, it can be shown that 26; —0 = 7. Using
these approximate relationships, a more accurate expression for the U; amplitude

may be found by reconsidering (5.12) and (5.13), including the nonlinear terms. In
this case, the expression for U is

Ul";‘

(5.16)

U,

(5.17)

fi
VZ — 2 = alz/2) + ()2

where Uy is calculated from (5.17).

The response of the two modes at frequencies other than w,, can be calculated
by considering the transformation from u to q. Using (2.5), (3.9) and (3.16), this
may be written as

Uy ~ (5.18)

q=u+eblu*(up, um,r) + [e]r (5.19)

Using this equation it can be seen that the response of mode n at the response
frequency, w,,, is represented entirely by wu,,, as noted in Remark 4, so that

q1,0 = U1, G220 = U2, (5.20)

where the first subscript of ¢ indicates the mode number and the second subscript
indicates that the expression is just the portion of the total modal response con-
taining the terms at this frequency. Whereas the response of the mode 2 at, for
example, the forcing frequency comes from [b] and [e]

ACwnE.

g2,0=E(rp+mm) — 3—QI(Tp — Tm) — %(umugm + Urmugp) (5.21)
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and the response of mode 1 at twice the forcing frequency comes from [b]
1,20 = Ea3Q? (UipTp + UimTm)- (5.22)

Figures 2 and 3 shows the predicted response amplitudes of modes one and
two respectively, using the normal forms technique compared with the results of
time-stepping simulations. It can be seen that the agreement is very good.
Remark 9: In additional to demonstrating the accuracy of the normal form tech-
nique, this example shows that although the transformed dynamic equation in u
contains just the responses at the response frequencies, wy, for the n* mode, the
response of the second mode is predicted accurately. Compared with the averaging
technique (see Tondl et al. 2000; Verhulst 1996 with its implementation on a multi-
mode system demonstrated in Gonzalez-Buelga et al. 2008), for example, which
assumes a response of each mode just at the response frequencies of the form

q1(t) = qus(t) sin(wr1t) +q1c(t) cos(wrt),  g2(t) = gas(t) sin(wrat) +goc(t) cos(wrat),

(5.23)
where w1 = Q2 and wyo = 29 predicts zero response of the second mode in the
steady state. The reason for this discrepancy is that the mechanism for generating
a response in the second mode at twice the forcing frequency is a frequency mixing
of the first mode response at the forcing frequency with the second mode response at
the forcing frequency — which, using averaging, is assumed to be zero (the response
is just taken to be at twice the forcing frequency). This mechanism is captured in the
normal forms technique due to the forcing transformation q = v+ [e]r, (2.5), which
was applied prior to the normal form transformation. Using this transformation, the
first mode was unaffected ¢; = v; however the second mode response was altered
g2 = vy + E(rp + rm), see (5.4). The term E(r, + ), where E = fo/[2(4w2 —
0?)], represents the linear undamped response of the second mode at the forcing
frequency. Inclusion of this response at the forcing frequency resulted in the forcing
term —BL(w1prp + UimTm) Present in the equation for the dynamics of the second
mode in u, see (5.11), and hence results in the response of the second mode at twice
the forcing frequency.

6. Conclusions

When a vibration problem is nonlinear in nature, (1.1), using normal form analysis
has, up until now, required that the second-order equations of motion be put into
first-order form. In this paper we have demonstrated how a normal form analysis
can be carried out for vibration problems of the type expressed as (1.1). We have
shown that the invariance properties of the first- and second-order transforms differ,
becuase in the first-order approach terms are split. As a result using the second-
order approach has a simpler form and leads to improved accuracy when simulation
resonant behaviour.
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