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Abstract

In this paper we derive a frequency detuning method for multi-degree-
of-freedom oscillators with nonlinear stiffness. This approach includes a
matrix of detuning parameters which are used to model the amplitude
dependent variation in resonant frequencies for the system. As a result,
we compare three different approximations for modelling the affect of the
nonlinear stiffness on the linearized frequency of the system. In each case
the response of the primary resonances can be captured with the same
level of accuracy. However harmonic and subharmonic responses away
from the primary response are captured with significant differences in
accuracy. The detuning analysis is carried out using a normal form tech-
nique, and the analytical results are compared with numerical simulations
of the response. Two examples are considered, the second of which is a
two degree-of-freedom oscillator with cubic stiffnesses.

1 Introduction

In this paper a generalised frequency detuning method is derived for multi-
degree-of-freedom oscillators with nonlinear stiffness. We assume that the os-
cillator is forced sinusoidally and has viscous damping. This type of oscillator
system will have a series of primary resonant frequencies and, because of the
nonlinear terms, a series of secondary resonances at harmonic, subharmonic and
potentially also combination frequencies. In this study we are concerned with
finding an approximate solution which captures all these responses with the
highest level of accuracy.

We will consider three different definitions of linearized frequency of the



system, using either (i) tangent stiffness, (ii) nonlinear resonant frequency, or
(iii) frequency detuning. For unforced systems, resonant and detuning are the
same, but for forced systems (with light damping), these two cases will normally
be slightly different. What we show in the examples is that in each case the
response of the primary resonance can be captured with the same level of ac-
curacy. However harmonic and subharmonic responses away from the primary
response show considerable variations in accuracy. For the examples considered
here the nonlinear resonant frequency approach gives the most accurate results,
and we derive a generalised method based on a normal form approach which
can be applied to both single- and multi-degree-of-freedom oscillators.

In terms of practical motivation, resonances between primary and/or sec-
ondary resonant frequencies are important for a wide range of physical appli-
cations — see for example [1, 2, 3, 4, 5, 6, 7]. Typically models of the these
type of systems are in the form of weakly nonlinear oscillators. Analytical ap-
proximations, such as harmonic balance, averaging, multiple scales and other
perturbation techniques are often used to study these type of oscillator systems
[8, 9, 10]. In the case where there is more than a single-degree-of-freedom, anal-
ysis of this type becomes significantly more complex, because for each primary
resonance, there can be multiple secondary resonances [8, 11]. For example, in
the case of musical instruments, an integer (or near integer) relationship be-
tween primary and secondary resonances is deliberately exploited to give an
instrument its characteristic sound quality [1].

The analytical method we use here a version of normal forms [12, 13, 14, 15,
16]. Normal forms is usually applied to first-order nonlinear oscillator equations
and an assessment of their accuracy is given in [17]. Here we consider a recently
developed formulation that can be applied directly to second-order nonlinear os-
cillators directly, termed second-order normal forms [18, 19]. The second-order
normal form technique has the useful property that the nonlinear transform
removes non-resonant terms for each mode, rather than for each state, as is
the case using the first-order formulation. These non-resonant terms are those
in the equation of motion that result in harmonics of the primary resonance,
which is either the natural frequency (in the case of the unforced system) or of
the dominant response frequency (in the case of forced systems). Transforming
these terms out of the equations of motion, for the nth mode, allows the use of a
trial solution of the form U, cos(w,nt— ¢,,) to solve the equation exactly, thereby
removing the need for a harmonic balance type approximation. By generalising
this approach to include a detuning matrix, we can obtain excellent approximate
solutions for the behaviour of both the primary and secondary resonances.

In Section 2 the generalised detuning method is derived based on the second-
order normal form technique from [18], and the effect of the selection of linearised
frequency has on the predicted response is analysed. Then in Section 3, the first
example we give is of a single degree-of-freedom Dufling oscillator, which is used
to shown that the detuning approximation is equivalent to linearising the system
using the resonant frequency. In Section 4 a two mode system is introduced and
it is shown that linearising the system using the resonant frequencies gives better
results than using the detuning approximation in calculating the non-resonant



response of the system. To assess the accuracy of the detuning approximation
we introduce a method of finding the second-order normal form to accuracy &2
and consider the small assumptions made in the derivation.

2 The generalised detuning method

Consider the N degree-of-freedom system in terms of the N x 1 displacement
vector x
Mx + Cx + Kx + K,y (x) = P,r, (1)

where M, C and K are the N x N mass, damping and stiffness matrices respec-
tively. The nonlinear stiffness terms are represented by the N x 1 vector K,;.
Sinusoidal forcing is included as P,r, where P, is a N x 2 forcing amplitude
matrix and r = {r, 7, }7 is a 2x 1 forcing vector with 7, = e!* and r,,, = e ¥,
The subscripts p and m indicate the sign of the complex exponential term, plus
and minus respectively.

In the following analysis both the nonlinear and damping terms are assumed
to be small. As a result, these terms can be grouped together to give

Mx 4+ Kx + N, (x,%x) = P,r, (2)

where N, = K,;;(x) + Cx.

In this approach three transformations are applied to (2). Firstly a linear
modal transformation, based on the unforced linear equivalent system, is ap-
plied: x — q. This results in coupled modal equations of motion. The second
and third transformations, a forcing transformation: q — v and a nonlinear
near-identity transformation: v — u respectively, remove the non-resonant
terms from each of these modal equations of motion. These transformations
allow the resulting dynamic equation in u to be solved exactly using a trial
solution for the nth mode of w,, = U, cos(wynt — ¢p,). Information regarding
the modal response at other frequencies is contained within the transformation
equation relating u to q.

Before considering each of these transformations, it is helpful to define some
frequency terms that are used in the following discussion:

wyyn, the response frequency of the nth mode.
Q the external forcing frequency.
woy, the undamped nonlinear resonant frequency of the nth mode.

W~ a linearised approximation to the the undamped nonlinear resonant fre-
quency of the nth mode.

wpnn the undamped natural frequency of the nth mode of the linearised system
(i.e. when all nonlinear terms are set to zero).

waen the natural frequency of the nth mode used in the normal form calculation
(see section 2.3).



Considering a one degree-of-freedom system, if there is near-resonant forcing
then we can write w, = Q. Alternatively if there is no forcing or damping then
we have w, = wg. Note that the subscript n is dropped when discussing a one
degree-of-freedom system.

2.1 Linear modal transformation: x — q

First the undamped linear terms are decoupled using a linear modal transform.
Consider the unforced linear form of the equation of motion, X + M~'Kx = 0.
Eigenvector analysis can be used to find the mode shape (i.e. eigenvector) matrix
® and the corresponding natural frequency diagonal matrix A (via eigenvalues),
in which the nth diagonal element is w?2,, — the square of the nth linear undamped
natrual frequency.

By applying the transform x = ®q, where q are the modal co-ordinates,
and noting that by definition M~1K® = ®A, (2) may be written as

4+ Aq+ Ny(q,q) = P,r, 3)
where
Ny(q,q) = (2"M®) '®" N, (®q, ®q)

4
P,=(®"M®) 'o’P,. )

Here the original equations of motion were for discrete locations, as are typical
when using FE or spring-mass models. If, instead, the Galerkin technique is
applied to partial differential equations, the resulting equations of motion are
in the form of (3), so this first transformation is unnecessary.

The diagonal matrix A consists of the (squared) natural frequencies of the
linear system (when Ny is set to zero). However these are not normally the best
estimate of the frequencies of the nonlinear system. This raises the question:
what is the effect of linearising the system using different approximations to
natural frequencies, such as the resonant response frequencies? To assess this
we introduce a diagonal matrix of linearised natural frequencies for the nonlinear
system, A, with A, = A+ I' and with the nth diagonal element in A, and
T being w?,, and 7, respectively, where 7, will be used as a general frequency

yn
shift parameter. With this the equation for the system dynamics becomes

d+Aq+(Ny(q,q) —Tq) =Pgr, A;=A+T ()

Now the small nonlinear term is given by N,(q,q) — I'q, note that I'q is small
as the new frequencies are close to the linear natural frequencies.

2.2 Force transformation: q — v

The second transform is also linear and, for each mode, removes any non-
resonant forcing terms in the modal equation of motion and places them in
the q — v transform

q=v+ter, (6)



where e has size IV x 2. Substituting this transformation into the modal equation
of motion, (5), gives

V+A,v+ (Ny(v,v) —Tv) =P,r, (7)

where the relationships between the pre- and post-transformed nonlinear and
forcing terms are

Ny(v,v) =Ny(v +er,v+eWr). (8)
&+P, =P, with &=eWW + Ae, (9)

respectively. Here W is a 2x 2 diagonal matrix with the first and second diagonal
values being i€ and —if2 respectively. Also the nth row (n =1,2...N) and kth
column (k = 1,2) of € may be written in terms of the corresponding element in
e using

Enk = én,k/(win — Qz). (10)
Note that this relationship and hence the transform is unaffected by the intro-
duction of I.

For each element in turn, one of two options can now be selected to satisfy
(9) and hence define the transform matrix e. Considering the (n, k)th element,
if the forcing is close to the natural frequency (i.e. Q ~ wp,) then the forcing
term is kept in the equation of motion by writing

Option F1: e, =0, Pynr =Pk, (11)

where the n, k subscripts indicates the (n, k)th element. If, however, the (n, k)th
element corresponds to a forcing term that is not approximately equal to reso-
nance then it is transformed out of the equation of motion by writing

Option F2: e, = Pq,mk/(wfm - QQ), Pyni =0, (12)

using (10).

2.3 Nonlinear near-identity transformation: v — u

The third transformation removes the non-resonant terms from the equations
of motion and places them in a nonlinear transformation. This results in (7)
being transformed into a form that can be solved using a single frequency trial
solution for each mode, thereby eliminating the need for a harmonic balance
type approximation.

To keep track of the relative size of the different terms, small terms are
marked with ¢ which may be seen as a book-keeping aid [20]. As the nonlinear
and damping terms are small, N, can be expressed as a power series of ¢ starting
with an ¢! term. In addition the term arising from choice of linearised natural
frequencies, I'v, has been taken to be small, order ¢, giving

V4 A,v+ (Ny(v,v) —=T'v) =P,r (13)

with Ny (v, V) = eny1 +2np2 + ..., I'v = —en,,(v),



The near-identity nonlinear transform that is applied to this equation is
v =u+h(u,1) +¢ch,, withh(u,a)=ch; +c’hy+.... (14)

Note that there is no € term as the transform is near-identity and therefore h
is small. This transform results in the equations of motion in terms of u

u+A u+Ny(u,a)+en,, = Pyr, with Ny(u, o) = eng,g +e%n,+.... (15)

Again the nonlinear terms have been expressed as a power series of ¢ starting
with ! to reflect the assumption that they are small. Note also that the terms
h,(u) and n,,(u) has been introduced to account for additional terms due to
the ny(v) term in (13).

The state vector v can be eliminated from (13) using (14) and then i can
be eliminated using (15), to produce

(hi(u, @) + hy (w))+

eA [y (u,0)) + by ()] + e[y (u, @) + s (w)] = Por + O(),

) d
Pur —e[ny(u, 1) + ny, (a)] + 6@

(16)

where a Taylor series expansion has been applied to the terms n,; and n,,.
Equating the zero and first-order powers of € produces

gl P,r=P,r, (17)
el nyi(u,n) - % (hi(u, 1)) = Ayhy(u, 1) + ny(u, ), (18)
S ()~ T (s () = Ay (W) + s (). (19)

Here the ! equation has been split into two parts, the second dealing with the
n,, terms and mirrored terms in the transform and resulting dynamic equation.
The &2 relationship is derived in the Appendix.

The €° equation is satisfied by setting P, = P,. To satisfy the ¢! equa-
tion, (18), the form of the response needs to be considered. Since the near-
identity transform removes non-resonant nonlinear terms from the equations
of motion, the response for each state uj,us...un is at a single response fre-
quency, wyi,wr2, - . .wyrn. The differential equation in u is second-order, so trial
solutions for the states must consist of both positive and negative complex ex-
ponential terms giving u = u, + u,,, with the nth row of this vector expression
being written as

Up = Upp+Unm : Unp = (Upe 97 /2)elwrnt -y = (U,eifn /2)e !, (20)

This results in the form of solution w, = U, cos(wynt — ¢,) and therefore U,
is taken to be real to ensure a real response to the real excitation. The time
derivatives of u may now be written as 1 = Y (u, — u,,) and it = Y?(u, +u,,),
where nth diagonal element of diagonal matrix Y is iw,,-



It is at this stage that a detuning approximation is normally applied (see
[[18]], for more details). The approximation is based on the fact that the re-
sponse of u, will be close to the nth natural frequency, i.e wy, =~ wy, (since
only the resonant forcing terms are present u). Therefore as the nth diago-
nal elements of matrices A, and Y? are wg and —w?, respectively, it can be
seen that these matrices are similar (but opposite sign). Hence we can write
A, = —Y% + O(e') such that A, can be replaced by —X? in the order &'
equation, (18). It is this detuning approximation that we will discuss in this
paper.

Here we will be more general and replace A, with A% in (18) giving

d2
n,i(u,a,r) — FTe] (hy(u,,r)) = A%hy(u, 0, 1) + ny(u, 0, ), (21)
where A? = A, if no detuning is applied or A? = —Y? if the detuning ap-

2

proximation is used. We define w;

Az

To proceed, a vector u* (of length L) is specified. It contains all the combi-
nations of wyp, Upm (1 <n < N), rp and 7y, terms that are present in n,; (u, ),
allowing the expressions

», as the nth element in the diagonal matrix

n,1(u, ) =n;;u" (Up, Um),
ny(u, ) =n);u”*(up, Um), (22)
h; (u, 1) =hju*(up, um),

;k)'ylv
n}; and hj are as yet unknown. To simplify (21), the general form of the oth

element in vector u* is written as

to be defined, where n n;; and hj are coeflicient matrices of size N x L and

N
uz _ ,r,;nu)rmem H {uflfz:wufl%m} , (23)
n=1
where m and s are powers for each of the terms. Substituting this expression
along with (22) into (21) results in the relationship
n,; =n; — hj. (24)

In this equation ff{ is size N x L and the element in the nth row and /th column
of hj is related to the same element in hj via

N

iﬁ,n,e = (mfp - mfm)Q + Z {(anp - anm)wm} - win hin,l = ﬁl,n,fh’lf,n,é’

n=1
) (25)
where we define 31 ,,,¢ which relates hin.l to hﬂf.n,e- Please see [18, 19, 21] for
more details of the derivation. Here we use the already defined w, parameter
such that, either w., = w,yn if no detuning is applied or wgn, = wyy for the
detuning case.



Now nj; and hj can be selected by considering the size of the 3, terms.
There are two options to satisfy (24). Considering each term in turn, where

possible the term in nj; is set to zero:

Option N1 (non-resonant terms): ny;,, =0, hi, =0y, 0/B1ne,

' ' ' (26)
in which, for example, ny,; , , is the (n,£) element in ny,;. However, in the cases
where the term in u* is near-resonant, 1, is small and hence hq , ¢ would be
large if this option is selected. To avoid breaking the near-identity constraint,
these near-resonant terms are kept in the equation of motion by setting

Option N2 (near-resonant terms): Ny, =741 0 Pl ne=0, (27)

and as a result these terms are unaffected by the transform. Note that the
selection of the resonant and non-resonant term is not effected by the detuning
approximation or the selection of I' as these are all small effects.

Now considering the &' relationship between the terms relating directly to
v, (19), we can see that the form of the equation is identical to (18). Therefore,
the method for selecting h,, and n,, is identical to that for selecting h; and
nyi. As the form of n,, is known, we can write n}; and u*, where n,, = nj;u*
(as in (22)) to give

s _ | ™M 0 0 . _ T
n,; = 0 0 _,72 _’72 s u = [ Ulp Ulm U2p U2m ] ’ (28)

for the case where the system has two degrees-of-freedom. By inspection of
these expressions and (25), it can be seen that all the non-zero terms in nj,;
equate to resonant terms. This means that we can write n,, = n,, and h, =0
and simplify the near-identity nonlinear transform and transformed dynamics
to

v =u+ h(u,0), (29)
i+ Au+ Ny (u,a) = P,r. (30)

It is important to note that the dynamic equation is identical to that for the
case where I' = 0 and the transform equation has the same form, however the
individual non-zero terms in h are different due to wg, being used in (25) and
hence (26).

By adopting this method, the equation of motion for u can be solved ex-
actly using the trial solution in the form w, = U, cos(wynt — ¢y,) for the nth
mode. As the dynamic equation in u is unchanged by detuning or the use of
I, the predicted resonant response is independent of these effects. Information
regarding the response of each mode at other frequencies is contained within
the transform equation v .= u + h(u,ua). Here the detuning approximation
and the use of I' have the same effect, namely they alter wg, which appears
in (25). Hence they both alter the magnitude of the non resonant response
terms. Importantly, these two effect result in the same change to the form of



the equations. Hence the detuning approximation may be seen to be equivalent
to linearisation around the response frequencies wy,, i.e. detuning is the same
as writing wyn = Wrp.

To examine the detuning approximation the normal form technique will first
be applied to a single degree-of-freedom unforced system and then in Section
4 to a two degree-of-freedom forced system. In the following discussion three
options for the normal form will be considered:

e tangent approach: taking the linearised approximation to the undamped
nonlinear resonant frequency, w,n, to be the natural frequency of the linear
frequency without applying detuning, such that wg, = Wnn.

e detuning approach: applying detuning such that wg, = w;, — this is the
method reported in [18].

e resonant approach: taking the linearised approximation to the undamped
nonlinear resonant frequency to be the undamped nonlinear resonant fre-
quency, woy, without applying detuning, such that wgs, = won-

The choice of approach and hence the selection of wg, only effects the value
of 8, (25). In turn, as already discussed, this only changes the magnitude of
the near-resonant terms calculated using (26). As a result all three approaches
can be implemented by considering the normal form transformation without the
introduction of T', i.e considering (3) rather than (5), along with the appropriate
selection of w,y, in the equation for 3, (25).

3 The Unforced Oscillator

Consider the unforced single degree-of-freedom system
i+ wir+ X(z) =0, (31)

where X is a small, order e, nonlinearity, and w, is the natural frequency for
the case where there is no nonlinearity present, i.e. when X (z) = 0. Following
the approach described above, first we introduce a small parameter v by writing

T+ wg,ac + (X —yz) = 0, with wg/ =w? +7. (32)

Now the linearised natural frequency is w, and the nonlinear term (which now
contains a small linear component) is X — .

To examine the linearised stiffness for this oscillator first consider a single-
degree-of-freedom mass-spring system with mass m and nonlinear restoring force
kx + ax?, Figure 1 shows the restoring force-displacement relationship. The
dashed line is the force-displacement relationship for the linearised tangent stiff-
ness, k, which defines w,, = \/k/m as in the tangent approach. It can be seen
that the discrepancy between the solid and dashed lines increases with increas-
ing magnitude of z indicating the increasing contribution due to the nonlinear



restoring force/m

-0.2

displacement, x

Figure 1: Force-displacement relationship for the nonlinear spring, in which
a =1 and w, = 0.5. The solid line is F = kz + az® and the linearised natural
frequency lines are for the cases wy, = w, (dashed) and w-, = wy, the resonant
frequency (dotted) for the case where the harmonic oscillations are taken to be
over a range ¢ = +A with A = 0.5.

term ax®. The dotted line is the relationship for an alternative linearised sys-
tem, based on the backbone stiffness a'é+w$x = 0 where wy = wy, i.e. the system
is linearised about its resonant frequency as in the resonant approach (this is
achieved to order ! by setting v = 3a.A? /4 where oscillations are over the range
x = +A). Tt can be seen that in this case the discrepancy, and therefore the

nonlinear contribution, between the linear and nonlinear systems is smaller.

3.1 Applying the normal form technique

As discussed at the end of section 2, we do not need to analyse (32), we can
analyse (31) instead provided we calculate 8, (25), using the appropriate w, for
the approach, either tangent, detuning or resonant, being considered. Consid-
ering (31), since the system has one degree-of-freedom and is unforced, the first
two transforms are unity transforms, x = ¢ = v, giving

b4+ Av+ Ny(v) =0, A=w? N,(v)=aV, (33)

where V' = X(v). Note that where matrices are scalar the bold notation is
dropped. The third transform, the near-identity transform, uses (14) to convert
this equation into a dynamic equation of the form given in (15). To evaluate
h and N, the nonlinear term N, (v) must be expressed as a power series in ¢,
(13). Taking the nonlinearity to be order !, we write N, (v) = en,1(v) where
ny1(v) = &V with a@ = ed. Now ny;(v) is written in terms of u = up + U,
giving ny1(u) = ny1(up + um) = &V (up + um) and expressed in matrix form
Nyt (u) = i u*(up, um), (22).
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Now consider a cubic stiffness nonlinearity X, (z) = 23 (the unforced Duff-
ing Oscillator). Following the procedure discussed in the previous section, the
nonlinear term can be written as 1,1 (up +um) = &(up +um)®. Using (22) gives

u = ud wlug upul,  ud ]T,nzl =& 3& 3a al. (34
Using (25) gives
Bre=[ WwZ-w? w?-w? w2-w? 9w2-w?], (35)

from which the second and third terms can be identified as resonant for the case
as w, ~ w, for all three approaches.
Using (26) and (27) gives

Nyt = 3a(uptiy, + upus,), (36)
_ g 3., .3
h = goz o (e + ) i

Then using (29) and (30) results in the resonant dynamic and transform equa-
tions

i + <w§+ ?ZTQUQ)U:O, (38)

alU?
€r=v = UCOS(th—(b)-f— m

cos(3lw,t — ¢]), (39)

respectively, where the substitution u = U cos(w,t — ¢), (20), has been used.
From the dynamic equation in u, (38), the response frequency can be written

to order ! as
wr = /w2 + 3aU?/4. (40)
Considering the transformation equation, the ratio of the amplitude of the
3rd harmonic to the fundamental response amplitude, M, may be written as
al? R

M=o o ~ 10 w2/ (4D

where R = aU?/w?2. Noting that w?/w2 =1 for the detuning and resonant ap-
proaches and that, using (40), w2/w2 = 1 — 3R /4 for the tangent approach, this
can be rewritten for the three approaches as

R 3R? R
tangent: M = 32~ 1024’ detuning, resonant: M = 32" (42)
Here, for the tangent approach, a Taylor series expansion has been used in write
(1+3R/32)71 =1-3R/32+O{R?} . The expressions in (42) are equivalent at
order €', since R contains o and hence is order !. Note that for the unforced,
undamped system the response frequency w, is the same as the undamped

11



nonlinear resonant frequency wp, hence the detuning and resonant approaches
are the same.

To assess which is a more accurate approximation, we consider the normal
form prediction to e2-order accuracy solution — see the Appendix for the de-
velopment of the e2-order refinement to the normal form and its application
to the unforced Duffing equation. For both the detuning/resonant and the
tangent approaches the e2-accurate normal form technique predicts

R 3R?
tangent, detuning, resonant: M = — +

2
2+ 0w to order €°. (43)

2

2 1, where w, .1 is w, to order €', such that this

In this expression R = aU? /w
expression is directly comparable to the equivalent order e! expressions given

in (42). The response frequency at order €2, w,. .2, was found to be

3R?
wigz = w3’51 (1 + ?8) (44)

for both the detuning/resonant and the tangent approaches. Note that these
expressions are consistent to order £2 with a Fourier based solution presented
in [22].

From this analysis, it can be seen that the detuning/resonant approaches
achieves a more accurate prediction at order ¢! than the tangent approach for
this example (compare (42) with the €2 accurate (44).

3.2 Small assumptions

At the start of this section it was shown graphically that the magnitude of
the nonlinear contribution is reduced when ~ is used to linearize the system
about the resonant frequency wq (the resonant approach) rather than w, (the
tangent approach). Due to the small nonlinearity assumption this would suggest
that the ¢! solution for M using the resonant (or the equivalent detuning)
approach is more accurate than that using the tangent approach. However, in
addition to assuming that the nonlinear term in the dynamic equation for x is
small there are other small assumptions. Considering an unforced one degree-
of-freedom system, the small assumptions and the corresponding ratios of their
size compared to accompanying non-small terms, r (see [23]), are

o 1 dynamics: N, is small in (2) giving ratio ry = N, /(Kz).

e v dynamics: N, is small in (13) giving r, = en,1/(Av). Note r, = 1, as
the system is unforced.

o near-identity transform: h is small in (14) giving ry, = ehju* /u.

e u dynamics: Ny, is small in (15) giving r,, = en};u*/(Au).

12



Table 1: Ratios of small:non-small terms for the ! order normal form, expressed
to order R?, where R = aU?/w?, (42) has been used to eliminate M and Taylor
series expansions have been used assuming R is small, and noting that wy = w,
as the system is unforced.

ratio resonant / detuning approach  tangent approach
Wq = Wy = W Wq = Wn
aU%(1+ M)? -~ R R? 13R2
=Ty = = — 4 — =R
e o2 TTTT TS TR
R 3R?
w = M w — —— w = — —
" D " T 39 T 1024
T_3aU2—4fy .0 T_ﬁ+9R2
Y w2 v Y416

Note that the maximum value of these ratios over a cycle of oscillation is of
interest.

For the Duffing oscillator example, (32) with V' = v3, taking the oscillation
amplitude at the fundamental frequency to be U, corresponding to an oscillation
in x of amplitude U(1+ M) (to order '), these ratios are summerised in table 3.2
for both the tangent and the resonant approaches. It can be seen that adopting
the resonant approach (equivalent to the detuning approach) results in a marked
reduction in r,, as expected from Figure 1, and results in r, = 0, with a cost
that there is a slight increase in r,, compared to the tangent version, however
7w remains small compared with 7, so is not the limiting ratio for accuracy.

In summary, the detuning step of the second-order normal form calculation
was presented as an approximation in [18]. In this example, a physical interpre-
tation of this detuning step has been provided for an unforced system, namely
that it is equivalent to taking the linearised natural frequency to be wq, the res-
onant frequency, rather than w,. The selection of the approach does not affect
the prediction of the fundamental frequency response (to order £!), however
the resonant approach does improve the ! order prediction of the harmonic
response (at an 2 order level).
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4 A two-degree-of-freedom oscillator

We will now consider a two-mode system in which the second mode is auto-
parametrically excited by the first mode. The equations of motion are

1
—f(t), 45
mf( ) (45)
Fo 4 20Wno®o + wyae + a(xy +22)2 = 0, (46)

.. . 2 3
21 + 2QWn1%1 + w1 + axy

where wpa = 3wp1, ¢ is the modal damping parameter (for both modes) and
« is the coefficient of the small nonlinear terms. The forcing function is given
by f(t) = Fcos(Qt), where F is the forcing amplitude and Q is the forcing
frequency. We assume that the forcing frequency is close to the resonance of the
first mode such that Q = w,1 ~ wyy. For forced systems the response frequency
for mode n, w,, is selected to be the closest harmonic of the forcing frequency
Q to the natural frequency, hence here w;,.o = 3.

Since the linear terms in the equations are already in a modal form, we can
write x = q. In addition the forcing is purely resonant therefore q = v. Here
we are assuming that w%l ~ w2, so via (10), option F1 must be selected. We
therefore define a further parameter that is assumed to be small in the derivation

Tq = w31 — wr?. (47)

Considering the near-identity transform, we write the nonlinear terms as
functions of w1y, wim, w2y and ugy, (after replacing z; with u,;) and these terms
are used to define the vector u* and the corresponding matrix of coefficients ny,; .
From u*, the matrix $; can be calculated using (25). The resulting matrices

are
3 r 1T
1
9 p
Ul Ulm

u

UlpUQP
U%pUQm
ulpu%m
U1pU1mU2p
UpU1mU2m
ulpu%p
U1pU2pU2m
* ulp:u’%m *
WUim
u%mUQP
u%mU’Qm
Ulm’u,%p
Ul mU2pU2m
ulm{“%m
u3,
ngUQm
uzpugm
u3

— W WHE WO WWWHE WO WO OoWwwwwr—

DD O DD DODDODDDODOHODODODODDODOWO O W

m - L |
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2 2
9“}27‘1 - (")2111
Wr1 — Wa1

(2wr1 + wr2)? — Wiy

2 2
9“}27‘1 - wzaQ
Wr1 — Wa2

(2wr1 + wr2)? — w3y

(2wr —wr2)? —wiy (2w —wr2)® — Wi,
woy — Wiy Wiy — Was
Wiy — Wi Wy — Way
W72«2 - %211 ‘*%2«2 - ‘*432

(wrl + 2("}7'2)2 - w?zl (le + 2("}7'2)2 - wgz
W?«l - %211 W?«l - %32

_ | (wn = 2wp2)? — wgl (Wr1 — 2wr2)? — wg2

ﬁl - 9w2 o CUQ 9w2 _ 0.)2 (49)

rl al rl a2

(2wr1 —wr2)® —wiy (2w —wr2)? —wiy

(2wr1 + wr2)? — wiy

(2wr1 + wr2)? — w3y

(wrl - 2("}7'2)2 - w?zl (le - 2("}7'2)2 - wgz
W%l - ng W?l - Wgz

(wWr1 + 2wp2)? — wgl (wWr1 + 2wp2)? — ng
9“32 - ng 9‘-032 - W(%z
W?«Q - %211 W72«2 - W22
‘%2«2 - %211 W72«2 - ‘*432
9‘*’32 - ng 9“’32 - Wgz

Note that the damping terms have been excluded from these matrices as, from
inspection, they are resonant terms and so will remain in the equations of motion
once the transform has been applied (i.e. option N2, (27), must be applied).

From (; it can be seen that the resonant terms are [1,2], [1,4], [1,5], [1, 9],
[1,12] and [1,15] for mode 1 and [2,1],[2,6],[2,7],[2, 11],[2,18] and [2,19] for
mode 2. Applying option N2 to these terms gives the transformed equations of
motion

U1 + 2Cwp1uy + wfblul + ZOzUlzul =

. . 3
g + 2Cwnotia + wszuz + ZOL(QU% + U22)U2 =

—%Uf cos(3Q2t — 3¢1), (51)

(50)

where the substitutions uy,, = (U,e™%" /2)el“t and up,, = (U,el%" /2)e"wrnt
have been made with w,; = Q and w,2 = 3Q. Note the right hand side of the
second equation arises from the [2,1] and [2,11] resonance terms.

The first of these equations, (50), can be solved to give a relationship between
forcing frequency and response amplitude Uy

2
3(1U12) (52)

F 2
(57 = CoameP+ (w2 -2+ 2

which is a quadratic equation in €2, hence allowing €2 to be solved for given Uy
and F' values.

Considering the second equation, (51), it is reasonable to assume that UZ <
U? since the second mode is parametrically excited from the first via a weak

15



nonlinearity, hence the U2 can be ignored. This give an expression for the
amplitude U, for a given U; and forcing frequency

aU3}

40/19(w2, — 02) + 3aUZ/2]2 + [18Cwn Q2

Uy = (53)

where we have used the relationship wps = 3wni1. Recall that, as discussed
before, these equations for the resonant dynamics are independent of « and as
a result the choice between the tangent, detuning and resonant approaches is
immaterial to the resonant response prediction. In addition, in deriving (53),
we find the phase relationship

A[9(w2, — O2) + 32 /2)Us
aU3 '

cos(pg — 3d1) = — (54)

The non-resonant terms in 31 are placed in the transform equation from u to
v = q = x using option N1, (26). Using the transform equation the response at
non-resonant frequencies can be found, here we consider the response of mode 1
at 32 and the response of mode 2 at €, 1 30 and x2 o respectively, which may
be written as

«

= 773 e /
x1,3Q 4(992 — wgl) Ul COb(ﬁQt ), (55)
3a .
Too = 4(92——(4}32) [(Uf + 2U1U22) COS(Qt/) + U12U2 COS(Qt/ + 3(]51 — ¢2)],
(56)

using the time-shift Q' = Qt—¢,. These expressions have come from terms [1, 1]
and [1,11] in B; for mode 1 (note that terms [1,6],[1,7],[1,18] and [1,19] also
result in a response at 3Q2 however the corresponding terms in n, are zero)
and terms [2,2],[2,4],[2,5],[2,9],[2,12] and [2,15] for mode 2. The resulting
amplitudes of these sinusoidal responses are X1 3o and X» o respectively, where
to calculate X o (54) is used.

As with the unforced case, the choice of approach effects the non-resonant
response as the amplitudes of the higher harmonics are dependent on w, via the
calculation of 1, see (25).

4.1 Accuracy of the response prediction

First we consider the response of the first mode using the tangent and res-
onant approaches, then later the detuning approach is discussed. Figure 2(a)
shows the normal form solution for the resonant response of the first mode, using
(52), when a = 1, w,; = 0.5, ¢ = 0.05 with forcing amplitudes F'/m = 0.0025,
F/m = 0.005 and F'/m = 0.0075. Note that all three approaches result in the
same normal form prediction for the resonant response. This is compared to
a numerical integration solution (using Matlab solver ode45), where the circles
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represent the results for stepping up and stepping down in frequency respec-
tively. It can be seen that the normal form approximation agrees well with the
simulation results.

From the transform expression, (55), it can be seen that the ratio of the 3rd
harmonic response to the forcing frequency response is given by

aU?

M=———
4902 — w?))

(57)

This can be used in conjunction with the solution to (52) to give a prediction
of the harmonic response for the three approaches.

Figure 2(b) shows the normal form predictions along with timestepping re-
sults (shown as dots and circles). The solid, dashed and dotted lines show the
resonant (wq; = wo;), tangent (Wq; = wp;i) and detuning (wq; = wr;) approaches
respectively. The resonant frequencies are derived from (50) and (51) giving

U2 U2
30441’ Y 6aUj

wor = \/wiy + n2t = (58)
and are valid for all three approaches. It can be seen that for X 3o the reso-
nant and detuning approaches work well (the dotted line is obscured by the solid
line) with the tangent approach working less well. Note that the resonant and
detuning approaches are not exactly the same because for forced systems, the re-
sponse frequency matches the forcing frequency, w,1 = €2 and only approximates
(albeit closely for lightly damped systems) the resonant frequency.

To better understand the accuracy of the approaches in predicting the re-
sponse of the first mode the small assumptions can be checked. The equations
for the parameter r,, 7, 7y, and r,, are given by

aUF (14 M)? +w?) — w2,

Te =Ty = w2 ’ (59)
al

rq = way — 92, (60)

Tuv = M7 (61)

~ 3aUf +4(wiy —wly)
a dw?, '

(62)

Ty

Figure 3 (a-d) show 7y, rq, 4w and r,, respectively. Despite the system having
sufficient nonlinearity to shift the resonant peak frequency by 10% at this forcing
level, the values for the resonant approach remain reasonable low. By contrast
r, and 1, for the tangent approach are large, indicating that the approximation
using this technique is based on questionable assumptions. It can be seen that
the only case where the resonant approach is larger than the tangent approach
is Tyv, however the difference is small and for both cases this parameter is much
smaller than r,.
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Figure 2: Normal form predictions compared with time-stepping results for
three forcing levels F'/m = 0.0025, F'/m = 0.005 and F/m = 0.0075 showing
(a) the resonant response of mode 1, i.e at frequency 2, U; and (b) the non-
resonant response of mode 1 at frequency 39, X; 3o . The dashed, dotted and
solid lines are the normal form prediction for the tangent, detuning and reso-
nant approaches respectively and the dots and circles are numerical integration
simulation results for stepping up and down in frequency respectively (note for
the resonant response only the solid line is visible as the prediction is unaffected
by the approach taken).
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Figure 3: (a) 74, (b) 74, (¢) 7wy and (d) 7, for the tangent (dashed line) and
resonant (solid line) approaches for the forcing level F/m = 0.0075.

The resonant response prediction using the normal forms technique (regard-
less of approach adopted) for the second mode is shown in Figure 4(a) for
three levels of forcing, F//m = 0.0025, F/m = 0.005 and F/m = 0.0075, with
wn1 = 0.5, ¢ = 0.03 and « = 1. In addition the dots and circles represent
timestepping solutions with the frequency stepped up and down respectively.
It can be seen that the agreement is good, with just a small deviation at the
highest forcing for the second mode over the range Q = 0.52 to 0.68rad/s.
Note the double resonance peak in the second mode due to its resonance near
Q = 0.52 and the resonance of mode 1 near € = 0.58 (which results in increased
auto-parametric forcing).

Figure 4(b) shows the non-resonant response of the second mode at frequency
Q for the three forcing levels F'/m = 0.0025, F//m = 0.005 and F/m = 0.0075.
The predictions of X5 o using the resonant approach is good, with poorer predic-
tions using both the tangent and detuning approaches especially at the highest
forcing level. Despite there being low levels of damping here the detuning ap-
proach are less good than for X 3o since the resonant peak is wide and so the
response frequency does not approximate well to the resonant frequency.

5 Conclusions

In this paper we have considered the accuracy of the second-order normal form
technique, a technique that allows the application of normal form transfor-
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Figure 4: Normal form predictions compared with time-stepping results for three
forcing levels F'/m = 0.0025, F'/m = 0.005 and F/m = 0.0075 showing (a) the
resonant response of mode 2, i.e at 32, Uz and (b) the non-resonant response of
mode 2 at frequency 2, X2 . The dashed, dotted and solid lines are the normal
form prediction for the tangent, detuning and resonant approaches respectively
and the dots and circles are numerical integration simulation results for stepping
up and down in frequency respectively (note for the resonant response only the
solid line is visible as the prediction is unaffected by the approach taken).
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mations directly to second-order differential equations without first converting
them into first-order differential equations. We have shown the selection of the
linearised natural frequency affects the prediction of the nonlinear system dy-
namics, considering either using the natural frequency in the case where the
nonlinearity is set to zero (the tangent approach) or using the nonlinear natu-
ral frequency (the resonant approach). In addition we relate this selection to
the detuning approximation that is used in the existing second-order normal
form technique (the detuning approach). We show that neither the choice of
linearised natural frequencies about which we perform the normal form trans-
formation nor the use of the detuning approximation affects the prediction of
the resonant response of the system (provided the linearised natural frequencies
selected are close to the response frequencies). However these choices do affect
the non-resonant response (that is the sub and super-harmonics terms in the
response). For a single degree-of-freedom unforced system the detuning and res-
onant approaches are shown to be identical. It is shown, via an example, that
the small approximations used in the normal form technique are better satisfied
using the resonant (or equivalent detuning) approach than using the tangent ap-
proach. This is why the resonant approach gives a superior prediction of the
non-resonant response than the tangent approach.

The detuning approach is also approximately equivalent to the resonant ap-
proach for forced vibration provided the resonant peak is narrow as it is in this
case where the response frequency is close to the nonlinear natural frequency.
However as seen in the two degree-of-freedom example as the resonant peak be-
comes wider then linearising the system about the resonant frequency, using the
resonant approach, is superior to both the tangent and detuning approaches in
predicting the non-resonant response terms. It is therefore recommended that if
the non-resonant response terms are of particular interest the resonant approach
is adopted.

Appendix — e%-accuracy

Here the normal form technique is refined to have &2

is then applied to the unforced Duffing equation.
Revisiting (16), which has already be satisfied to €° and ¢!, yields the &2
equation

-accuracy. The technique

d2
n,o(u,a,r) — FTE) (h2(u,0,r)) = Aha(u,a,r) + D{n,1(u,a,r)}th;(u,u,r),
(63)
where D{n,;} is the Jacobian of n,; resulting from the Taylor series expansion
of n,; and where n,y has been taken to be zero. For the Duffing oscillator
example the Jacobian may be written as

D{ny(u)} = D{—Ju + au’} = =4 + 3a(u} + 2uptim + u,). (64)
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As a result the last term in (63) may be written in matrix form as

D{l’lvl}hl = Dhu+;

Dh:ﬁ[i&d 66 3& 3a 64 3a& —4 %],  (65)
T a
T
ut = [ u) ugu, uwdul wiul upug, ud oud o ud, |

The, as yet unknown, order 2 terms in the transform h and the resulting
nonlinear term N, may also be expressed in matrix form; n,s = nf&u“‘ and
h, = h;‘ u’t respectively. Using a similar approach to that for the ¢! expression,
(18), gives

— 2 _ )2 22 22 22 2 _ 2
B = 25wl —w? w?-w? wl-w? w?-w? wl-w?

2 2 2 2 2 2
w2 —w?2 9w -w? Jw?-w? .

(66)

Then by identifying the resonant terms expressions for the transform and the
nonlinear terms can be found. The transform term is given by

i 34 66, , _6a
2 0w2 —w? | 25w —w? w2 —w? w2 — w? (67)
36 5 5

2 _ 2 2 _ 2 2 _ 2
2wy —wg  Ywr —wi  wi — wg

Considering the transform equation to order €2, x = v = u+¢e'hju* +e%hju”,
the amplitude ratio between the fundamental and third harmonic response is

U2 302U% — 2yalU?
M= o o Yo ’ (68)
ST R e ey
To simplify this expression we again use R = aU?/w? _,, where w?/w?_, =

1 — 3R/4 is w, to order &', such that this expression is directly comparable
to the equivalent order ! expressions given in (42). In addition the response
frequency, now at order €2, is needed. By calculating n,, this can be found to

be )
3R
2 — 2 1
wi=w?, ( + —128) (69)

for both the tangent and the resonant approaches to order 2. The expression
for M can now be written as

R 3R? — 2vR/w?

M = 70
O — et ) s Y

For the tangent approach we set w? = w2 and v = 0 to give

R 3R\ "' 3R2 3R\ 2
M= (1422 Rk il 1
32( +32) +512( +32) ' (71)
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where O{ R®} terms have been dropped. Whereas for the resonant approach we
set w? = w? and v = 3Rw? _, /4 + O{R?} such that

2y 1 2 2\ 2
M R(l—kﬁ) +3R (1—1—&) . (72)

D) 128 1024 128

For both the tangent and the resonant approaches, the expressions for M, (71)
and (72) respectively, may be written as

R 3R?
M=+
32 T 1024 (73)

to order £2 after Taylor series expansions.
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