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Abstract

Consistently scholars have sought to characterize society’s relationship to science,

especially to understand how it shapes the way science is produced and used in decision

making. These efforts spurred a rapid evolution in models of science-society interaction

with growing levels of complexity both in terms of interdisciplinarity and involvement of

stakeholders. Despite these efforts, the rate of use of science in decision-making remains

below expectations. This suggests a persistent gap between production and use which, to

date, efforts to re-think and restructure science production have not been able to

surmount. We review the different models of science-society interaction and the

emergence of new approaches to knowledge creation to understand how they have

influenced the organization of knowledge production and application. We then examine

Please Note: This article has been accepted for publication by Annual Review of Environment and
Resources in a revised form. http://www.annualreviews.org/doi/full/10.1146/annurev-environ-
022112-112828
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what influences use of scientific information in environmental decisions, especially those

related to climate variability and change. Finally, we propose a model to explain and

broaden use focusing on a typology of users and illustrate its application for up-scaling

climate information provisioning.
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1. INTRODUCTION

What is society’s relationship to science and how does this relationship shape the science

that is produced? How does science move from production to use in decision making?

These are among the questions scholars have increasingly sought to explore for both

normative and practical reasons. For the past fifty years there has been a rapid evolution

of science-society interaction thinking, ranging from the 1940’s linear model—

characterized by a strong disciplinary-based, basic research focus, to more complex

models of science production that embrace interdisciplinary approaches and involve users

to help solve societal problems. One outcome of this effort is the emergence of a robust

empirical literature focusing on exploring different ways of producing/delivering

scientific information that can more effectively support decision making. These include

institutionalizing more participatory approaches through boundary organizations,

knowledge systems, and scientific assessments.

While these new models and structures for knowledge production have increased

information use in environmental decision making in general, for climate information in

particular, the pace of use has not been commensurate with expected need. This suggests

a persistent gap between production and use that, to date, efforts to re-think and

restructure science production have not been able to surmount. That is not to say that no

progress has been made. In climate-related decision making in particular, empirical

evidence suggests that scientific information uptake can be improved for specific

decision makers in specific contexts. But the urgency and widespread reach of projected

climate change impacts demands more than incremental improvement. Moreover, as the

problem becomes more salient for decision makers across the world (with more intense
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storms, rising seas, etc.), the demand for usable climate information may quickly outstrip

our ability to produce it using the approaches we currently employ. Hence, there is an

urgent need to re-consider how we approach the challenge of creating usable climate

information from what has been predominately a focus on individual users or small

groups of users to approaches that meet the needs of a broader diversity of decision

makers.

This review aims to contribute to this practical and scholarly discussion by

surveying the rapid evolution of the field and highlighting the practical lessons that can

both support the creation of new science/policy interfaces and inform the

institutionalization of successful models. Throughout the review, we strive to identify

where the intellectual community in this area has made strides and where it still needs to

narrow knowledge gaps. In addition, we aim to provide a roadmap for those interested in

participatory forms of knowledge production as both participants (that is, as producers

and users of science) and as objects of study.

Drawing on our review and synthesis of a wide range of research on science-

policy models and empirical research on factors, processes and structures that influence

science usability, we propose that to move beyond the current paradigm requires better

understanding users not just at the individual but at the aggregate level as well to explore

the opportunities and challenges of scaling information production while maintaining

and/or increasing usability.

We start this review by examining different models of science-policy interface

and how they have influenced the organization of knowledge production and application.

We then explore how these models have been challenged both from academia and society
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and how new approaches to the creation of knowledge have emerged including those that

involve potential users in the process and that involve different levels of interaction

between producers and users. This includes institutions and organizations designed to

broker information from science to decision-making as well as different approaches to

organize the communication and interaction between scientists and decision-makers. In

the third part of this review, we examine what influences use of scientific information

focusing predominantly on the uptake of climate information. We begin by exploring

how perceptions, attitudes and beliefs of the social actors involved in the process of

science production and use shape potential users’ willingness to uptake scientific

information. Then, we explore how different institutions, organizational cultures and

frames shape the ability of users to uptake scientific information. Here, we specifically

examine how different decision-environments and goals affect the use of scientific

information. Finally, we propose a conceptual framework—a typology of users at the

aggregate level—that we use to explore the opportunities and challenges of scaling

information production while maintaining and/or increasing usability. We then focus on

climate information production and use for adaptation, as an illustration of the different

challenges and opportunities to narrow the usability gap.

2. SCIENCE-POLICY MODELS

2.1. Science the Endless Frontier and the Frontiers of Science Production and Use

In Science the Endless Frontier, Vanevar Bush argued that science benefits for societal

progress ensue innately from the unencumbered linear flow of information from both

basic (research that contributes to general knowledge and understanding of nature and its

laws) and applied (research undertaken for some identified individual, group, or societal
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need) research to decision-making (1, 2). The report also advocated for the separation of

science from society to maintain objectivity and credibility and to ensure that science is

not tainted by values and politics. This highly influential report not only provided the

basis for the reorganization of the scientific enterprise in the United States in the mid-20th

century but also established many of the tenets for science production still in existence

today (3). One of these tenets, that is, that societal benefits accrue precisely because of

the separation of science from society, has been increasingly under fire for the past thirty

years.

Part of the reason for challenging this model—hereto forth referred to as Mode

1—is that despite the steady and continuous progress in the production of science, there

is a widespread concern that not enough of the public decisions that should benefit from

the science produced actually do (4, 5). Specifically regarding climate science, while

trying to explain why that is, a number of researchers have speculated about a

‘‘disconnect’’ between the science produced ostensibly to inform decision making and

actual policy processes (5-10). More generally, one explanation is that Mode-1 science

makes ‘‘a number of unsubstantiated assumptions about the resources, capabilities and

motivations of research users’’ (11:p 12) including that the science produced is expected

and presumed to be useful to solve problems (6). For example, empirical research has

shown that a whole range of contextual and intrinsic factors affect the use of information

in decision making, including informal and formal institutional barriers, what the

decision and policy goals are, the information’s spatial and time scale resolution, the

level of skill required to utilize the information, and the level of trust between

information producers and users, among others (8-16). A second explanation for this
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disconnect is that Mode 1 science is overly focused on disciplinary knowledge

originating from university settings ignoring both other sources of knowledge and other

disciplinary perspectives (17).

Another challenge to the Mode 1 construct is that there is no such thing as science

produced separately from society. Influential scholars such as Bruno Latour and Sheila

Jasanoff have convincingly argued, and empirically shown, that the separation between

science, policy and society is artificial (18, 19); in reality, knowledge is neither unfettered

nor neutral and science and policy are co-produced in the day to day interaction between

scientists and their social environment (17, 20). Rather than objective and value free,

knowledge influences and is influenced by social practices, identities, discourses and

institutions (21). Taken together, scholars in this tradition argue that the interface

between science and society is a hybrid, mutually constructed arena in which social

relations between producers and users of science shape facts about the natural world

being studied (18, 22-24). More recently, the idea of co-produced science and decision-

making has become associated with the purposeful creation of institutions and

organizations (e.g., boundary organizations) that facilitate the interaction between science

producers and users (8, 25).

2.2. Mode 2, Postnormal, and Hybrid Science-Policy Models

As a response to the argued failure of Mode 1 science to fulfill its social contract, new

models have emerged that better characterize the evolving relationship between science,

scientists, the public, and policy. Proponents of these new models argue for two major

changes in the way science for societal benefit is produced. First, the complexity of

contemporary problems requires more than one disciplinary view to solve them.
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Moreover, science should go beyond providing neutral, credible and legitimate support

for decision-making to incorporate other kinds of knowledge and different ways of

“knowing” (26, 27). Second, science produced for the solution of problems needs to be

more flexible and the process of production needs to be more iterative and interactive.

Together, these changes help ensure that the science produced this way is more likely to

help solve pressing problems and meet its public value functions (i.e., knowledge for its

own sake, economic value, information useful for decision-makers, participation in

agenda-setting by stakeholders, and communication of findings to the public) (5, 28).

Hence, new models of science production for societal benefit have become more

complex both in terms of how scientific information is organized and co-produced and in

terms of how it is communicated, disseminated and used (or not). In the production

function, this complexification has increasingly challenged not only the motivation of

scientists (e.g. basic vs. applied science) but also the ways they interact with the potential

users of the knowledge they create and with society in general (e.g. ‘normal’ vs

postnormal science) (23, 28-30). It has also put growing pressure on the scientific

enterprise to produce ‘usable’ science, or that which decision-makers perceive as fitting

their needs and decision environments seamlessly (7, 8, 31, 32).

Gibbons and his colleagues proposed a new model, which they call Mode 2, in

which science production is organized at increasing levels of interaction and integration

across disciplines (from multidisciplinary to transdisciplinary) and across the science-

society divide. In contrast to Mode 1, this new approach produces science that is

heterogeneous, reflexive, and more socially accountable (17, 33). In this model,

multidisciplinarity refers to understanding a problem from the viewpoint of different
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disciplines while interdisciplinarity combines perspectives, methods, and ideas to foster

innovation in ideas, solutions and decision tools. Transdisciplinarity, in turn, goes beyond

the mere bringing together of teams of specialists from different disciplines to guiding

scientific inquiry by specifiable consensus with regards to appropriate cognitive and

social practices (17). Whereas interdisciplinarity has been widely supported by the

scientific community as an ideal and as a practice (34-36), transdisciplinarity is more

contested, both in terms of institutional resources as well as regarding the role of

scientists themselves in working beyond the science boundary (36). In addition,

integrating across organizations can be more challenging than across disciplines despite

overall scholarly and practical benefits of integrative science (27).

Beyond Mode 2, postnormal science is both a framework (30) and a practical

approach (37) for problem situations in which stakes are high and science uncertain. In

this case, scientific knowledge alone is not enough to solve societal problems and

constituents need their own forms of knowing to better evaluate their risk situation (30).

For both Mode 2 and postnormal science, interaction between producers and users of

science across the science-society interface means the specific involvement of

stakeholders. Here, stakeholder interaction involves more than simple communication

from science to society. It entails substantive multidirectional interactions and

involvement of constituents in the research process that can go as far as to include

problem definition and formulation of research questions, data collection, selecting

methods and conducting actual research, analyzing findings, and developing usable

information (8, 33, 38). Figure 1 illustrates the evolution in the complexity in both
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knowledge production on the one hand (from Mode 1 through postnormal science) and

user participation on the other.

Insert Figure 1 about here

Arguments for participatory modes of knowledge production and use range from

issues of democratization, citizenship, civics and accountability to calls for a new way of

producing science that meets the need of decision-makers seeking to solve ever

increasingly complex environmental problems. In this new mode of knowledge

production, society speaks back to science, affecting the “scientific activities both in its

forms of organization, division of labour and day-to-day practices, and deep down in its

epistemological core” (33, page 161). Different forms of participatory science production

include boundary organizations and science shops, participatory technology assessment,

citizen science, knowledge networks, integrated assessments, public ecology and science-

policy dialogues (25, 26, 39-49).

At its most participatory, science at the interface is carried out in non-hierarchical,

heterogeneously organized forms, involving close interactions with many actors

throughout the process of knowledge creation. Knowledge produced in this way is

expected to be more relevant and usable for solving problems and supporting

management (e.g. improving the fit between what users want and what science can offer);

more likely to be ‘bought in’ by stakeholders and be more legitimate in their eyes; and

more likely to build trust and improve communication (26, 39-41, 47, 50-53). In addition

to producing more usable information, participatory processes also amplify the role of

science in society (the scienticization of decision-making) and the role of society in

science (the politicization of science) (54, 55).
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As information moves across disciplines and between producers and stakeholders

in highly iterative modes of knowledge creation and use, the process of interaction itself

reshapes the perceptions, behaviors, and agendas of the participants (8, 14, 31, 56).

Indeed, science and its application give rise to a new politics of expertise in which

scientists rather than ‘speaking truth to power ‘become part of a much broader, messier

social experiment (18-20, 38). On the one hand, the creation of participatory knowledge

production and governance processes in itself does not guarantee knowledge democracy,

especially when the use of scientific knowledge becomes a source of authority of some

groups over others and an instrument of inequity in the distribution of power across

participant groups (26, 57-59). For example, in Brazil, the use of technoscientific

knowledge in the context of river basin committees, has shown that it can skew power

within the group when it provides members with technical expertise with leverage vis-à-

vis others without (60). Part of the problem is the ‘black box of technical knowledge’,

that is, the obfuscation of the assumptions, values and methods embedded in the

knowledge by those who create and/or employ it in the context of decision-making (26,

58). For example, in Denmark, a government organized citizen-experts dialogue

conference focusing on expertise around environmental economics as a policy tool

exposed dissent not just between experts and non-experts but between experts themselves

when disagreements over assumptions and methods emerged (26). Moreover, in practice,

it is also the case that postnormal science alone cannot counteract the role of politics in

shaping critical issues within participatory/deliberative processes such as agenda building

or the definition of who participates and who is doesn’t (for specific critiques of
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postnormal science see (61, 62); for a review of deliberative democracy and knowledge

see (59)).

On the other hand, scholars have argued that participatory forms of knowledge

production and use can avoid inequity often introduced by scientific expertise by being

inclusive, transparent and integrating across different kinds of knowledge (e.g. scientific,

lay and indigenous knowledge) (61, 63). Moreover, in the context of interaction,

producers and users of scientific information can resolve conflicts and build consensus

helping to overcome barriers for information use including issues of trust, communication

and legitimacy, information accessibility, and lack of fit (26, 59, 60). The experience of

interaction in a common social context is the core of social learning—defined as learning

from others through observation and modeling (64). Through social learning, producers

and users of different kinds of knowledge learn from each other (43), positively shaping

common perceptions of problems and solutions, which in turn, may support collective

action and effective management (56). However, implementing social learning as a

methodology has its own set of challenges including reconciling the diversity of values,

worldviews and epistemologies between all participants and the high level of human

resources required to carry it out in practice (56).

2.3. Science-for-Policy Improvements: Boundary Organizations, Knowledge

Systems, and Assessments

Boundary organizations. In the context of science-decision-making interactions,

boundary organizations’ function as both stabilizers and bridgers and/or brokers. First,

they stabilize the knowledge production function by providing a protective layer against

undue influence of extraneous factors such as politics. Second, they bridge and broker
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knowledge between the production side (universities, research institutes) and the use side

(stakeholders, decision-makers). Early research on boundary organizations focused on

their stabilizing function; more recently, scholars have attended increasingly to their role

as an enabler of productive interactions between science and decision making.

In the first role, boundary organizations achieve stabilization by internalizing and

collaboratively negotiating the contingent character of the science-policy boundary using

boundary objects and standardized packages (55, 65, 66). Boundary objects (for example,

a climate scenario) facilitate stabilization between two social worlds (for example,

climate modeling and climate policy) both by fostering a sufficiently shared

understanding to gain legitimacy in each world and by enabling negotiation to resolve

mismatches in the overlaps (65). Boundary objects are most helpful when they are

produced in a transparent fashion and when they are used to reshape and redefine

meaning reflexively and iteratively (Carr and Wilkinson 2005). As stabilizers, boundary

organizations provide a means for producers and users of knowledge to work together to

form a common point of reference and shared understanding yet maintain their separate

identities (55, 67). This is tricky work as “opposing pressures and accountability for the

actors in the two social worlds… challenge efforts to stabilize the boundary” (68p. 222).

The Office of Technology Assessment (OTA) and the Health Effects Institute (HEI) are

exemplars of this sort of stabilizing function helping maintain stability when negotiating

science production and use amidst fractious party politics, in the case of OTA, and an

adversarial regulatory environment, in the case of HEI (18, 55).

In its second role, as a bridger and/or broker of knowledge, boundary

organizations have at least three characteristics: 1) they create a legitimizing space and
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sometimes incentivize the production and use of boundary objects and standardized

packages; 2) they involve both information producers and users and mediators; and, 3)

they reside between the producer and user worlds with “lines of responsibility and

accountability to each” (55, page 93), allowing both sides to pursue their own enterprises

(44). In this sense, boundary organizations are institutional structures that contribute to

the co-production of science and policy, first, by facilitating the collaboration between

scientists and non-scientists (26); and, second, by creating a combined scientific and

social order (44). Rather than merely being a conduit or a funnel, boundary organizations

are a “forum where multiple perspectives participate and multiple knowledge systems

converge” (69: page 261).

Further understanding of boundary organizations’ role as a bridger and broker of

information has come about as scholars carried out in-depth empirical studies to examine

both the interactions across epistemological and ontological boundaries, and the

characteristics of organizations, producers and users that leads to increased usability (39).

For example, Kirchhoff et al. found that in both the US and Brazil interaction in the

context of a boundary organization improved the use of climate information by water

managers (70). Similar improvements to climate information usability associated with

interactions between producers and users have been observed across a variety of

applications from sustainable land management (51) to disaster reduction (71) and urban

sustainability (72). It is not just interaction between producers and users that matters.

Building capacity for information uptake, integrating multiple forms of knowledge and

managing the inequities in power between producers and users also improves usability

(73).
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Knowledge systems. In earlier usage, ‘knowledge systems’ referred to indigenous ways of

knowing about the world encompassing nature, culture, and the environment and their

interrelationships (see for example, (74)) and farmers’ knowledge of agricultural

practices (see for example (75)). In their seminal paper, Cash et al. reframed knowledge

systems to encompass programs and institutional arrangements that effectively harness

science and technology to improve decision making for sustainable development (69).

They argued that for knowledge systems to be effective, they must actively manage the

boundary between expertise and decision making, enforce accountability of actors on

both sides of the boundary, and jointly produce outputs (e.g., models, reports). For

scientific information to be usable, decision-makers must perceive it to be credible,

salient and legitimate (12). To be judged by these criteria, scientific knowledge needs to

show distinctive characteristics decision-makers recognize (76). For instance, information

is likely to be deemed credible if the science is accurate, valid, of high quality, supported

by some form of peer review, and funded from one or more recognizable or established

institutions. To ensure the information is legitimate, it must have been produced and

disseminated in a transparent, open, and observable way that is free from political

persuasion or bias. To be salient, information must be context sensitive and specific to the

demands of a decision maker across ecological, spatial, temporal, and administrative

scales (9, 12, 16, 77-79).

Empirical observations suggest salience, credibility, and legitimacy are often

tightly coupled; improvement of one measure can result in a reduction in another (12).

Hence, achieving these three criteria simultaneously maybe tricky as tradeoffs between
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them, may negatively influence the overall perception of information usability.

Moreover, stakeholders may have different perceptions of what makes credible,

legitimate, and salient information (7, 12). To try and reduce these tradeoffs, Cash et al.

argue that knowledge systems need to have active, iterative, inclusive, and open

communication and translation that promotes mutual understanding between participants

(12). When all else fails, conflict across the three criteria may require active mediation to

prevent the ‘system’ from collapsing. Here boundary organizations are critical in

maintaining the integrity of the system since they can enhance communication,

translation and mediation, routinize boundary spanning activities, and help to stabilize

knowledge systems in a changing socio-political context (80).

The knowledge system criteria can be a valuable heuristic to assess stakeholders’

perspectives of what constitutes usable science because it considers the entire process

(from inception to dissemination) of the science in question. Indeed, credibility can be

used to assess stakeholders’ perceptions of the quality of science underpinning the

disseminated information; legitimacy can assess stakeholders’ perceptions of the level of

transparency and bias of the individuals and institutions involved in its development; and

saliency directly assesses stakeholders’ perceptions of its relevancy to their needs and

requirements. Proving its versatility, the knowledge systems framework has been applied

to a diversity of research foci that range from understanding how The Global Fund to

Fight AIDS, Tuberculosis, and Malaria contributes to support the global response to these

diseases (81) to the investigation of how such systems support climate forecast use by

farmers and water managers in Australia, water managers in Hawaii, natural resource

managers in the Columbia River Basin and a range of users in the UK (76, 80, 82-84).
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Integrated Scientific Assessments. Assessments organize, evaluate, and integrate expert

knowledge to inform policy or decision making (85). They also interpret and reconcile

information produced from disparate scientific domains making the information more

useful for policy deliberations and for addressing an identified problem (86). For

example, global environmental assessments have been undertaken to inform responses to

pressing global environmental concerns including to climate change, biodiversity loss,

and stratospheric ozone depletion (87-89). However, despite their designed intent (to be

usable for policy or decision making), in practice their influence on national and

international responses to environmental threats has been limited with ozone depletion

and acid raid being notable exceptions (90, 91). In the US regional scale assessments like

the Regional Integrated Sciences and Assessments (RISAs) have been relatively more

successful in providing usable information for policymakers. This is partly because they

reduce barriers to and leverage drivers of information use (14), and because, in many

cases, they successfully reconcile the production of information with users’ demand (9,

10, 25) through sustained and frequent interaction between scientists and stakeholders

(14).

At the global level of environmental regimes, research applying the knowledge

systems approach to evaluate scientific assessments finds that assessments perceived to

be salient, credible, and legitimate are more successful (40, 85). In this case, success

encompasses both the usability of the product and the process of information production.

For example, Clark and Dickson found that more effective assessments achieve a balance

of saliency, credibility and legitimacy, where saliency refers to the perceived relevance



19

and credibility refers to the perceived authoritativeness of the process to the scientific

community. Lastly, legitimacy captures the perceived fairness and openness of the

assessment process to the mostly policy or political community who might reasonably

use the assessment product (92).

Others have questioned the sufficiency of perceived salience, credibility and

legitimacy to determine assessments’ effectiveness, that is, their influence on the policy

making process—particularly for those conducted at other than international scales (e.g.,

national, regional). For example, a number of researchers have found the US National

Acid Precipitation Assessment Program (NAPAP) to be irrelevant to the policy-making

process despite efforts to maintain credibility, saliency, and legitimacy (93-95). Similarly,

despite efforts to ensure the credibility (e.g., peer reviewed), legitimacy and saliency

(e.g., stakeholder participation) of the product and process of the first United States

National Assessment of the Potential Impacts of Climate Change (USNA), limitations of

assessment process itself (e.g. budget constraints) and political meddling effectively

contributed to lessen its impact (L. Carter, personal interview, April 2, 2008) (96, 97).

At the regional scale, empirical research suggests that effective assessments are

ongoing, interactive, iterative (8), match the scale of assessment with the relevant scale of

decision making or management (98), and employ buffering and linking strategies (94).

To be effective at producing usable information, regional assessments need to straddle

the line between understanding complex problems and producing information that meets

decision makers’ perception of needs (8). Hence the early and continued involvement of

stakeholders in the process of knowledge production is likely to positively influence the

actual use of information in decision making (99, 100). Likewise, matching the scale of



20

an assessment of a particular phenomenon of interest (e.g., climate change impacts) to the

scale of a potential response (e.g., water management adaptation policies) improves

assessment effectiveness (98). Finally, when assessments protect scientific work from

bias and politicization (buffering) while maintaining ties to potential assessment

information users who might rely on the outputs to inform policy decisions (linking), they

are more effective (94).

3. WHAT INFLUENCES THE USE OF SCIENTIFIC INFORMATION FOR

INDIVIDUAL USERS: EVIDENCE FROM CLIMATE KNOWLEDGE

3.1. Users’ Perception of Risk

Attitudes towards risks vary across people, cultures, time and experience; these attitudes

have a profound impact on the character and type of information sought and used (or not)

in decision making. For example, O’Connor et al. found that risk perceptions were the

strongest determinants of weather and climate forecast use amongst two eastern

American states (101). Water managers who expect to face problems from weather

events in the next decade are more likely to use forecasts than are water managers who

expect few problems; their expectations of future problems are closely linked with past

experience. Feeling at risk thus leads to a greater use of climate information. In her study

of water managers in the US Pacific Northwest and Southwest, Kirchhoff points out that

water managers’ risk perceptions were strongly correlated with information seeking and

collaborative behaviors, through which water managers gather and employ climate

information as a strategy to manage risk and inform decision-making. These behaviors

(seeking information and developing multiple collaborative relationships) help managers

assemble a portfolio of information to manage both uncertainty related to their specific
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decision context and uncertainty embedded in the information that is ultimately used in

decision making (14) (for a discussion of uncertainty in water decision making see also

(102). Finally, different decision environments influence risk perception differently as

well. In Australia, Power et al. discovered that water resource managers perceived the

risk from public outcry over not using climate information in planning as more

worrisome than the risk associated with using it (103).

Human cognition and experience also play a role in risk perceptions. Specifically,

the ways in which people process information analytically (slowly, with “conscious

awareness and knowledge of rules” such as logic and probabilities) or experientially (fast

and relating to experiences and learning from them) affect their perception of risk and

influence their use of information. Marx and Weber found that approaches that encourage

users to employ a combination of these processes positively influence forecast use (104,

105). In terms of experience, worry stemming from personal experiences can influence

risk perceptions and response. For example, individuals who are alarmed about a

potential hazard or risk are more likely to take action informed by climate information

while those who are not alarmed do not take precautions (106). Visualization can also

improve the likelihood of taking action. For example, Weber found that interventions

(e.g., visualizations) that help move future events closer in time and space raise

individuals’ visceral concern, which in turn, may lead to increased responsiveness (106).

3.2. Producer-user Interactions and Decision Environments

Within the broad scope of science-policy models, boundary organizations, knowledge

systems, and assessments and their success (or failure) to produce usable information, a

large body of literature has focused on understanding the factors that influence scientific
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information use in diverse areas of environmental decision making at both the producer-

user interface and at the wider institutional context. In their review of this literature,

Lemos et al. argued that usability is affected mainly by three interconnected factors: the

level and quality of interaction between producers and users of climate information

(interaction), how users perceive climate information meets their needs (fit) and how new

knowledge interacts with other types of knowledge decision maker current use (interplay)

(31).

At the producer-user interface, robust empirical evidence from the well developed

literature focusing on the use of seasonal climate forecasts by different decision makers

suggests that, first, two-way communication that improves mutual understanding and,

second, long-term relationships that build trust between producers and users play a

significant role in increasing scientific information uptake (107-114). In turn, trust

building and accountability influence users’ perceptions of information salience,

credibility and legitimacy in particular decision contexts (14, 115). In addition,

establishing convening, translating, mediating and collaborative processes that link

producers and users increases the salience, legitimacy and credibility of information

leading to improved usability (40). For example, in the US Pacific Islands and US

Southwest (SW), ongoing collaboration between scientists and decision makers

facilitated the production of information tailored to users’ needs and context in the

Islands case (40) and built the capacity of users to incorporate forecasts in decision

making the SW case (116). Similarly, interactions and the long-term relationships they

support can critically accelerate dissemination of new knowledge through the many

networks to which users belong (114). Finally, usability is enhanced with interactions that
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help potential users understand, process and ultimately use information in decision

making. By drawing on what is familiar to potential users and using holistic scenarios,

especially those created using information visualization processes improve salience and

facilitate more comprehensive understanding (117). Visualization has been used as an aid

to local decision making across a range of applications from climate change impacts and

responses (117, 118) to sustainable forest management (119) and landscape change (i.e.,

tourism, agriculture and forestry) (120).

What many of these in-depth studies have found is that interaction can help

mitigate many of the barriers to information use, including users’ perceptions that

scientific information is too uncertain to use or that it lacks the perceived level of

accuracy and reliability to be used in decision making. Interaction can help change users’

minds by facilitating in-depth discussion, including potential trade-offs and risks in using

information and their effect on decision making (14, 103, 121, 122). For instance,

producer-user interactions over the course of a workshop helped users gain a more in-

depth understanding of how streamflows are reconstructed from tree-rings and how this

information can be used to extend what is known about the range of natural variability for

individual streams to aid in long-term drought planning (123). Similarly, explaining

decision-making tools in more depth positively influences users’ willingness to deploy

them. Users also benefit from producers’ explanation of choices, tradeoffs and limitations

of different kinds of knowledge/information. For example, disclosing data sources and

assumptions underlying a water simulation model helped policy makers evaluate the

salience and credibility of the model ultimately influencing its perceived usability (68).

Interaction can also help users to better integrate information in their decision making. In
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their study of coastal managers Tribbia and Moser found they need more than just

information when planning for climate change; they also need support in integrating and

facilitating science knowledge into practical management (124). Finally, interaction may

work to decrease mismatches between different kinds of knowledge and values such as

explicit (e.g. facts and figures) and tacit knowledge (e.g. experience and context (106,

125). For example, interaction fosters learning, which in turn reduces conflicts between

knowledge types by helping to transform one type of knowledge (e.g., explicit

knowledge) into another (e.g., experiential or tacit knowledge).

Case studies in the US and around the world have shown that institutions and

organizational culture matter to the usability of information (102, 109, 113, 126-133). For

example, research found that organizations with more flexible decision-making

frameworks (66) and those that insulate technocratic decision makers (134) are more

likely to use information. Having sufficient human or technical capacity in-house or

having access to relevant external expertise makes climate forecast use more likely (130,

135). Furthermore, a decision-making culture that views the use of climate information as

a strategy to mitigate risk (14, 123, 136) rather than as a risky practice in itself (137) is

more likely to promote integration of climate information in decision making. Finally,

organizations that value research and provide incentives that promote incorporation of

information into decision making also improve knowledge use (14, 110).

4. BROADENING USABLE CLIMATE SCIENCE

In our review, we have synthesized a wide range of research on science-policy models

and empirical research on factors (institutional and organizational issues, risk attitudes

and perceptions, etc.), processes (interaction, visualization, etc.), and structures
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(boundary organizations, knowledge systems, etc.) that influence information use.

Regarding climate science, what this empirical research shows is that many of the

strategies for increasing climate information usability focus on improving interactions

between producers and users of information and obtaining a better fit of information to

the specific user contexts (40, 80, 82, 107, 109). This makes sense given that most

empirical examples of successful adoption have been driven by highly interactive and

well-established relationships between producers and users of climate information

brokered by mechanisms created specifically for that purpose (8, 9, 14, 42, 114, 123,

136). However, while effective in increasing usability, interaction focused approaches

present their own set of challenges, not the least of which is the limited number of

potential users that they can serve (14). Thus, as the need for climate information to

inform policy increases (7, 31, 102, 138), there is a need to think beyond incremental

improvements to existing processes of information production to new approaches capable

of responding to increased levels of demand. Systemic change in the way we produce

scientific information requires understanding how to improve usability not just for

specific users in their particular decision contexts but for broad groups of users and scales

of decision-making, especially those tasked with implementing different adaptation

options and building adaptive capacity to respond to the impacts of climate variability

and change. Hence, there is a critical need to better understand what is common and/or

unique about information users and their decision environments both to inform the

aggregation of users into groups and to aid in adapting climate information to meet the

information needs and decision environments of a wide range of users. Aggregating user

types helps information provisioning by guiding the range of potential strategies
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producers may choose to employ to those potentially more compatible with the target

audience (once the characteristics of that target audience are known).

Our review of the empirical literature suggests two significant drivers of climate

information use: a) behavior towards knowledge and innovation (i.e., how proactive users

are in seeking new knowledge) and b) ability to use information in particular decision

contexts (how supportive/flexible or inhibiting/inflexible is the user’s decision

environment). Across these two drivers, we propose a typology of users (illustrated in

Figure 2), that can inform the design and implementation of climate information

provisioning efforts both in terms of where and potentially how effort should be applied

as well as where current levels of access to information may be in/adequate for current

level of need.

Insert Figure 2 about here

The first type of user is the Early Adopter (upper right box, (a)), who has both a

supportive decision environment (e.g., an organizational culture and institutional

environment that supports using climate information in decision making, see, for

example, (103)) and is highly proactive in obtaining and using information (i.e., they use

many different pieces of information and have been proficient in adopting innovations in

the past). This combination facilitates their use of climate information in decision

making. Early adopters are on the leading edge of adaptation to climate variability and

change and are likely among the most sophisticated information users (14). In

considering aggregated approaches to the provision of climate information, starting with

early adopters first, may help to pave the way for subsequent targeting of more tentative
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users, whose decision making environments also fosters uptake but they themselves may

lack confidence in using climate information.

Tentative Users (lower right quadrant, (b)) have a supportive decision

environment (making climate information use easier) but may exhibit a low level of

initiative in obtaining and using information. This behavior maybe due to either

individual users’ risk averseness or a desire to stay out of the public eye or both (e.g.,

(109)). It may also be because of a negative perception about climate information or prior

negative experience using climate information (134). Tentative users are thus likely to

apply mostly prescribed, established, or routine information sources that they are familiar

with rather than seeking new information or new information sources. While Tentative

Users may not very proactively seek information, their decision environment maybe

conducive to using climate information, especially in the context of decentralized

decision environments (134) or with help from a boundary organization (70). Interaction

with information producers may help groups of Tentative Users to become more

confident with using climate information and to discover how adjusting their decision

making to use available climate information may improve the climate-impacted decisions

they make. For climate information producers, better understanding both users’

reservations/limits to using climate information and the flexibility of their decision

environments, will aid in retailing, value-adding and customizing information to be more

accessible and usable.

The other intermediate user type are Proactive Users (upper left quadrant, (c)),

who actively seek and use information beyond prescribed, established or routine

information sources but, due to unsupportive/inflexible decision environments, may not
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presently use climate information. Drivers of inflexibility may include highly regulated

environments and high levels of public accountability (109, 134), difficulty incorporating

new information into existing decision processes (31, 123) or an unsupportive

organizational culture (14). In this case, Proactive Users may want to use climate

information and seek climate information to meet their perceived needs but may be

unable to use it unless the information very easily integrates with the decision processes

they currently use and with the decisions that they are already making. Hence, these users

may increase their uptake of climate information if it meets their perceived information

needs and fits their decision environment. Interaction can provide information producers

with a better understanding of how to adjust information through customization or adding

value to information to meet Proactive Users’ perceived needs. Alternatively, proactive

users may use climate information in planning but run into roadblocks by regulators not

yet ready to approve its use. Interaction efforts could be designed to be more integrative

spanning not just producers and users but involving regulators, upper management, or

others who may impact uptake. Interaction in the context of a knowledge system could

help in this regard since knowledge systems help span decision scales.

Finally, the penultimate user type, Laggards (lower left quadrant, (d)), have both a

low level of proactivity of information adoption and an unsupportive decision context.

Laggards are likely very difficult to reach out to because they do not want to use new

information or information from sources that they are unfamiliar with and face decision

environments that make incorporating new information difficult. While they might be

more impervious to change in the short run, they may be good targets for awareness

raising and broader education campaigns to build capacity for uptake of climate
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information in the longer term. In the sense that it aggregates users that inform different

kinds of strategies to increase scientific information uptake, this simple matrix can be

useful to the design of different strategies to amplify the availability and accessibility of

climate information beyond close interaction and contribute to up-scaling the delivery of

climate information that may be required with a growing number of users as the climate

continues to change. It can also support the design of remote tools that seek to learn and

emulate desirable characteristics of highly interactive processes and strategies of

knowledge production and use.

5. CONCLUSION

There are an ever growing number of complex environmental problems that increasingly

need science to support decision-making. Despite the growing availability of scientific

information, there is a persistent gap between knowledge production and its use to inform

decision making. Scholars have explored different ways to narrow this gap through better

understanding society’s relationship to science including how it both shapes the science

that is produced and how that science is used (or not) to support decisions. These efforts

have produced a rapid evolution of science-society models, ranging from the 1940’s

linear model, to more complex models of science production that embrace

interdisciplinary approaches and involve users to help solve societal problems. Despite

these efforts to re-think and restructure science production, current approaches have not

been able to surmount the usability gap. This review advances this practical and scholarly

inquiry by surveying a wide range of research on science-policy models and empirical

research on factors, processes and structures that influence science usability highlighting

the lessons that can both support the creation of new science/policy interfaces and inform
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the institutionalization of successful models. Our review of the empirical literature

suggests two significant drivers of climate information use: a) behavior towards

knowledge and innovation (i.e., level of proactivity of information adoption/knowledge

seeking behavior) and b) ability to use information in particular decision contexts (how

supportive/flexible or inhibiting/inflexible is the user’s decision environment). We

identify a typology of users—Early Adopters, Proactive Users, Tentative Users and

Laggards—across these two drivers to inform the design and implementation of

information provisioning efforts. The typology helps to identify concrete approaches that

can support up-scaling information such as starting with early adopters to pave the way

for subsequent targeting of more tentative users and designing integrative engagement

efforts spanning not just producers and users but involving regulators, upper

management, or others who may impact information uptake.

Although the typology has the potential to amplify the availability and

accessibility of information beyond close interaction and contribute to up-scaling the

delivery of information (including climate information) more broadly, there are potential

constraints and challenges that need to be addressed in future research. One challenge

concerns the constraints and disincentives that limit both the ability of scientists to

engage with user communities and broker knowledge, and that limit users’ ability to

engage with scientists. Another challenge concerns overcoming the entrenched

institutional roadblocks that can circumvent information uptake despite the establishment

of successful information provisioning efforts between scientists and groups of users.

Institutional change can be more difficult and much slower to change but finding ways to

make even small gains in these areas (integrative, holistic strategies for interaction) can
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result in vast improvements in uptake when groups of users are targeted. Finally, up-

scaling will be difficult to achieve if laggards and tentative users are not brought into the

provisioning process. Finding creative ways to reach tentative users and increasing

education and outreach across all user types, can get us part way there.

SUMMARY POINTS

 There has been a rapid evolution of increasingly complex science policy models

to help understand science-society interaction and to aid in understanding how to

provide information to solve societal problems

 Despite this advancement and attention to problem solving, there is a persistent

gap between production and use of scientific knowledge

 Much of the work to bridge the gap has focused on individual users and their

decision contexts

 We propose that to achieve more widespread uptake in information requires a

shift in the way in which we approach information provisioning

 We suggest there is a need to better understand users in the aggregate and propose

a typology of users using two drivers of information use: information seeking

behavior and decision context

 Understanding types of users—Early Adopter, Proactive User, Tentative User,

and Laggard—can inform the strategies producers use to reach potential users to

advance more broad dissemination and use of information

FUTURE ISSUES
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 Beyond understanding user types, there is a need to overcome institutional

constraints that constrain information uptake despite best efforts at information

provisioning

 There is a need to explore how interactions between producers and users that have

increased usability in the past can be more integrative representing more of the

users’ decision context (e.g., institutions, regulators, etc.)
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ACRONYMS

GFCS Global Framework for Climate Services

HEI Health Effects Institute

IPCC Intergovernmental Panel on Climate Change

MEA Millennium ecosystem assessment.

NAPAP United States National Acid Precipitation Assessment Program

OTA Office of Technology Assessment

RISA Regional Integrated Sciences and Assessment

USNA United States National Assessment of the Potential Impacts of Climate Change
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GLOSSARY

Science-policy model: conceptual means to simplify and explain the interactions and boundaries

of science production and society or policy-/decision-making

Postnormal science: postnormal science is both a framework (Funtowicz and Ravetz 1993) and a

practical approach (Turnpenny, Jones et al. 2011) for problem situations in which stakes are high

and science uncertain. In postnormal science, scientific knowledge alone is not enough to solve

societal problems and constituents need their own forms of knowing to better evaluate their risk

situation

Boundary organization: organizations that facilitate the interaction between science producers

and users

Knowledge system: encompass programs and institutional arrangements that effectively harness

science and technology to improve decision making

Scientific assessment: organize, evaluate, and integrate expert knowledge to inform policy or

decision making
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Figure Captions

Figure 1 The evolution in the complexity in knowledge production and user participation. On the

vertical access, the complexity of knowledge production increases from low (where production is

predominately focused on increasing our fundamental knowledge) to high complexity (where

production aims to help solve societal problems). On the horizontal axis, the complexity of user

participation changes from low to high as users become increasingly active agents in the

knowledge creation process.

Figure 2 Matrix of user types as a function of proactivity for obtaining and using information and

users’ decision environment.
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