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Abstract 

Peroxisomes are pleoimorphic, metabolically plastic organelles. Their essentially oxidative 

function led to the adoption of the name ‘peroxisome’. The dynamic and diverse nature of 

peroxisome metabolism has led to the realisation that peroxisomes are an important source of 

signalling molecules that can function to integrate cellular activity and multicellular 

development. In plants defence against predators and a hostile environment is of necessity a 

metabolic and developmental response- a plant has no place to hide. Mutant screens are 

implicating peroxisomes in disease resistance and signalling in response to light. 

Characterisation of mutants disrupted in peroxisomal β -oxidation has led to a growing 

appreciation of the importance of this pathway in the production of jasmonic acid, conversion 

of indole butyric acid to indole acetic acid and possibly in the production of other signalling 

molecules. Likewise the role of peroxisomes in the production and detoxification of reactive 

oxygen, and possibly reactive nitrogen species and changes in redox status, suggests 

considerable scope for peroxisomes to contribute to perception and response to a wide range 

of biotic and abiotic stresses. Whereas the peroxisome is the sole site of β -oxidation in 

plants, the production and detoxification of ROS in many cell compartments makes the 

specific contribution of the peroxisome much more difficult to establish. However progress in 

identifying peroxisome specific isoforms of enzymes associated with ROS metabolism should 

allow a more definitive assessment of these contributions in the future. 

 

Keywords: Peroxisome, β -oxidation, hydrogen peroxide, superoxide, reactive oxygen 

species, nitric oxide, stress, defence. 
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1. Introduction 

 Peroxisomes are single membrane bound subcellular organelles, ubiquitous in eukaryotic 

cells. The organelles are usually spherical bodies in the range of 0.1-1µm in diameter, 

however several studies indicate the ability of peroxisomes to form large reticular networks in 

response to changes in their cellular environment [1-3]. Peroxisomes contain coarsely 

granular or fibrillar matrix, occasionally dotted with crystalline inclusions containing 

enzymes involved in oxidative metabolism, in particular catalase [4, 5] [6]. 

 

When these organelles were first isolated in the 1960s, their sole function was deemed to be 

the detoxification of H202 produced by various flavo-oxidases [7] [2]. However, it is now well 

known that peroxisomes carry out oxidative metabolism of a variety of substrates depending 

on their origin and contribute to various cellular processes in virtually all eukaryotic cells, 

with defence against oxidative stress and β- oxidation being the most conserved functions [8] 

[9] [1, 10]. A remarkable property of peroxisomes is their metabolic plasticity, which enable 

them to remodel their size, shape and enzymatic constituents depending on the cell or tissue 

type, organism and prevailing environmental conditions. This adaptability is exemplified by 

the induction of peroxisome proliferation in response to xenobiotics, herbicides, chemical 

pollutants, biotic stress, abiotic stress and nutrient deprivation [7] [2, 11] [8]. 

 

Peroxisomes can be viewed as specialised organelles whose classification depends on the 

prevalent metabolic process at any given time [1, 12].  In plants peroxisomes differentiate into 

at least four different classes; glyoxysomes, leaf peroxisomes, root nodule peroxisomes and 

unspecialised peroxisomes [8] [13] [14]. Glyoxysomes occur in endosperms and cotyledons 

of germinating seeds and contain enzymes for the β-oxidation and glyoxylate cycle to convert 

oil seed reserves into sugars which can be used for germination before the plant is 
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photosynthetically active [5, 13, 15, 16]. On the other hand, leaf peroxisomes house enzymes 

for the oxidation of glycolate during photorespiration [5, 15, 17] [8, 18, 19]. Root nodule 

peroxisomes contain urate and xanthine oxidase which catalyses the oxidation of xanthine and 

uric acid produced during nucleotide turnover [20, 21] [6].  It should be noted that this 

classification is not rigid since glyoxysomes transform into photosynthetic leaf peroxisomes 

and vice versa, in response to changes in light intensity and developmental programme [22] 

[4, 8, 13, 23, 24]. 

 

The metabolic reactions occurring in peroxisomes are very complex, and in recent years much 

attention has been devoted to elucidating the role of peroxisomes in cellular metabolism.  The 

introduction of post genomic approaches such as transcriptomics and proteomics and the use 

of  bioinformatics tools is shedding some light on our understanding of peroxisome function 

with new functions being discovered [14, 25, 26] [27, 28]. 

 

 There is a considerable body of evidence linking peroxisomal metabolism to production of 

reactive oxygen species (ROS), reactive nitrogen species (RNS) and β oxidation derived 

signalling molecules particularly in plants (reviewed in: [29] [30] [31] [32]. In this regard the 

current state of knowledge in this area will be reviewed with particular reference to plants.  

The metabolic pathways involved in the synthesis of signalling molecules, evidence for the 

existence of such pathways in peroxisomes and the mechanisms involved in balancing the 

subcellular levels of the signalling molecules will be discussed. The gap existing in our 

current understanding of the involvement of peroxisomes in signalling and future challenges 

that need to be addressed to fully understand the role of peroxisomes in generation of 

signalling molecules in eukaryotic cells will also be highlighted.  
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 2. The Role of Peroxisomes in Generation of Signalling Molecules: An Overview 

The last decade has seen progress in our understanding of signal transduction pathways and 

the role played by various cellular compartments is beginning to emerge. Various 

experimental evidence indicate the role of peroxisomes in the metabolism of ROS, RNS and 

in β-oxidation with concomitant production of intra- and inter- cellular signalling molecules 

(Figure 1)   [33] [30] [34] [35] [36]. Since these molecules are produced during normal 

cellular metabolism, their role in signalling largely depends on the balance between synthesis 

utilisation and degradation. [37] [38]. Under optimal conditions a dynamic equilibrium exists 

between  the rate of synthesis and the rate of utilisation or breakdown of the potential 

signalling molecules, resulting in maintenance such molecules at levels compatible with the 

metabolic requirements of a specific cellular compartment [39, 40]  [38] [41, 42].  However, 

environmental stimuli such as desiccation, salt, chilling, heat shock, heavy metals, UV 

radiation, ozone, mechanical stress, nutrient deprivation and biotic stress are known to perturb 

this balance leading to an overproduction of the signalling molecule, which may initiate a 

signalling cascade or cause cellular damage [36] [35] [39, 43].  

 

A typical example of such a scenario is the increased production of ROS in response to biotic 

or abiotic stress (oxidative burst). This may initiate lipid peroxidation yielding products that 

react with DNA and proteins to cause oxidative modifications, or initiate a signalling cascade 

leading to acclamatory stress tolerance [44], hypersensitivity response (HR) or programmed 

cell death (PCD) [45, 46] [47] depending on the nature of the stimuli.  This emphasises the 

need for the cytotoxic effects of the signalling molecules to be tightly regulated in-order for 

the signalling effects to be exerted without deleterious effects on the organism.  
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In A. thaliana over 152 genes belonging to the ROS gene network are thought to regulate 

ROS levels and signals [39].  It is possible that such gene networks may be involved in 

controlling the steady state levels of RNS, hormonal levels and the redox state of the 

peroxisomes to ensure the signalling role of  potentially cytotoxic molecules [48]  [49] [41]. 

However, the role of such gene networks in maintaining the steady state levels of signalling 

molecules in peroxisomes has not been investigated. 

 

3. 0.   The role of Peroxisomal β - Oxidation in  generation of plant signalling molecules 

β -Oxidation is the major pathway for the degradation of straight and branched chain fatty 

acids as well as some branched chain amino acids in a range of organisms including plants, 

yeast and mammals [25, 50], [30], Hiltunen and Poirier, this volume). Apart from its catabolic 

role, compounds derived from β-oxidation are involved in controlling a variety of cellular 

processes in both plants and animals [51] [52]. These include the eicosanoid family of lipid 

mediators such as 2, 3-Dinor-5, 6-dihydro-15-F-2t-isoprostane, which plays an important role 

in vasoconstriction [52], plant aromatic and cyclic oxylipins such as Jasmonic acid (JA), and 

other β-oxidation derivatives such as indole acetic acid (IAA) and salicylic acid (SA) which 

are important in signalling  [51] [30] [25] [53] [54] [55, 56]. Peroxisomes, as the only site for 

β-oxidation in plants, should have a central role in the biosynthesis of these β- oxidation 

derived signalling molecules [30]. 

 

 3. 1.  The role of β– oxidation in the production of Jasmonates 

The role of JA as a signalling molecule in plants is well established, with documented 

functions ranging from defence against biotic and abiotic stress, male and female fertility, 
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fruit ripening, root growth and tendril coiling to vitamin C synthesis [57, 58] [59-61] [53] 

[62].  

The biosynthesis of JA occurs via the octadecanoid pathway (18:3), or hexadecanoid pathway 

(16:3) which are both initiated in the plastids by the oxygenation of either linolenic acid (18: 

3) / linoleic (18:2) or hexadecatrienoic acid (16:3) derived from the lipid bilayer. This step is 

followed by a series of enzyme guided dehydration and cyclisation reactions leading to the 

formation of 12-oxo-phytodienoic acid (OPDA), or dinor OPDA, which is exported to 

peroxisomes. Reduction of OPDA or dinor OPDA yields 3 oxo-2 (2’ (Z)-pentenyl)-

cyclopentane -1-octanoic acid (OPC:8) or 3 oxo-2 (2’ (Z)-pentenyl)-cyclopentane -1-hexanoic 

acid (OPC:6), which is perceived to undergo three or two cycles of β-oxidation, to produce 

3R, 7S-JA [(+)-7-iso-jasmonic acid] (Figure 2) [53, 57, 59, 63, 64]. 

 The involvement of β-oxidation in this biosynthetic pathway is supported by an observation 

that only an even number of carboxylic acid side chains of OPC derivatives were used for JA 

synthesis [65].  Plant peroxisomal β-oxidation involves the sequential action of enzymes from 

three gene families; acyl CoA oxidases (ACX), multi functional proteins (MFP) and L-3-

ketoacyl-CoA thiolases (KAT) [30, 66]. However, the exact role of the various β-oxidation 

enzymes in the synthesis of JA is not clearly understood. Analysis of Arabidopsis and tomato 

mutants isolated by forward and reverse genetics has provided some insights into the enzymes 

that may be involved in this pathway, although some gaps in our knowledge still exist. 

 

 Oxylipin profiling in a cts  mutant with a defective ABC transporter (also known as PXA1 or 

PED3) [67] indicated a drastic reduction in the basal and wound induced levels of JA in 

leaves, suggesting that the import of OPDA or dnOPDA (or their CoA esters) into 

peroxisomes may be regulated by CTS/PXA1/PED3. A passive mechanism involving ion 

trapping would account for the residual levels of JA observed in the mutant [9, 30, 67].  
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Once imported, OPDA or dnOPDA undergoes reduction to OPC: 8 or 3-oxo-2- (2’)-

pentenyl)-cyclopentane-1- haxanoic acid (OPC: 6) respectively. This reaction is mediated by 

OPR3; a NADPH dependent OPDA –reductase, which is the only peroxisomal isoform 

among the three OPR isoforms of A. thaliana and is specific for the 9S, 13S-stereoisomer of 

OPDA [68, 69]. OPR3 is expressed throughout the plant and co-localises with enzymes for 

fatty acid β- oxidation in peroxisomes, suggesting that it may be part of the β-oxidation 

pathway for JA [69]. Moreover, opr3 mutants are deficient in JA and also exhibit defective 

pollen production, delayed dehiscence and male sterility, suggesting that OPR3 may be the 

only enzyme involved in this reduction step [30, 68, 70]. The fact that OPR3 accepts free 

OPDA, and opr3 mutants lack OPC: 8  suggests that reduction of OPDA to OPC:8 precedes 

the CoA esterification step [59, 63, 69-71]. However, the recent identification of two 

peroxisomal 4-coumarate: CoA ligase-like (4CL) acyl activating enzymes; At4g05160 and 

At5g63380 with high efficiency in activating OPDA, and OPC:6 in- vitro [72], suggests that 

activation can occur at various stages in the β-oxidation pathway. Bearing in mind the large 

number of genes encoding acyl activating enzymes that were identified in Arabidopsis [25, 

73] ,  and the fact that only two out of 25 4CL-like proteins of unknown biochemical function 

showing high sequence similarity to the  4CLs were analysed [72], the existence of other acyl 

activating enzymes committed to this pathway can not be ruled out. The subcellular 

localisation of the acyl activation step and the possible entry points of OPDA into the β- 

oxidation pathway is an issue that still needs to be investigated.  

 

 The subsequent oxidation step is catalysed by acyl-CoA oxidase (ACX) which oxidizes a 

fatty acyl-CoA to a 2-trans-enoyl-CoA. Of the five genes encoding such oxidases in A. 

thaliana, ACX1 has an important role in JA synthesis. This is supported by experimental data 
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whereby an acx1-1 mutant of Arabidopsis accumulated acyl-CoA and had a drastic reduction 

in JA levels [74]. 

Moreover, a map based cloning approach identified an isoform of acyl-CoA oxidase, in 

tomato (Lycopersicon esculentum (LeACX1), which plays an essential role in the biosynthesis 

of JA in response to wounding. The Leacx1A mutant leaves had reduced basal and wound 

induced levels of JA. Moreover the recombinant LeACX1A metabolised OPC: 8: CoA and 

OPDA in preference to fatty acylCoA in a coupled ACS-ACX assay, suggesting a possible 

role of the LeACX1A in the oxidation of OPDA or OPC: 8 [51]. The direct oxidation of 

OPDA would imply that OPR3 activity may be switched on and off depending upon the 

metabolic needs of the cell. In the absence of OPR3 activity, OPDA may be oxidised to 4, 5-

didehydro-JA [51] [63].  

 LeACX1A is homologous to AtACX1 which is implicated in the wound induced 

biosynthesis of JA [75] and also to the peroxisomal acyl oxidase GmACX1 from soyabean 

(Glycine max)  (76). Thus; ACX1 appears to play a pivotal role in the biosynthesis of JA.  

LeACX1A, AtACX1 and GmACX1-1 [76] have peroxisomal targeting sequences [25], and 

exhibit broad substrate specificity [51, 75, 77, 78], suggesting that these peroxisomal enzymes 

may catalyse equivalent reactions in subsequent rounds of β-oxidation to yield JA.  However, 

the relative specifity of ACX1 for OPC: 6 and OPC: 4 and the subcellular localisation of these 

reactions await further investigation.  

 

 Following oxidation the next step requires the activity of MFP which catalyses the hydration 

of 2-trans-enoyl-CoA to 3-hydroxyacyl-CoA and subsequent oxidation to 3-ketoyl-CoA 

 A. thaliana has two peroxisomal MFPs; AIM1 and MFP2, which play an important role in 

fatty acid beta oxidation. However the  levels of JA in the aim1 or mfp2 mutant was not 
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evaluated, in this regard the role of the MFPs in relation to JA synthesis is still not known [79, 

80].  

 

Arabidopsis possesses three 3-keto acyl thiolase genes, KAT1, KAT5 and KAT2/PED1, of 

which the latter is the major seedling expressed thiolase. The role of KAT2/PED1 thiolase in 

wound induced JA biosynthesis was demonstrated in two independent studies based on 

suppression of KAT2/PED1 by antisense RNA [75] and ped1 mutant analysis [81]. In both 

studies JA synthesis was not abolished indicating that another KAT isoform(s) partially 

compensated for the KAT2/PED1 defect.  This observation suggests the role of other KAT 

isoform(s) in JA synthesis, which needs further investigation [30]. Thus, the core β-oxidation 

pathway may be involved in JA synthesis, however due to overlapping substrate specificities 

for these enzymes [51, 78], the involvement of other enzymes committed to this pathway can 

not be ruled out. Once formed, JA should be released from its acyl-CoA ester before being 

exported to exert its signalling effects, the enzyme involved in mediating the hydrolysis of the 

acyl CoA to release JA and the export mechanism have not been investigated [25]. 

 

JA may be further oxidised, methylated or aminoacylated to produce compounds with 

different properties and signalling roles from JA [82, 83]. These include  

Z- jasmonate; an insect attractant produced from a further round of β oxidation of JA, amino 

acid conjugates particularly with isoleucine, JA derivatives such as Jasmonyl-1-β –

gentiobiose, jasmonyl-1-β –glucose, hydroxyjasmonic acid, tuberonic acid and its glucoside 

[84] and methyl jasmonate; a volatile signal involved in intra- and inter-cellular 

communication as well as inter plant communication [53, 57, 85]. Although there is evidence 

for the role of S-adenosyl-L-methionine: Jasmonic acid carboxyl methyltransferase (JMET) 
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and JAR1 in JA methylation and conjugation of isoleucine to JA respectively [85, 86], the 

localisation of JAR1 or JMET and the functions of these modifications remains unknown.  

 

The structure and biosynthesis of JA resembles the animal eicosanoids such as hydroxyl fatty 

acids, leukotrienes and lipoxins, which are synthesised from arachidonic acid (20-C) by free 

radical-mediated peroxidation reactions via the lipoxygenase pathway [52, 87]; [88, 89]; [90, 

91]. Both OPDA in plants and animal eicosanoids produced in this pathway are potent 

signalling molecules [55, 71]. Peroxisomal β- oxidation functions in the conversion of OPDA 

to JA which has different spectra of activity from OPDA [84], while in animals the pathway 

serves to degrade leukotrienes and other eicosanoids resulting in loss of or altered biological 

activity [91, 92] (Figure 2). The identification a bioactive β- oxidation metabolite of 

prostadlandins; 2, 3-Dinor-5, 6-dihydro-15-F-2t-isoprostane which plays an important role in 

vasoconstriction, suggests that this pathway may also be involved in generating yet 

uncharacterised signalling molecules in animals [52]. Whereas CTS/PXA1/PED3 is 

implicated in the uptake of OPDA into peroxisomes for conversion to JA, the mammalian 

homolog; Adrenoleukodistrophy protein (ALDP) may not be involved in the uptake of 

eicosanoids for degradation since X-ALD patients metabolise leukotrienes [92].  

 

3. 2. The role of beta-oxidation in the conversion of Indole butyric acid to IBA to indole 

acetic acid IAA  

Indole acetic acid (IAA), is an auxin that plays an important role in virtually all aspects of 

plant growth and development, including vascular development, lateral root initiation, apical 

dominance, phototropism, geotropism as well as a herbicide at higher concentrations [93-95]. 

The synthesis of IAA occurs through multiple pathways, including the tryptophan dependent 

and independent pathways, which occur in the cytoplasm and plastids. In addition hydrolysis 
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of IAA –conjugates and conversion of endogenous indole butyric acid (IBA) increases the 

intracellular pool of IAA [31, 95]. 

  

The conversion of IBA to IAA was demonstrated in a variety of plants using radiolabelling 

techniques [31, 95]. The proposed mechanism of IBA conversion to IAA, involves 

thioesterification, oxidation, hydration, dehydration, thiolysis and hydrolysis (analogous to β-

oxidation of fatty acids) to release the free auxin which is then exported from the peroxisomes 

[25, 31, 66]. IBA or the synthetic auxin precursor 2, 4 –dichloro-phenoxy-butryric acid (2, 4 

DB) are converted to IAA or 2, 4 –dichloro-phenoxy-acetic acid (2, 4 D), which inhibit root 

growth. The isolation and characterisation of mutants that are resistant to inhibitory 

concentrations of IBA or 2,4 DB but respond normally to IAA or 2,4 D has been very 

powerful in isolating mutants defective in IBA responses, peroxisomal β-oxidation and 

peroxisome biogenesis [30, 31, 93], see also article by Nishimura and colleagues in this 

volume).  This data suggests the role of beta –oxidation in the conversion of IBA to IAA. 

However, some fatty acid β- oxidation enzymes such as MFP2 appear not to be involved in 

conversion of IBA to IAA since the mfp2 mutant is not resistant to 2,4 DB [79].  It is probable 

that enzymes committed to this pathway exist, in addition to the core β-oxidation enzymes. 

Comparing the rate of conversion of radio labelled IBA in the IBA responsive mutants may 

indicate the specificity of the β- oxidation enzymes in the conversion of IBA to IAA, and 

possibly lead to identification of novel enzymes committed to this pathway. IAA is 

conjugated to amino acids and hydrolysed to release free IAA upon demand, however the 

subcellular localisation of these events is not known [96, 97].  

 

3.3. Beta –oxidation; a possible pathway for the synthesis of salicylic acid  
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Salicylic acid plays a role in thermo-tolerance, hypersensitivity response and systemic 

acquired resistance [98]. SA is synthesised from the decarboxylation and side chain 

shortening of trans-cinnamic acid (CA) (derived from the non oxidative deamination of L –

phenylalanine) followed by hydroxylation [99, 100]. The side chain can be shortened via non 

oxidative decarboxylation or in a manner analogous to β- oxidation resulting in the formation 

of benzoic acid (BA) which is hydroxylated in the meta position to yield salicylic acid [25, 

101]. The role of β- oxidation in this process still needs further investigation although acetyl 

CoA was shown to stimulate the conversion of CA to BA [101, 102]. It is plausible that 4-

coumarate CoA ligases which activate a range of hydroxyl and methoxy-substituted cinnamic 

acid derivatives may be involved in activating cinnamic acid to cinnamoyl CoA which enters 

β- oxidation   to yield SA [25].  

 

4. The role of peroxisomes in generation of reactive oxygen species 

4.1. ROS as signalling molecules 

The term reactive oxygen species is used to denote species with free unpaired electrons. These 

species include superoxide (O2
•-), hydroxyl radical (•OH), perhydroxyl radical (•HO2), peroxyl 

radicals (ROO•   and alkoxyl radicals • RO which are produced during normal cellular 

metabolism or induced by changes in the environmental conditions. However, this term is 

often loosely used to describe other non radical derivatives of oxygen which are highly 

reactive such as H202, singlet 1O2 , peroxynitrite ONOO and Hypochrous acid HOCl [103]; 

[42, 43, 104]. ROS are generated when triplet oxygen undergoes sequential univalent 

reduction from the non reactive ground state [43].  The primary ROS formed in the cell is the 

superoxide which initiates a cascade of reactions that result in the formation of a variety of 

ROS depending on the cell type or cellular compartment [43].  
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H2O2 formed due to the enzymatic and spontaneous dismutation of superoxide, is a key 

signalling molecule in both plants and animals. Signalling pathways controlled by H2O2 

include activation of the transcription factor NF-κB in mammalian cells and regulation of 

gene expression in bacteria [105-107].  In plants H2O2 is now known to be involved in 

programmed cell death [45, 108], peroxisome biogenesis [11], ABA-mediated guard cell 

closure [109], cross tolerance (resistance to a particular stress that also confers resistance to 

another form of stress) [110, 111], plant hormonal activity [40, 94], and gene expression in 

response to abiotic stress factors such as ozone, UV, high light intensity, dehydration, 

wounding, and temperature extremes [36, 47, 112]. A comprehensive transcript profiling by 

cDNA amplification fragment length polymorphism to monitor genes upregulated in response 

to H2O2 in transgenic catalase deficient tobacco plants identified thousands of genes involved 

in the hypersensitivity response [113]. Moreover, a microarray analysis to identify genes 

regulated by H2O2 in A. thaliana identified 175 non redundant ESTs,  with 113  genes being 

activated while 62 were repressed [114].  These studies indicate the important role played by 

H2O2 in regulating gene expression, and development in plants.  

 

Other ROS arising from the further reduction of H2O2 include the hydroxyl radical (•OH 

(formed when H2O2 is reduced in presence of metal ions via the Haber–Weiss reaction), 

perhydroxyl radical (•HO2), peroxyl radicals (ROO•)   and alkoxyl radicals • (RO). These 

molecules are powerful oxidants with a short half life, and their formation is tightly regulated 

by a series of antioxidant systems [43, 44, 115]. It is not surprising that our understanding of 

their role in signalling is still in its infancy.  However such ROS, in particular •OH, may have 

a significant role during ageing, fruit ripening, drug metabolism and controlled breakdown of 

polymers during rearrangement of cell walls in roots, hypocotyls and coleoptiles where a 
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strong oxidising agent may be needed [43]. Recently singlet oxygen has also been identified 

as an important signalling molecule in plants [116-118].  

 

In plants production of ROS has been demonstrated in various cellular compartments 

including the chloroplasts, mitochondria, peroxisomes, plasma membrane, apoplastic space 

and nuclei, with most of the cellular ROS originating from the first three compartments [43, 

119, 120]. The mitochondria was viewed as the major contributor of ROS in cells, however 

this notion is worth revising as evidence are mounting for the role of other compartments, 

particularly peroxisomes in ROS metabolism [12, 115, 119, 121]. This is supported by the 

proliferation of peroxisomes observed during oxidative stress [11, 33]. 

 

In order to understand how peroxisomes contribute to the production of ROS based signalling 

molecules, it is necessary to examine the mechanism by which the important ROS such as 

H2O2 and superoxide are produced, and the antioxidant systems available in the peroxisomes 

to prevent cytotoxicity associated with the production of such signalling molecules. 

 

 4.2. Plant peroxisomes as generators of the superoxide radical  

The production of O2
•- may be viewed as inevitable, considering the aerobic conditions under 

which most reactions occur. Reports on the production of O2
•- in mammalian tissues such as 

neutrophils, monocytes and phagocytes exist [122-124]. In plants, chloroplasts generate O2
•- 

during photoreduction of oxygen in the Mehler reaction, occurring at photosystem I (PSI) and 

also during the electron transport chain, whereas in the mitochondria direct reduction of 

oxygen to superoxide by the NADH dependent dehydrogenase occurs. A detailed account on 

how each of these processes leads to generation of (O2
•-) can be found elsewhere [12, 43, 115, 

119].  
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The production of O2
•- in peroxisomes was first demonstrated using a subglyoxysomal 

fraction from watermelon (Citrullus  vulgaris Schrad) [125] and castor bean endosperm [126] 

and later in pea (Pisum sativum) leaf peroxisomes [127]. This was ascribed to a matrix 

localised enzyme, xanthine oxidase (XOD) which was detected in the supernatants and 

confirmed by electron spin resonance (ESR), biochemical and immunological data [125-128].  

XOD catalyses the oxidation of xanthine or hypoxanthine to uric acid, with production of O2
•- 

uric acid is further converted to allantoin via the action of urate oxidase [7, 129].  HPLC 

analysis detected the presence of all the metabolites for xanthine and urate oxidase in leaf 

peroxisomes [33, 130], reinforcing the role of peroxisomes in the metabolism of xanthine or 

hypoxanthine produced during turnover of nucleic acids. Xanthine oxidase and xanthine 

dehydrogenase are interconvertable forms of the same protein [131, 132]. Two Xanthine 

dehydrogenase genes are annotated in the Arabidopsis genome, but neither has an obvious 

peroxisome targeting signal. 

 

Biochemical and electron spin resonance spectroscopy ESR demonstrated  the generation of 

O2
•-  in peroxisomes via a second pathway involving a short electron transport chain in the 

peroxisomal membranes of castor bean (Ricinus communis) seeds [133-135] and potato tuber 

peroxisomes [136]. This electron transport chain represents a mechanism for the regeneration 

of NAD+ and NADP+ to sustain peroxisomal oxidative metabolism [33]. Three PMPs 

involved in the production of O2
•- were purified from the membranes of pea leaf peroxisomes 

(Table 1).  These include two NADH dependent proteins; PMP32, bearing biochemical 

resemblance to mono-dehydroascorbate reductase (MDAR) and PMP18, a putative cyt b5. A 

third protein PMP29 is NADPH dependent, and can transfer electrons to cytochrome c and O2 

in vitro [137, 138]. The O2
•- produced has a half life of 2-4ms, before it spontaneously or 
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enzymatically disproportionate into H2O2 [42].   The signalling effects of O2
•-   have not been 

studied much, possibly due to its instability and impermeability to cell membranes [42].  

However evidence suggests that  O2
•- may act directly as a second messenger in regulating the 

expression of oxidative stress response genes such as glutathione peroxidases, ascorbate 

peroxidase and glutathione-S-transferases and in regulating enzyme activity through oxidation 

of Fe-S clusters in enzymes  [42].  

 

 

4.3. The role of Peroxisomes in Production of Hydrogen Peroxide 

The production of H202 in peroxisomes has been known for decades, however details of the 

biochemical pathways leading to the production of H202 (Table 1) are beginning to be 

established. The dismutation of O2
•- by superoxide dismutase (SOD) (Table 1) constitutes the 

first line of defence by converting the charged (O2
•-) radical species into H202 which can be 

metabolised by the cell’s antioxidant machinery.  Three types of SODs which differ in their 

metal cofactor are distributed in various cellular compartments [33, 139, 140]. 

 

In peroxisomes immuno-electron microscopy and density –gradient centrifugation detected 

the presence of two types of SODs, a 33 kDa Mn- SOD which uses manganese as a cofactor 

was identified in peroxisomes from pea cotyledons [139, 141, 142], while copper- zinc  

(Cu-Zn) SODs were detected in cotyledons of water melon [143-146]. To date the presence of 

SODs in plant peroxisomes has been demonstrated in at least nine species and confirmed in 

five species. SODs have also been identified in peroxisomes of human hepatoma cells and  

fibroblasts, rat liver, fish and yeast [6]. This localisation of SODs in peroxisomes, suggest a 

role in dismutation of (O2
•-) to produce H202. Arabidopsis thaliana has 3 genes encoding Cu-

Zn SODs of which one CSD3 encodes a protein with the putative PTS1 peptide AKL 
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(Table1). Neither of the two Mn SODs; (At3g10920) and MSD1 (At3g56350) have obvious 

PTS’s and are known or predicted to be mitochondrial. 

 

H202  is also produced during the metabolism of ureides [5, 6, 20, 21] and also via the action of 

acylCoA oxidase during β-oxidation [30]. During photorespiration glycolate enters the 

peroxisomes and is oxidised to glyoxylate by  a flavin mononucleotide dependent, glycolate 

oxidase with production of H202  [15, 17, 18] [147], see also the article by Reumann and 

Weber in this volume). Arabidopsis has five glycolate oxidase-like genes; from expression 

patterns it was suggested that GOX1 and GOX2 are the principal photorespiratory enzymes 

(Table 1). GOX3 is expressed predominantly in non-photosynthetic tissue and the more 

divergent HAOX1 and HAOX2 (which also contain potentials PTSs) are suggested by analogy 

to homologous mammalian enzymes to be involved in metabolism of 2-hydroxy acids [25]. 

 

Recently a peroxisomal sulfite oxidase (SO); a molybdenum containing protein (MCP), from 

A. thaliana was identified and characterised, as a molybdenum dependent, non-heme 

containing enzyme; an observation that is atypical of other eukaryotic sulfite oxidases  [148, 

149].  Experimental data indicated that AtSO is localised in plant peroxisomes [150] and 

catalyses the oxidation of sulfite with oxygen acting as a terminal electron acceptor with 

concomitant production of H202  (Table 1) [151]. This provides an additional pathway for the 

generation of H202 in plant peroxisomes which may not be present in other eukaryotic cells. It 

is proposed that the above reaction is followed by a non enzymatic step, where by H202, can 

oxidise a second molecule of sulfite to sulphate.  Thus this enzyme may have a dual role in 

the detoxification of sulfite and balancing the level of H202 particularly under conditions of 

high sulfite concentration when catalase is inhibited [151].  
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OsMCP a homolog of the Arabidopsis thaliana AtSO was also isolated from rice and its 

localisation was confirmed to be peroxisomal.  In addition seventeen putative MCP genes 

with a peroxisomal targeting sequence were identified in other plant species, suggesting SO 

may be a conserved enzyme with a dual role in plants [148]. This view is supported by the 

localisation of the tobacco NtSO (a protein with a SNL peroxisomal  targeting motif) to 

peroxisomes as confirmed by biochemical  and immunogold labelling techniques [149]. 

 

Recently an additional enzyme Sarcorsine oxidase which catalyses the demethylation of  

sarcosine, with production of H202 ( Table 1) in mammals and soil bacteria was identified in 

plants [152]. Localisation of this enzyme indicates that the Arabidopsis sarcorsine oxidase is a 

peroxisomal enzyme with sarcosine-oxidising and pipecolate activity [153] ( Table 1).    

 

  Thus peroxisomes are endowed with pathways for the synthesis of H202, although it is not yet 

clear which of these pathways may have an important role in generating H202 for signalling. 

Bearing in mind the metabolic plasticity of the peroxisomes, it may be that each different 

pathway may be of importance in a particular tissue, stage of development or type of 

peroxisome.  However the possibility of these being complementary pathways can not be 

ruled out. Another question worth addressing in this regard is the contribution of peroxisomes 

in the generation of these signalling molecules in comparison to other cellular compartments. 

Foyer, et al., 2003 described peroxisomes as a major site of H202 production in C3 plants 

during photorespiration. Under such conditions the rate of H202 production in peroxisomes is 

estimated to be about twice that in chloroplasts and even 50 fold higher than that in the 

mitochondria [119]. This needs to be evaluated for other pathways and the relative 

contribution of peroxisomes assessed in context of the cell, tissue type, stage of development 

and the organism involved. 
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5. ROS scavenging systems and redox signalling 

Apart from their signalling role, ROS are capable of causing oxidative damage, implying the 

need to regulate their intracellular concentrations [34, 44, 154]. Plants possess non-enzymatic 

antioxidant molecules such as ascorbate (AA), α -tocopherol, carotenoids and glutathione 

(GSH) and an array  of  antioxidant enzymes including catalase (CAT), ascorbate peroxidase 

(APX), dihydroascorbate reductase (DHAR), monohydroascorbate (MDAR),  glutathione 

reductase (GR), glutathione peroxidase (GPX) and thioredoxin dependent peroxidases, in 

various cellular compartments [34, 44, 154] [155].  Peroxisomes as a source of RO signalling 

molecules must have an efficient ROS scavenging system to ensure a balance is maintained 

between the two opposing effects of ROS [38]. 

 

The SOD provides the first line of defence by converting the O2
•-  to H202, thereby limiting the 

O2
•-   available to react with nitric oxide resulting in the formation of the peroxynitrite radical 

(a powerful oxidising agent) [33, 46]. The existence of catalase in peroxisomes was 

unequivocally established years ago [2, 7, 156, 157]. Three isoforms of this enzyme; CAT1, 

CAT2 and CAT3 exist in the peroxisomal matrix of A. thaliana (Table 1).  Analysis of the 

expression pattern of the three catalase isoforms of pumpkin indicate that the three isoforms 

are differential expressed in glyoxysomes and leaf peroxisomes and at different stages of 

development; with CAT1 expression being correlated to senescence [158]. In Arabidopsis 

CAT2 is the predominant leaf isoform and plants with reduced CAT2 levels showed increased 

sensitivity to ozone and photorespiratory induced cell death [159]. Similarly, catalase 

deficient tobacco plants developed leaf necrosis in response to high light, showed perturbed 

redox balance and were more susceptible to paraquat, salt and ozone stress [160]. These 

plants exhibited an activation of defence responses in response to excess hydrogen peroxide 
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and were more resistant to pathogens due to the triggering of programmed cell death in 

response to lower titres of pathogen compared to control plants [161-163] . The transcriptome 

of CAT2 deficient plants showed large changes in gene expression compared to controls, 

emphasising the role of photorespiratory H2O2 in cell signalling [159].   

 

The peroxisomal concentration of catalase is estimated to be in the range of 10-25% of the 

total peroxisomal proteins [25], and may play an important role in protecting other enzymes 

or their products from oxidative damage possibly by association [164]. This view is supported 

by experimental evidence in which isocitrate lyase (ICL) retained its function after H202 

challenge when cross linked to catalase [164].  

 

 Although catalase is an important enzyme in the metabolism of H202 its location in the matrix 

coupled to its low affinity for H202  reduces its efficiency in mopping up H202, implying that 

H202 may still diffuse into the cytosol particularly during oxidative burst [33, 34, 43]. This 

inefficiency is further compounded by the inhibition of CAT exerted by nitric oxide, and 

peroxynitrile, which is inevitable following increased production of ROS in response to 

particular stimuli [165, 166]. Additional defence is provided by the ascorbate –glutathione 

cycle (AA-GSH) which makes use of ascorbate and glutathione and four enzymes; APX, 

MDAR, DHAR and GR to inactivate H202  via a series of coupled redox reactions (Table 2) 

[29, 34, 154].  This cycle has a dual role as it also re-oxidises NAD(P)H to supply NAD(P)+ 

for the continuity of oxidative reactions occurring in peroxisomes such as β - oxidation which 

have been pointed out as key players in the generation of H202  [33]. Jimenez et al., 1997 

demonstrated the presence of this cycle in both the mitochondria and peroxisomes from pea 

leaves. The four enzymes of this cycle were present in peroxisomes isolated from pea leaves 

and also from tomato leaves and roots [167-169]. In addition the reduced and oxidised forms 
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of ascorbate and glutathione were detected in peroxisomes from pea leaves by HPLC analysis 

[169].  

 

APX is localised on the peroxisomal membrane with its active facing the cytosol [33, 170-

172]. However, contrary to the view that the active site for MDAR also faces the cytosol , 

recent work by Lisenbee et al., suggests that the active site of the 54 kDa MDAR faces the 

peroxisomal matrix as the protein was completely protected from added protease [173]. This 

strategic arrangement ensures H202 would be degraded by the coordinated action of the two 

enzymes as it leaks from the peroxisomal matrix into the cytosol [33].   

 

The characterisation of APX from cytosol and chloroplast is now at an advanced stage, with 

crystal structures solved for some of the isoforms [174-176]. However, progress in 

characterisation of the enzymes for the peroxisomal ASC-GSH cycle is still in its infancy with 

APX taking the lead.  APX was identified in various plant species including  pumpkin leaves 

(Cucurbita pepo) [177] [170], glyoxysomes from cotton seeds (Gossypium hirsutm L  [171], 

pea leaf peroxisomes  [137, 169], spinach (Spinacia oleracea L) glyoxysomes [172] and  

recently in glyoxysomes from castor bean [178], and the mechanism of targeting of this 

enzyme to peroxisomes has been studied in detail (see article by Mullen and Trelease, this 

volume). 

 A. thaliana has six APX genes; APX1 to APX6. However, experimental data suggests that 

only APX3 may have an important role in the peroxisomal ASC-GSH cycle. Overexpression 

of AtAPX3 in tobacco transgenic plants increased protection against oxidative stress caused by 

aminotriazole, an inhibitor of catalase, suggesting At APX3 is peroxisomal [179].   

 

 22



 A. thaliana has four MDAR genes MDAR1 to MDAR4, which have recently been 

characterised. Two isoforms; a 47 kDa protein (AtMDAR1) localised in the matrix targeted 

by a PTS1 and a 54kDa protein (AtMDAR4) localised in the peroxisomal membranes were 

identified [173]. This observation is in agreement with the analysis carried out by Leterrier et 

al., 2005 in which a genomic clone of MDAR1 from peas encoding a matrix targeted MDAR 

with a predicted MW of 47kDa and a presumptive PTS1 was localised in peroxisomes as 

indicated by confocal microscopy [180].  Previously MDAR was variously described as a 

32kDa [135, 137, 169] or 47 kDa integral membrane protein in pea and castor bean [178]. 

Cloning of the genes responsible for these other MDAR activities should resolve the question 

as to whether these are different isoforms or simply reflect interspecies variation in the size of 

the protein.  

 

The peroxisomal location of GR demonstrated by Jimenez et al., 1997 [169], was recently 

confirmed by IEM and the protein of 56 kDa was purified [181]; indicating the  role of 

peroxisomal GR in the AA-glutathione cycle). However of the three putative GR genes, none 

of these has been cloned and the protein demonstrated to be targeted to peroxisomes. 

 DHAR was also identified in peroxisomes from peas and tomato [167-169]; however, no 

candidate genes for the peroxisomal isoforms of these enzymes are yet known.  

 

Glutathione- and thioredoxin-dependent peroxidases are found in multiple cellular 

compartments. GPX was purified from peroxisomes of rat hepatocytes [182] [183]. A 

glutathione peroxidase with activity towards alkyl hydroperoxides and H2O2 is found in the 

peroxisome of Candida boidini (CbPMP20) and is required for growth of this yeast on 

methanol [184]. A peroxidase (TcGPX1) that can be reduced by glutathione or trypanothione 

is found in glycosomes (specialised peroxisomes of trypanosomes that contain most of the 
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glycolytic pathway) [185] (see also article by Michels in this volume). The human and 

Saccharomyces homologues of CbPMP20 are thioredoxin dependent peroxidases. HsPMP20 

bound the PTS1 import receptor via its non-canonocal PTS –SQL and was partially located in 

peroxisomes [186]. There are two PMP20 homologues in the Arabidopsis genome, AtTPX1 

(At1g65980) and AtTPX2 (At1g65970), and the protein encoded by AtTPX2 was shown to 

possess thioredoxin-dependent peroxidase activity in vitro [187]. Whether these enzymes are 

also targeted to peroxisomes in Arabidopsis does not appear to have been tested 

experimentally. Whilst the Candida and Saccharomyces homologues have a PTS1 signal -

AKL and -AHL respectively, the two Arabidopisis proteins and a rice homologue end with 

the sequence -KAL, which would not be expected to function as a PTS1.  

 

It should be noted that the AA-GSH cycle is dependent on NAD(P)H for continuity and 

peroxisomes to be an efficient scavenger of ROS, should have a means of regenerating  

NAD(P)H [33].  This may be mediated by Glucose- 6- phosphate dehydrogenase (EC 

1.1.1.49), 6-phosphogluconate-dehydrogenase (EC 1.1.1.44) and NADP+-dependent isocitrate 

dehydrogenase (EC 1:1.1.42) (Table 2) which were detected in peroxisomes of young and 

senescent pea leaves by immunoblotting and immunoelectron microscopy [188, 189].  In 

silico predictions [25], identified likely candidates for peroxisomal 6-phosphogluconate 

dehydrogenase and NADP+-dependent isocitrate dehydrogenase in Arabidopsis. Of the two 

Glucose-6-phosphate dehydrogenase enzymes in Arabidopsis one is plastidial and the other 

cytosolic. Whether one of these enzymes can also be targeted to peroxisomes remains to be 

established. However a putative 6-phosphogluconolactonase with a potential PTS1 has been 

identified (Table 2) and could provide 6-phosphogluconate for 6-phosphogluconate 

dehydrogenase, if 6-phosphogluconolactone can enter peroxisomes from the cytosol [25].  
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The scavenging activity of the AA-GSH cycle means that under normal circumstances the 

H202 produced is detoxified, as APX activity is twice as high as required to deal with the 

measured rate of H202 production in castor bean seeds [178] However in conditions of stress 

more H202 is produced than is being degraded. This may escape into the cytosol via porin-like 

channels which were identified on peroxisomal membranes [111, 190]. The expression of 

genes for the AA-GSH is also induced by H202 as an up regulation of enzyme activity is noted 

in situations where plants experience stress [167, 168, 191, 192]. The overall residual amount 

of H202 available for signalling therefore depends on the activity of SOD, APX and CAT in 

the peroxisomes at any given time [178, 193]. 

 

During senescence peroxisomes may have a more protective role than mitochondria, as the 

AA-GSH cycle was sustained for a longer time in the peroxisomal matrix compared to 

mitochondrial matrix [121]. In addition there was a marked increase in the reduced and 

oxidised GSH pools in peroxisomes [121], an indication of an alteration in the redox state of 

the peroxisomes. This forms an important cellular signal arising from the AA-GSH cycle that 

is worth considering [41, 119, 154, 194]. The interaction of ROS and the AA-GSH cycle 

bring about changes in the ROS concentration as well as compartment specific differences in 

the redox status [41, 119, 194].  

 

The level of AA, GSH as well as the ratios of GSSG/GSH, DHA/AA and NAD (P) +/ NAD 

(P) H has a signalling and regulatory role [154]. Gene expression and signalling are usually 

altered by changes in the ratios of the redox couples which are usually stable under normal 

physiological conditions [44, 154]. The GSSG/GSH couple influences a number of 

physiological processes ranging from meristem formation, phytochelatin synthesis, flowering, 

and somatic embryogenesis to the transport of a variety of compounds including xenobiotics 
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and cellular signals such as NO [41, 154, 195]. Regulation of enzyme activity occurs via the 

oxidation of thiol groups and / or S-glutathionylation which is also important in signalling 

[154, 196, 197].  

 

Changes in the NAD(P)H/ NAD(P)+ ratio determines the processing of ROS, as synthesis of 

signalling molecules  such as nicotinamide, and calcium channel agonist cADPR  as well as 

protein import into peroxisomes respond to changes in this ratio [154, 198, 199].  Alteration 

in the steady state ratio of AA/DHA affects the cell cycle, shoot growth in A. thaliana,  

enzyme activity , the expression of defence genes  and the of phytohormones, gibberellins, 

absiccic acid  and salicylic acid [44, 154, 194]. 

 

Although a change in the levels of enzymes for the AA-GSH was demonstrated during stress 

[121, 180], there is very limited evidence to link the changes in the redox potential to 

peroxisomes due to the communication existing between cellular compartments.  Measuring 

such ratios is a complex process requiring rapid non aqueous fractionation techniques to avoid 

metabolic exchange between compartments.  However, the availability of redox sensitive 

GFP and enzymes linked fluorescent probes may facilitate the estimation of peroxisomal thiol 

redox potential [154]. 

 

6.   The role of Peroxisomes in generation of Reactive Nitrogen Species 

NO is known to be an important signalling molecule in animals [200], and more recently in 

plants (reviewed in [201, 202]). Processes reported to be influenced by NO include root 

growth, photomorphogenesis, the hypersensitive response and programmed cell death, 

stomatal closure, flowering, pollen tube guidance and germination. The generation of NO in 

animals is catalysed by NOS (EC 1.14.13.39) which mediates the oxidation of arginine with 
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production of NO and citrulline in a reaction dependent on FAD, FMN, tetrahydrobiopterin 

(BH4), calcium and calmodulin [202].  

 

Plants have (at least) two pathways to produce NO; from nitrate via nitrate reductase and 

nitrite reductase or from arginine  [203]. An additional pathway for NO production involving 

xanthine oxidase has also been identified, in which the peroxynitrite radical activates the 

conversion of xanthine dehydrogenase to xanthine oxidase [132, 204].  It has also been 

proposed that plant peroxisomes contain a NOS activity related to mammalian iNOS [205, 

206]. This is based on measurement of NOS activity in highly purified peroxisome fractions 

from pea leaf by conversion of arginine to citrulline and also by direct chemiluminescent 

detection of NO. By these assays the NOS activity was strictly dependent on the presence of 

NADPH, calmodulin and tetrahydrobiopterin, as for the mammalian NOS, and sensitive to a 

range of inhibitors that also inhibit mammalian NOS.  A characteristic EPR signal for NO was 

detected in purified peroxisomes using the spin trap Fe (MGD) 2. Furthermore NOS was 

localised to peroxisomes by immunogold electron microscopy and immunofluorescence using 

antibodies to mammalian iNOS [206, 207]. Interpretation of results obtained with anti-

mammalian NOS antibodies need to be cautious as these antibodies have been demonstrated 

to cross react with a number of unrelated plant proteins [208]. However, independent support 

for the generation of NO by peroxisomes comes from a study of the role of NO in pollen tube 

guidance [209] where peroxisomes in living pollen tubes were shown to stain intensely with 

the NO specific probe 4,5-diaminofluorescein diacetate.  

 

While genes or proteins with sequence similarity to animal NOS have not been identified in 

plants, AtNOS1 a homolog of a Helix pomatia (snail) gene implicated in NO production was 

identified.  Analysis of insertion mutants of AtNOS1 which had impaired root growth, fertility 
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and germination had reduced NO production when compared with wild type.  The protein 

showed similarity to GTPase domains and arginine-dependent production of NO was not 

dependent on FAD, FMNA, heme or BH4 but was calcium, calmodulin and NADPH 

dependent, and was also inhibited by L-NAME an inhibitor of mammalian NOS activity 

[210]. However, AtNOS1 has been shown to be targeted to mitochondria [211]. 

 

The detection of NO in peroxisomes suggests that these organelles are an important source of 

NO and may play a role in NO signal transduction mechanisms [206, 209]. However it is 

currently unclear which of several possible candidate proteins are responsible for the 

production of peroxisomal NO [207, 212]. This will require biochemical and molecular 

characterisation of the enzyme(s) responsible for this activity and demonstration that the 

candidate protein is located in peroxisomes. 

 

Once NO is formed it can freely diffuse into the cytosol to effect gene regulation, it can also 

conjugate to glutathione to form GSNO which serves as a carrier of the NO signal between 

cells [213, 214]. In addition the production of superoxide and the nitrite : nitrate ratio controls 

the level of NO available for signalling [215]. 

 

 

7. Peroxisomes and light signalling 

Recent experimental evidence suggests that peroxisomes may have an important role in 

photomorphogenesis. DET1, COP, and FUS proteins act as global repressors of an array of 

genes involved in photomorphogenesis [216].  Mutants in DET1, a 62kDa nuclear protein, 

exhibit a phenotype typical of light grown plants when grown in the dark and vice versa. 

However, ted3 a gain of function mutant of PEX2 was isolated as a suppressor of the det1-1 
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mutant. While det1-1 plants had defective peroxisomes, depended on sucrose for germination, 

and were IBA resistant; ted3 rescued such mutants. PEX2/TED3 is expressed in all tissues 

particularly cotyledons, pollen, ovules and seeds suggesting it has an important function in 

reproduction and development. This is further supported by the fact that null mutants were not 

isolated (presumed embryo lethal) and expression of antisense PEX2/TED3 mRNA lead to 

sterility. The ted3 mutant, also partially suppressed a de-etiolated cop1 mutant suggesting that 

PEX2/TED3 may have a central role in the photomorphogenesis pathway [28], although the 

mechanism by which it does so remains to be determined. 

 

 

8. Peroxisomes and disease processes  

Recent studies point towards an important role for peroxisomes in the process of infection by 

fungal pathogens. Conidia of powdery mildews germinate on the surface of leaves and within 

24 hours develop appressoria, penetrate the cell cuticle and cell wall and form haustorial 

complexes (feeding structures) within the epidermal cells. At early stages of infection 

preceding and immediately following penetration, cytoplasm and organelles accumulate at 

sites of infection. Measurements using plants where the peroxisomes are tagged with a 

fluorescent protein suggest these organelles preferentially accumulate at such sites [217]. 

Clearly entry of the parasite is a critical stage in the establishment of infection. Normally, 

parasitic fungi only attack specific (host) species. However, Arabidopsis mutants have been 

isolated that permit penetration by fungal pathogens that are not normally invasive on 

Arabidopsis. AtPEN1 encodes a SNARE protein, supporting a role in vesicular trafficking in 

non-host resistance. AtPEN2 encodes a glycosyl transferase that is located in peroxisomes 

[27]. Peroxisomes containing PEN2 accumulate at infection sites and catalytic activity of 

PEN2 is required for resistance. It is postulated that PEN2 activity directly or indirectly 
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produces a product with broad range toxicity for normally non pathogenic fungal species [27]. 

Changes have also been reported in the activities of anti-oxidant enzymes and in the redox 

ratios of peroxisomes in tomato plants infected with the pathogen Botrytis cinerea [194]. 

 

Peroxisomes are also important for the ability of the fungal pathogen to mount a successful 

invasion. A non-pathogenic strain of Colletotrichum lagenarium was found to be deficient in 

the peroxisome biogenesis gene PEX6 [218]. These mutants cannot form penetration hyphae 

and infect the plant. This may be due in part at least to inability to mobilise stored triacyl 

glycerol which is required to generate high turgor pressure to drive insertion of the 

penetration peg. In filamentous ascomycete fungi Woronin bodies are specialised forms of 

peroxisome [219]. Mutants of the rice blast fungus Magnaporthe grisea lacking the major 

Woronin body protein HEX1 were compromised in infectivity due to inability to survive 

nutritional stress [220]. Thus the metabolic and signalling capacities of both pathogen and 

host peroxisomes are likely to be important in establishing the outcome of infection. 

 

9. Conclusions 

Through the study of mutants involved in β-oxidation, clear evidence has recently emerged 

for an important role of this pathway and hence peroxisomes in shaping diverse processes in 

plant development [30] although much still has to be learned about the specific contribution 

of nutritional status and the roles of known and potentially yet unknown signalling molecules 

that might be the product of this pathway. Evidence is also beginning to emerge for a role of 

peroxisomes in establishing the outcome of infection by plant pathogens, and this will surely 

be an active area of future research, driven by the possibility of manipulating and improving 

plant defences to pathogens. The isolation of the gain of function mutation in PEX2 as a 

suppressor of mutants in the photomorphogenesis pathway emphasises that peroxisomes talk 
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to the nucleus and other cell compartments, probably by a range of signals. The role of 

reactive oxygen and nitrogen species in signalling events underlying responses to both biotic 

and abiotic stress is well documented [36] but the specific contribution of peroxisomal 

enzymes and redox ratios are not currently well understood with the possible exception of 

catalase. This is because most of the enzymes involved are also present in other compartments 

and identifying the genes encoding the peroxisomal isoforms is still in progress [173, 179]. 

Although peroxisomal location can sometimes be inferred from the presence of putative PTS 

sequences, the occurrence of non-canonical PTS, the difficulty of predicting mPTS sequences 

accurately and the ability of proteins lacking a PTS to be piggybacked into peroxisomes by 

virtue of association with another protein that has a PTS [221], implying that correspondence 

between an enzyme activity or immunoreactive protein and its gene must be established 

experimentally. Once this has been achieved the individual contribution of these components 

can be tested via mutagenesis approaches. 
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 FIGURES AND LEGENDS 
 
Figure 1: Signalling molecules generated in peroxisomes: Normal peroxisomal metabolism results in 

generation of signalling molecules which fall into four broad catergories; β -oxidation derived signalling 

molecules which include jasmonates (jasmonic acid and its derivatives; methyl jasmonate, Z-jasmonate and 

tuberonic acid), reactive oxygen species, reactive nitrogen species and changes in peroxisomal redox state ([30, 

33, 154, 202]. * The peroxynitrite radical is formed via a reaction of nitric oxide and superoxide radical  [165].  

 
 Figure 2:  A comparison of the jasmonic acid (JA) biosynthesis and eicosanoid catabolism as exemplified   
by leukotriene B4.   
 
JA synthesis (a) is initiated in the chloroplasts from either linoleic acid (18:3 (octadecanoid pathway) or 

hexadecatrienoic acid (16:3). The reactions occurring in the chloroplast terminate with the production of (9S, 

13S)-12-oxo-phytodienoic acid (cis- (+) - OPDA) or dn OPDA, which are imported into peroxisomes via the 

action of an ABC transporter protein (CTS/PED3/PXA1) or by passive means. Once in the peroxisomes 

oxophytodienoate reductase (OPR3) catalyses the reduction of OPDA or dn OPDA (not shown) to yield 3-oxo-

2-(2’-penenyl)-cyclopentane-1-octanoic acid (OPC: 8) or OPC:6 [30].  OPC: 8 or OPDA is then esterified to an 

acyl CoA probably via the action of  by 4 coumarate CoAligase (4CL)-like acyl activating enzymes [25, 72]. 

This is followed by the sequential action of beta oxidation enzymes acyl CoA oxidase 1 (ACX1), and possibly 

multifunctional proteins and 2-keto acyl CoA thiolase (KAT2) in three rounds of beta oxidation. The release of 

JA from its co-ester is thought to be mediated by a thioesterase [30].  

On the other hand the catabolism of eicosanoids ( b) such as leukotriene B4 (LTB4) is initiated in the microsomes 

where ώ -oxidation results in the formation of 20 -carboxy-LTB4 [91]. The mechanism of import for the ώ-

carboxy acids into peroxisomes is still unknown however recent findings suggest that ALDP is not involved 

[92]. Once inside peroxisomes 20 carboxy-LTBB4- is presumably activated to its CoA ester.  The metabolite 20 

carboxy-LTB4-CoA also undergoes beta oxidation via the sequential action of either straight chain acyl oxidase 

(SCOX) or branched chain acyl oxidase (BCOX), the D-bifunctional protein (D-BFP) which has hydratase and 

dehydrogenase activity. Finally  keto acyl CoA thiolases or sterol carrier protein X (SCPx) catalyses  the 

thiolytic cleavage  to yield 18-carboxy-19,20-dinor LTB4 CoA which either enters a second round of beta 

oxidation to yield 16 carboxy-14,15-dihydro-17,18,19,20 tetranor LTB4.  Thioesterase are also thought to 

catalyse the release of these metabolites from their co-esters [91, 92, 222].  While the biosynthesis of JA 

converts  one biologically active signalling molecule to another one with different signalling roles  [55, 71, 84], 
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the catabolism of eicosanoids produces compounds of altered biological activity which are excreted in urine or 

bile [91]. Biologically active molecules with signalling roles are highlighted in blue. 
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Table 1 Enzymes involved in the production of hydrogen peroxide and superoxide in plant peroxisomes. 
Enzyme (gene) Reaction Pathway Method of 

localisation 
Arabidopsis 
gene and 
(putative) 
PTS 

Ref 

Medium-long chain Acyl 
CoA oxidase (ACX1)* 

Acyl CoA + 
FAD→ 
Enoyl CoA 
+FADH2
FADH2 + 
O2→FAD + 
H2O2

β-oxidation Presumed based 
on presence of PTS 
and demonstration 
of β-oxidation of 
palmitoyl CoA by 
Ricinus 
glyoxysomes. 

At4g16760 
ARL>  

[25, 77, 
223],   

Long chain Acyl CoA 
oxidase (ACX2)* 

 Same as  
for ACX1 

β-oxidation Cell fractionation 
(pumpkin 
homologue) 

At5g65110  
RIX5HL 

 [25, 
223, 
224] 

Medium chain Acyl CoA 
oxidase (ACX3)* 

Same as  
for ACX1 

β-oxidation Presumed based 
on presence of PTS  

At1g06290 
RAX5HI 

[25, 
223, 
225, 
226] 

Short chain Acyl CoA 
oxidase (ACX4)* 

Same as  
for ACX1 

β-oxidation Cell fractionation 
and 
immunolocalisation 

At3g51840 
SRL> 

[25, 
223, 
227]  

Glycolate oxidase 
(GOX1) 

2 Glycolate 
+ O2 → 2 
Glyoxylate + 
H2O2

Photorespiration Cell fractionation, 
various species 

At3g14420 
ARL> 

[4, 15, 
25, 
147] 

Glycolate oxidase 
(GOX2) 

2 Glycolate 
+ O2 → 2 
Glyoxylate + 
H2O2

Photorespiration Cell fractionation, 
various species 

At3g14415 
PRL> 

[4, 15, 
25, 
147] 

Sulfite oxidase( SO)* SO3
2-+O2 

+H2O→ 
SO4

2- + 
H2O2

Sulfur 
assimilation 

IEM & GFP fusion, 
 
 

At3g01910* 
SNL> 

[149, 
150]  

Sarcosine oxidase 
(SOX)* 

Sarcosine + 
H2O + O2→ 
Glycine + 
HCHO + 
H2O2

Sarcosine & 
pipecolate 
metabolism 

In vitro import At2g24580 
*? 

[153] 

Xanthine oxidase 
 

Xanthine 
+O2→Uric 
acid + H2O2 
+ O2

•-

Purine 
metabolism 

Biochemical 
measurement in 
purified 
peroxisomes 
ESR 

ND [125-
128, 
130] 

Urate oxidase 
(Uricase) 

Uric acid + 
O2 → 
Allantoin + 
H2O2 + CO2 
+ O2

•-

Purine 
metabolism 

Biochemical 
measurement in 
purified 
peroxisomes 

At2g26230 
SKL> 

 [125-
128, 
130] 

Cu-Zn Superoxide 
dismutase  
(CSD3) 

O2
•-→ H2O2 Dismutation of 

superoxide 
Biochemical 
measurement in 
purified 
peroxisomes 
IEM 

At5g18100 
AKL> 

[144-
146] [6, 
143, 
228] 

Mn Superoxide 
dismutase 

O2
•-→ H2O2 Dismutation of 

superoxide 
Biochemical 
measurement in 
purified 
peroxisomes 
IEM 

ND [139, 
141, 
142, 
229] 
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PMP32 (presumptive 
monodehydroascorbate 
reductase 

Transfer of 
electrons 
from NADH 
to O2 
directly or 
via PMP18 
with 
formation of 
O2

•-

Re-oxidation of 
NADH 

Biochemical 
measurement in 
purified 
peroxisomes 

 ND [134, 
137, 
138]  

PMP18 
(b-type cytochrome?) 

Transfer 
electrons 
from MDAR 
to O2 with 
formation of 
O2

•-

Re-oxidation of 
NADH 

Biochemical 
measurement in 
purified 
peroxisomes 

ND [134, 
137, 
138] 

PMP29  Transfer 
electrons 
from 
NADPH to 
O2 with 
formation of 
O2

•-

Re-oxidation of 
NADPH 

Biochemical 
measurement in 
purified 
peroxisomes 

ND [134, 
137, 
138] 

Abbreviations:  PMP, peroxisomal membrane protein;  ND Not determined ; GFP; green fluorescent protein ; IEM,  
immunogold labelling electron microscopy;  ESR; Electro spin resonance spectroscopy. * indicates gene cloned and 
characterised at the molecular level. 
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Table 2. Peroxisomal enzymes involved in scavenging ROS. 
Enzyme (gene) Reaction Pathway Method of 

localisation 
to plant peroxisomes 

Arabidopsis 
gene and 
(putative) 
PTS 

References 

Catalase (CAT1)* 2H2O2 → 2H20 
+ O2

decomposition 
of H2O2

In vivo 
immunofluorescence 
Immunocytochemical 
analysis.  

At1g20630  [156, 158, 
230-232] 

Catalase (CAT2)* 2H2O2 → 2H20 
+ O2

decomposition 
of H2O2

Immunocytochemical 
analysis and 
immunolocalisation,  

At4g35090 [156, 158, 
230] 

Catalase (CAT3) 2H2O2 → 2H20 
+ O2

decomposition 
of H2O2

Immunocytochemical 
analysis and 
immunolocalisation 

At1g20620 [156, 158, 
230] 

Ascorbate 
peroxidase 
(APX3)* 

H2O2 + ASC → 
MDA + H2O 

 Ascorbate 
glutathione 
cycle 

Cell fractionation and 
immunofluorescence 

At4g35000  
mPTS TMD 
+ basic 
cluster 

 [169, 171, 
173, 178] 

Mono-
dehydroascorbate 
reductase 
(MDAR1)* 

MDA + 
NAD(P)H 
→ASC 
+NAD(P)+

 Ascorbate 
glutathione 
cycle 

Western blot on 
purified peroxisomes 
& in vivo 
immunofluorescence 

At3g52880* 
AKI> 

[173, 180] 

Mono-
dehydroascorbate 
reductase (MDAR 
4)* 

MDA + 
NAD(P)H 
→ASC 
+NAD(P)+

 Ascorbate 
glutathione 
cycle 

Western blot on 
purified peroxisomes 
& in vivo 
immunofluorescence 

At3g27820* 
mPTS TMD 
+ basic 
cluster 

[173] 

Glutathione 
Reductase  

GSSG + 
NAD(P)H → 
GSH + NAD(P)+

 Ascorbate 
glutathione 
cycle 

Biochemical 
measurement  in 
purified peroxisomes 
IEM 

ND 
 

[181] 

Glucose 6 
phosphate 
dehydrogenase 

Glucose-6-P + 
NAD(P)+  → 6-
P-
gluconolactone 
+ NADPH 

 Oxidative 
Pentose  
Phosphate 
pathway 

immunoblotting and 
immunoelectron 
microscopy , 
biochemical 
measurement in 
purified peroxisomes 

ND  [25, 189] 

6-
Phosphogluconate 
dehydrogenase 

6-P-Gluconate 
+ NAD(P)+  → 
Rubulose - 5-
phospate + 
NADPH + CO2
 

Oxidative 
Pentose 
Phosphate 
pathway 

immunoblotting and 
immunoelectron 
microscopy, 
biochemical 
measurement in 
purified peroxisomes 

At3g02360 
SKI> 

[25, 189] 

NADP-Isocitrate 
dehydrogenase 

Isocitrate + 
NAD(P)+ →  
2 oxoglutarate+ 
NAD(P)H + 
CO2

Regeneration 
of NADP+

immunoblotting and 
immunoelectron 
microscopy 
biochemical 
measurement in 
purified peroxisomes 

At1g54340 
SRL> 

 [25, 188] 

6-
Phosphoglucono-
lactonase 

6-P-
Gluconolactone 
+ H2O→ 6-P- 
gluconate + H+

Oxidative 
Pentose 
Phosphate 
pathway 

ND At5g24400 
SKL> 

[25] 

 
Abbreviations: ND, not determined; IEM, immunogold labelling electron microscopy; * represent genes which 
have been cloned and characterised at a molecular level 
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