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Synopsis: Peroxisomes are highly dynamic organelles that influence a wide variety of plant 

processes including primary and secondary metabolism, development, and stress responses. This 

review summarizes recent findings on peroxisome biogenesis, multiplication, and functions in 

model systems and articulates the challenges and opportunities for translating this knowledge 

into gains in economically important plant species.  
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ABSTRACT 

 

Peroxisomes are eukaryotic organelles highly dynamic both in morphology and metabolism. 

Plant peroxisomes are involved in numerous processes, including primary and secondary 

metabolism, development, and responses to abiotic and biotic stresses. Considerable progress has 

been made in the identification of factors involved in peroxisomal biogenesis, revealing 

mechanisms that are both shared with and diverged from non-plant systems. Further, recent 

advances have begun to reveal an unexpectedly large plant peroxisomal proteome and increased 

our understanding of metabolic pathways in peroxisomes. Coordination of the biosynthesis, 

import, biochemical activity, and degradation of peroxisomal proteins allows dynamic responses 

of peroxisomal metabolism to meet the needs of a plant. Knowledge gained from plant 

peroxisomal research will be instrumental to fully understanding the organelle’s dynamic 

behavior and defining peroxisomal metabolic networks, thus allowing the development of 

molecular strategies for rational engineering of plant metabolism, biomass production, stress 

tolerance and pathogen defense. 
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INTRODUCTION 

 

Peroxisomes were one of the last major cellular organelles to be discovered (De Duve and 

Baudhuin, 1966) and their importance in plant metabolism, particularly with respect to fatty acid 

β-oxidation, the glyoxylate cycle and photorespiration, was soon realized (reviewed in Beevers, 

1979; Huang et al., 1983). In recent years, it has become clear that peroxisomes are highly 

dynamic organelles, both morphologically and metabolically, and are involved in a wide range of 

plant processes, including primary carbon metabolism, secondary metabolism, development, 

abiotic stress response, and pathogen defense. With this understanding, the names of microbody, 

glyoxysome, peroxisome, and gerontosome, which were used to define some specialized 

peroxisome activities, are now subsumed within the general name of peroxisome 

(Pracharoenwattana and Smith, 2008). Here, we review the recent advances in plant peroxisome 

research, focusing on de novo biogenesis, multiplication, matrix protein import, protein 

degradation, several major metabolic pathways such as β–oxidation of fatty acids, production of 

jasmonic acid (JA), conversion of indole 3-butyric acid (IBA) to indole 3-acetic acid (IAA), and 

photorespiration, metabolite transport, and strategies to unravel the full peroxisomal proteome. 

We also provide perspectives on the future research needed to fully understand the dynamics and 

functions of these organelles. 

 

PEROXISOME BIOGENESIS 

 

The Role of the ER in Peroxisome Biogenesis 

 

A Historical Perspective 

 

The biogenetic relationship between the ER and peroxisomes has been highly contentious 

(reviewed in Mullen and Trelease, 2006; Schluter et al., 2006; Tabak et al., 2006; Schrader and 

Fahimi, 2008). Peroxisomes were initially thought to form exclusively by vesiculation of 

specialized ER regions. Nascent soluble and membrane-bound protein constituents were thought 

to be synthesized co-translationally on the ER before sequestration, along with membrane lipids, 

into an expanding vesicle that eventually buds off from a specific segment of the (smooth) ER to 



4 

 

produce a new functional peroxisome (Figure 1A). This ‘ER-vesiculation’ model (Beevers, 

1979) was supported by microscopic observations of peroxisomes commonly associated with the 

ER in plants (Huang et al., 1983) and by pulse-chase studies indicating that both peroxisomal 

proteins and phospholipids in the peroxisomal membrane first passed through the ER (Moore, 

1982; Lord and Roberts, 1983).  

 

However, new techniques and re-evaluation of older data resulted in the ER vesiculation model 

losing favor to the ‘growth and division’ model (Trelease, 1984; Lazarow and Fujiki, 1985). 

Herein, peroxisomes, like chloroplasts and mitochondria, were considered fully autonomous, 

increasing in size by post-translational import of protein constituents from the cytosol and 

forming only from the division of pre-existing organelles (Figure 1B). The ER was thought to 

serve only as a source of membrane lipids for the enlargement of pre-existing peroxisomes (e.g., 

via phospholipid transfer proteins and/or ER-peroxisome contact sites).  

 

Studies in yeasts and Chinese hamster ovary cells (Kunau, 1998) identified a set of ‘peroxins’ 

encoded by PEX genes that are required for peroxisome biogenesis. The growth and division 

paradigm was challenged by demonstrations that mutant yeast and mammalian cells lacking 

certain PEX genes, such as PEX3 and PEX19, were devoid of any obvious peroxisomal 

structures, yet the organelles appeared after reintroduction of the wild-type gene (South and 

Gould, 1999; Hettema et al., 2000). Also conflicting with the idea that peroxisomes are strictly 

autonomous were observations from in vivo trafficking studies of peroxisome membrane proteins 

(PMPs) in yeasts, mammals and plants, which demonstrated that at least some PMPs sorted 

indirectly to peroxisomes by way of the ER (reviewed in Titorenko and Rachubinski, 2009).  

 

The current working model for peroxisome biogenesis incorporates aspects of both earlier 

models plus latest data and considers peroxisomes to be semi-autonomous, arising by two 

distinct pathways: de novo biogenesis from specific regions of the ER and by growth and fission 

of pre-existing peroxisomes (Figure 1C). This ‘ER semi-autonomous’ model for peroxisome 

biogenesis includes at least one important new feature: the involvement of ER-derived pre-

peroxisomes (i.e., vesicles or membrane fragments/lamellae) that deliver phospholipids and 

some PMPs to pre-existing peroxisomes and/or fuse together in a controlled, step-wise fashion to 
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form a new peroxisome (Trelease and Lingard, 2006; Schrader and Fahimi, 2008; Titorenko and 

Rachubinski, 2009).  

 

There is a growing appreciation that the processes underlying the de novo synthesis and growth 

and fission of peroxisomes may not be controlled completely independently (Koch and Brocard, 

2011) and that these processes may vary considerably depending on the species, cell-type, or 

physiological status of the organism. Hence, a unified model of peroxisome biogenesis may not 

be easy to attain. For instance, in mammals and yeast both de novo synthesis from the ER and 

fission contribute to the formation of new (“daughter”) peroxisomes, albeit to different extents 

(Nagotu et al., 2010), whereas in plants there is no direct evidence for the de novo synthesis of 

peroxisomes from the ER. Instead, the ER appears to serve as a platform from which selected 

membrane components are derived and trafficked by an unknown carrier to pre-existing 

peroxisomes, which undergo growth and division to produce new peroxisomes.  

 

Membrane Protein Trafficking from the ER to Peroxisomes 

 

The understanding of the ER-to-peroxisome pathway in plants is based primarily on studies of 

two types of PMPs: i) cottonseed and pumpkin ascorbate peroxidase (APX), a carboxy tail-

anchored (TA) integral membrane protein that plays a key role in protecting plant cells by 

scavenging toxic reactive oxygen species (Yamaguchi et al., 1995; Bunkelmann and Trelease, 

1996); and ii) Arabidopsis PEX16, an integral membrane peroxin (Karnik and Trelease, 2005; 

Nito et al., 2007). Like most other PMPs that traffic to peroxisomes via the ER (referred to as 

Group I PMPs), APX3 and PEX16 contain ER targeting elements that are distinct from typical 

signal peptide or signal anchor sequences and overlap with or are adjacent to the elements 

responsible for their subsequent targeting from the ER to peroxisomes (Mullen and Trelease, 

2000; Karnik and Trelease, 2007). While the precise nature of these ER targeting signals is not 

known, APX relies on a post-translational targeting process that involves ATP and various 

chaperones (Mullen et al., 1999; Shen et al., 2010). Whether PEX16 and any other plant PMPs 

that traffic to peroxisomes via the ER use the same or a different post-translational pathway 

remains to be investigated. 
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Another important, but poorly characterized, aspect of the ER-peroxisome relationship in plants 

is the nature of the peroxisomal ER (pER) subdomain, a region of the ER at which pre-

peroxisomes are proposed to be formed (Mullen et al., 1999; Lisenbee et al., 2003). The PMPs 

APX3 and Arabidopsis PEX10 localize to subdomains of the rough ER (Lisenbee et al., 2003; 

Flynn et al., 2005; Karnik and Trelease, 2005, 2007). However, whether these regions are 

identical and how the intra-ER sorting and segregation of APX and PEX10 (or any other PMP in 

the ER) is accomplished has not been elucidated. By contrast, Arabidopsis PEX16 localizes 

throughout the ‘general’ ER and not to a specific subdomain, as does PEX16 in mammals (Kim 

et al., 2006) and certain yeasts (Titorenko and Rachubinski, 1998). Arabidopsis PEX16 also 

exists in peroxisomes under steady-state conditions (Karnik and Trelease, 2005) and a pex16 

knockdown mutant possesses fewer and enlarged peroxisomes (Nito et al., 2007), suggesting 

that, as in mammals, plant PEX16 performs multiple roles depending on its subcellular location. 

For instance, PEX16 may modulate peroxisome morphology (Nito et al., 2007) via its potential 

role as peroxisomal membrane receptor (Matsuzaki and Fujiki, 2008). At the ER, however, 

PEX16 might regulate the early steps of peroxisome biogenesis, including acting as a receptor 

for other PMPs and orchestrating their subsequent sorting into the pER (Karnik and Trelease, 

2005; Nito et al., 2007); although, to date, no experimental evidence for such a role in plants has 

been presented. In addition, PEX16 appears to participate in the biogenesis of other plant-

specific subcellular compartments, such as protein and oil bodies, which also are derived from 

the ER (Lin et al., 1999).  

 

Arabidopsis PEX10, which is reported to sort either indirectly to peroxisomes via the ER in 

suspension cells (Flynn et al., 2005) or directly to peroxisomes from the cytosol in leaves 

(Sparkes et al., 2005), also appears to perform multiple functions, including the biogenesis of 

ER-derived protein and oil bodies (Schumann et al., 2003), the maintenance of ER morphology, 

the formation of cuticular wax (Kamijaki et al., 2009), and peroxisome and chloroplast 

connections (Schumann et al., 2007), and, as discussed further below, the import of matrix 

proteins (Nito et al., 2007; Prestele et al., 2010). The relative distribution of PEX10 in the ER 

and peroxisomes might exemplify how plant peroxisome biogenesis varies depending on the 

species and/or cell-type. Likewise, Arabidopsis PEX3 is reported to target directly to 

peroxisomes from the cytosol (Hunt and Trelease, 2004), whereas its homologs in yeast and 



7 

 

mammals sort to peroxisomes via the ER (Hoepfner et al., 2005; Toro et al., 2009) and 

participate in PMP import and the formation of pre-peroxisomal membrane carriers (e.g., 

vesicles) (van der Zand et al., 2010). Whether plant PEX3 functions independently of the ER is 

still an open question, particularly if the protein sorts rapidly through the ER as it does in other 

organisms (Hoepfner et al., 2005; Agrawal et al., 2011), making transient intermediates difficult 

to detect. 

 

No solid data exist on the pre-peroxisomal membrane carriers that would originate from the pER 

and ultimately sort to pre-existing or nascent (“daughter”) peroxisomes in plants, but factors 

necessary for forming pre-peroxisomes are beginning to be identified in other organisms, e.g., 

Sec20p, Sec39p and Dsl1p (Perry et al., 2009) and Sec16B (Yonekawa et al., 2011). In plants, 

small pre-peroxisomal membrane vesicles may bud from the ER and perhaps, prior to their 

fusion with pre-existing peroxisomes, coalesce in a so-called ER-peroxisome intermediate 

compartment (ERPIC) (Mullen and Trelease, 2006; Trelease and Lingard, 2006), consistent with 

the proposed ER-to-peroxisome vesicular transport pathways in certain yeasts and mammalian 

cells (reviewed in Titorenko and Rachubinski, 2009). Alternatively or in addition, plant pre-

peroxisomes may exist as large pleomorphic structures of clustered peroxisomal tubules, 

reminiscent of the lamellar extension that detaches en block from the ER in mouse dendritic cells 

(Geuze et al., 2003). Independent of their structural features, one important functional attribute 

of the pre-peroxisomal membrane vesicles in plants (and in other organisms) is that they are 

competent in importing matrix proteins (Mullen et al., 1999) and Group II PMPs that bypass the 

ER, i.e., PMPs that sort directly to peroxisomes from the cytosol, such as the Arabidopsis 22 kDa 

PMP (PMP22) (Murphy et al., 2003).  

 

Another intriguing possibility is that plant peroxisomes might remain physically attached to the 

ER, analogous to recent models for oil body-ER connectivity (Chapman et al., 2012). Some 

support for this premise comes from live-cell imaging of peroxisome tubular extensions 

(‘peroxules’) in Arabidopsis (Sinclair et al., 2009). The growth and retraction of peroxules 

appears to occur along tracks defined by ER tubules (and perhaps driven by cytoskeleton 

interactions) and at speeds (i.e., seconds) that argue against the idea that these morphological 

changes in peroxules simply result from the acquisition of (new) membranes from the ER via 
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pre-peroxisomal carriers (Mathur, 2009). However, because no ultrastructural studies have 

revealed any direct connections between ER and peroxisome membranes in any organism, 

peroxisome-ER connectivity has to be considered carefully. For instance, the reported dynamic 

behavior of peroxules in plants could be due to peroxisome-ER contact sites, akin to that 

proposed in yeast (Raychaudhuri and Prinz, 2008).  

 

Peroxisome Multiplication by Growth and Division 

 

In addition to de novo formation from the ER, peroxisomes also multiply through division, which 

occurs constitutively (i.e., in association with the cell cycle) or inducibly (i.e., peroxisome 

proliferation). Peroxisome division begins with organelle elongation/tubulation and ends in 

fission, resulting in the formation of two or more peroxisomes (reviewed in Koch and Brocard, 

2011; Schrader et al., 2011). Arabidopsis proteins that operate in peroxisome division have been 

identified through sequence similarity-based searches using yeast proteins, forward genetic 

screens, and in silico analysis followed by cell biological validations (reviewed in Hu, 2009; 

Kaur and Hu, 2009; Aung et al., 2010). As discussed below, plant peroxisome division 

machineries consist of evolutionarily conserved and plant-specific factors. Moreover, several 

plant peroxisomal division proteins are shared with mitochondria and chloroplasts, a strategy that 

might enable plants to coordinate divisions of these metabolically-linked organelles.   

 

Peroxisome Elongation/Tubulation: PEROXIN11 (PEX11) Proteins Serve as Key Factors 

 

Saccharomyces cerevisiae Pex11p was the first peroxisome division protein identified. Ectopic 

expression of ScPEX11 leads to the elongation/tubulation and/or increased numbers of 

peroxisomes, whereas the yeast pex11 null mutants contain one or two giant peroxisomes per cell 

(Erdmann and Blobel, 1995; Marshall et al., 1995). PEX11 homologs have been identified as 

multigene families in various lineages (Hu, 2009; Schrader et al., 2011). Arabidopsis has five 

PEX11 homologs categorized into three subfamilies based on sequence, i.e., PEX11a, PEX11b, 

and PEX11c to e (Figure 2A). These five isoforms are integral PMPs capable of inducing 

peroxisome elongation and/or number increase (Figure 2B) (Lingard and Trelease, 2006; Nito et 

al., 2007; Orth et al., 2007; Lingard et al., 2008).  Heterologous expression of plant or 



9 

 

mammalian PEX11 homologs complements the yeast mutant phenotype to various degrees, 

demonstrating the conserved role of PEX11 across kingdoms (Orth et al., 2007; Koch et al., 

2010).  

 

A recent study in Penicillium chrysogenum showed a role for Pex11p (and possibly other PEX11 

homologs) in membrane remodeling. The conserved N-terminal amphipathic helix of PcPex11p 

binds to liposomes that have membrane lipid content resembling that of the peroxisome 

membrane, and induces liposome tubulation and membrane curvature, possibly through insertion 

into the cytosolic leaflet of the phospholipid bilayer (Koch and Brocard, 2011; Opalinski et al., 

2011). Despite sequence and structural similarities, individual PEX11 family members may have 

distinct functions (Koch and Brocard, 2011; Huber et al., 2012). The differential roles played by 

Arabidopsis PEX11 proteins is indicated by the findings that i) PEX11a has a distinct membrane 

topology from the other isoforms (Lingard and Trelease, 2006), and ii) only members of the 

PEX11c-e subfamily complement the yeast pex11 mutants (Orth et al., 2007; Koch et al., 2010). 

 

Being a highly abundant component of the peroxisome membrane and rate-limiting factor in 

early peroxisome division, PEX11 is regulated at both transcriptional and post-translational 

levels in yeast and mammals (Gurvitz and Rottensteiner, 2006; Michalik et al., 2006; Knoblach 

and Rachubinski, 2010). In Arabidopsis synchronized cell cultures, the expression of PEX11 and 

genes encoding other key division proteins is regulated by the cell cycle, which correlates with 

peroxisome duplication (Lingard et al., 2008).  A phytochrome A-mediated light signaling 

pathway induces PEX11b expression during dark-to-light transitions, in which the bZIP 

transcription factor HY5 HOMOLOG (HYH) binds to the PEX11b promoter (Figure 1A) (Desai 

and Hu, 2008; Hu and Desai, 2008). Salt stress, abscisic acid (ABA), and jasmonic acid (JA) also 

regulate the expression of Arabidopsis and/or rice PEX11 genes (Nayidu et al., 2008; Mitsuya et 

al., 2010). Whether plant PEX11 proteins are subjected to post-translational modifications is 

unclear.  

 

Role of Dynamin-Related Proteins DRP3 and DRP5B and FISSION1 (FIS1) in Fission  
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Following elongation/tubulation, peroxisome division proceeds with membrane constriction and 

fission, a process mediated by a protein complex consisting of the integral membrane-anchored 

protein FIS1, a dynamin-related protein (DRP), and some lineage-specific cytosolic adaptor 

proteins (Benard and Karbowski, 2009; Kaur and Hu, 2009).  

 

Dynamins and DRPs are mechano-chemical enzymes or signaling GTPases that form oligomeric 

rings around membranes, enforcing membrane fission or fusion through GTP hydrolysis 

(Praefcke and McMahon, 2004; Faelber et al., 2011; Ford et al., 2011). At least three of the 16 

Arabidopsis DRPs are involved in peroxisome fission. The closely related DRP3A and DRP3B 

proteins are dual-localized and shared by peroxisomal and mitochondrial divisions, with DRP3A 

playing a major role in peroxisome fission (Arimura and Tsutsumi, 2002; Arimura et al., 2004; 

Logan et al., 2004; Mano et al., 2004; Lingard et al., 2008; Aung and Hu, 2009; Fujimoto et al., 

2009; Zhang and Hu, 2009) (Figure 2). Interestingly, DRP5B (ARC5), a DRP distantly related to 

DRP3, targets to chloroplasts and peroxisomes and facilitates the division of both organelles 

(Gao et al., 2003; Zhang and Hu, 2010) (Figure 2). Besides having enlarged, dumbbell-shaped 

chloroplasts, drp5B mutants also contain aggregated peroxisomes that are impaired in fission 

(Figure 2B) and are partially compromised in peroxisomal functions (Zhang and Hu, 2010). 

Whereas DRP3A and DRP3B are members of an ancient family of DRPs involved in peroxisome 

and mitochondrial division, DRP5B evolved more recently in the plant/algal lineage 

(Miyagishima et al., 2008) to mediate chloroplast and peroxisome division.  

 

Most eukaryotic DRPs lack a lipid-binding or transmembrane domain (TMD) and are only 

recruited to the division sites by interacting directly or indirectly with a membrane-bound 

receptor (Praefcke and McMahon, 2004). A yeast DRP, Dnm1p, is recruited to peroxisomes and 

mitochondria by Fis1p, which is tethered to the organelles by its C terminus and extends its N-

terminal tetratricopeptide repeat (TPR) domain into the cytosol (Motley and Hettema, 2007). 

Both Arabidopsis FIS1 homologs, FIS1A (BIGYIN) and FIS1B, are dual-targeted to 

peroxisomes and mitochondria and play rate-limiting roles in initiating organelle fission (Scott et 

al., 2006; Lingard et al., 2008; Zhang and Hu, 2008, 2009) (Figure 2A). Whether AtFIS1 is 

required for targeting DRP3A/3B to the organelles has not been verified. Given that DRP5B has 

a Pleckstrin Homology (PH) domain, which presumably binds to lipids (Praefcke and McMahon, 
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2004), it may not need a receptor for peroxisome association. Physical interactions between FIS1 

and PEX11 have been detected in mammals and plants (Kobayashi et al., 2007; Lingard et al., 

2008; Zhang and Hu, 2010), indicating a possible, direct functional link between the peroxisome 

elongation and fission machineries.  

 

Possible kingdom-specific factors also exist in the FIS1-DRP complex. Yeast Mdv1p and Caf4p 

are two homologous and partially redundant proteins, each possessing a WD40 repeat and a 

coiled-coil domain and acting as cytosolic adaptors for DRP recruitment (Tieu et al., 2002; 

Griffin et al., 2005; Motley et al., 2008). Although homologs of Mdv1p and Caf4p have not been 

identified in mammals, an analysis of the Arabidopsis genome revealed eight proteins with 

similar domain structures (Pan and Hu, 2011); whether these proteins are involved in organelle 

division remains to be demonstrated.  

 

Peroxisome Division Factors that Act Independently from PEX11, FIS1, and/or DRPs  

 

Mff (Mitochondrial fission factor) is a mammalian-specific coiled-coil protein, which is tethered 

to mitochondrial and peroxisome membranes and recruits Drp1 to the organelles in a Fis1-

independent manner (Gandre-Babbe and van der Bliek, 2008; Otera et al., 2010). In the yeast 

Yarrowia lipolytica, peroxisome division can be triggered when the β-oxidation enzyme acyl-

CoA oxidase binds to the PMP Pex16p, which subsequently induces lipid biosynthesis in the 

membrane and the formation of a division complex containing the DRP Vps1p (Guo et al., 2003; 

Guo et al., 2007). Some Arabidopsis mutants defective in β-oxidation or NAD+ transport contain 

larger but fewer peroxisomes (Graham et al., 2002; Baker et al., 2006; Mano et al., 2011), 

suggesting that accumulation of acyl-CoA or other molecules within the peroxisome may 

regulate division.  

 

Arabidopsis PEROXISOMAL and MITOCHONDRIAL DIVISION FACTOR 1 (PMD1) is a 

plant-specific organelle division factor that acts independently from PEX11 and the FIS1-DRP3 

complex (Aung and Hu, 2011) (Figure 2A). PMD1 is dual-targeted to the membranes of 

peroxisomes and mitochondria. Loss-of-function pmd1 mutants contain enlarged peroxisomes 

and elongated mitochondria, and ectopic expression of the gene leads to increased numbers of 
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the organelles, which are often aggregated (Figure 2C). Surprisingly, PMD1 fails to show 

physical or genetic interaction with any of the known organelle division proteins, indicating that 

it is not an Mff counterpart. Furthermore, the PMD1 homolog, PMD2, which can form 

complexes with PMD1, is localized only to mitochondria and exclusively involved in 

mitochondrial morphogenesis (Aung and Hu, 2011). The mechanism by which PMD1 and 

PMD2 impact peroxisome and mitochondrial division and morphogenesis remains to be 

elucidated. 

 

Protein Import 

 

Identification of Genes Required for Matrix Protein Import 

 

With the exception of some PMPs that traffic to peroxisomes via the ER (see above), nascent 

peroxisomal proteins are imported from the cytosol. The plant peroxins that recognize and 

transport peroxisomal proteins (Figure 3) have been identified by a combination of forward and 

reverse genetic approaches. First, forward genetic strategies have taken advantage of the role of 

peroxisomes in bioactivation of auxin precursors. Indole-3-butyric acid (IBA) and 2,4-

dichlorophenoxybutryic acid (2,4-DB) undergo β-oxidation to form indole-3-acetic acid (IAA) 

and 2,4-dichlorophenoxyacetic acid (2,4-D), respectively, resulting in the inhibition of root and 

hypocotyl elongation. Therefore, IBA or 2,4-DB resistant mutants that display an elongated 

phenotype but remain sensitive to the product (IAA or 2,4-D) are readily identified (Hayashi et 

al., 1998; Zolman et al., 2000; Strader et al., 2011). These screens have identified mutants in 

both β-oxidation and PEX genes. A second screen relies on the role of peroxisomes in mobilizing 

fatty acid reserves to support post-germinative growth; mutants defective in β-oxidation are often 

dependent upon exogenous sucrose for establishment and screens for sucrose-dependent (sdp) 

mutants identified additional genes (Eastmond, 2006, 2007). Third, mislocalization of 

peroxisome-targeted fluorescent fusion proteins has been used to isolate mutants defective in 

peroxisome protein import (Mano et al., 2006; Goto et al., 2011). Finally, putative peroxins have 

been identified in silico and characterized through reverse genetic approaches (Schumann et al., 

2003; Sparkes et al., 2003; Fan et al., 2005; Woodward and Bartel, 2005a; Nito et al., 2007; 

Monroe-Augustus et al., 2011; Ratzel et al., 2011).  
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The Matrix Protein Import Pathway  

 

The majority of matrix proteins are synthesized with one of two import signals: PTS1 

(peroxisomal targeting signal type 1), a C-terminal tripeptide, or PTS2, an N-terminal 

nonapeptide. PTS1 sequences typically conform to the consensus of [small]-[basic]-[aliphatic], 

as exemplified by the sequence SKL. PTS2 sequences have the consensus R[L/I/Q] X5 HL 

(Lanyon-Hogg et al., 2010). Details on permissible PTS1 signals and their in silico prediction are 

described later. 

 

Following translation, PTS1 proteins interact with their receptor PEX5 in the cytosol (Figure 3). 

PEX5 is highly conserved and contains two functional domains: an N-terminal peroxisomal 

docking domain and a C-terminal domain formed from two sets of three tetratricopeptide repeats 

(TPRs), which provide a binding pocket for PTS1 (Lanyon-Hogg et al., 2010). Homology 

modeling of Arabidopsis PEX5 on a human PEX5-PTS1 protein structure suggests that all the 

important interactions are conserved (Lanyon-Hogg et al., 2010). These structural studies 

indicate that the mechanism of PTS1 recognition by PEX5 is likely to be conserved; however, 

targeting studies show some species-specific differences that are likely to reflect subtle 

differences in the geometry of the PTS1 binding pocket that remain to be fully understood. 

 

PTS2 proteins interact with their receptor PEX7 prior to peroxisome entry (Figure 3), but the 

molecular details of this interaction are unclear. Unlike PEX5, PEX7 cannot mediate interaction 

with the peroxisome membrane alone but requires accessory proteins. As in mammals, 

Arabidopsis PEX5 acts as the co-receptor for PEX7 (Nito et al., 2002). Down-regulation of 

PEX5 by RNAi compromises both PTS1 and PTS2 import (Hayashi et al., 2005), and mutation 

of a conserved serine in the pex5-1 mutant reduces PTS2 import while PTS1 import remains 

functional (Woodward and Bartel, 2005b). As many β-oxidation enzymes use the PTS2 import 

pathway, the pex5-1 mutant behaves as a typical β-oxidation mutant and is IBA resistant and 

sucrose dependent (Zolman et al., 2000). The Arabidopsis pex5-10 mutant, which contains a 

deletion of four WX3F/Y repeats (see below), has both PTS1 and PTS2 import defects, but the 
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PTS2 import defect can be rescued by expression of a construct comprising the N-terminal 

domain of PEX5 (Khan and Zolman, 2010), confirming that the PEX5 N-terminal domain is 

required for PEX7 interaction.  

 

The PEX5 N terminus is suggested to be a natively unfolded domain exhibiting significant 

conformational flexibility (Carvalho et al., 2006). In mammalian PEX5, multiple WX3F/Y motifs 

bind within the binding groove of the N-terminal domain of the PMP PEX14 (Neufeld et al., 

2009). Arabidopsis PEX14 is an integral PMP important for PTS1 and PTS2 import (Hayashi et 

al., 2000). The topology of PEX14 is somewhat controversial (Oliveira et al., 2002) and 

therefore it is unclear whether the critical interaction between PEX5 and PEX14 takes place on 

the cytosolic side of the membrane, within the membrane, or even within the matrix. The latter 

possibility would suggest that PEX14 is not the initial docking point for PEX5. In this context, it 

is interesting that yeast and human PEX5 can spontaneously insert into lipid membranes in vitro 

(Kerssen et al., 2006) and that residual protein import can occur without PEX14 in Hansenula 

polymorpha (Salomons et al., 2000) and Arabidopsis (Monroe-Augustus et al., 2011). 

 

PEX5/7 docking at the peroxisome membrane also involves PEX13 (Figure 3). AtPEX13 is quite 

diverged from the fungal and mammalian counterparts and was identified from the aberrant 

peroxisome morphology (apm) collection as a mutant showing partial mislocalization of a green 

fluorescent protein (GFP)-PTS1 peroxisome marker to the cytosol (Mano et al., 2006). A null 

pex13 allele was subsequently identified as amc (abstinence by mutual consent) with defective 

male-female gametophyte recognition (Boisson-Dernier et al., 2008). PEX7 also binds to the N 

terminus of PEX13 (Mano et al., 2006). There is still uncertainty about the order, stoichiometry, 

and affinity of binding interactions among PEX5, PEX7, their cargoes, PEX14, and PEX13; 

however, the general consensus is that import is driven by thermodynamically favorable binding 

interactions (see Lanyon-Hogg et al., 2010 for more detailed discussion of this point). The 

mechanism of protein translocation is also uncertain, but yeast PEX5 and PEX14 appear to form 

a transient pore that can open to a diameter of up to 9 nm (Meinecke et al., 2010).  

 

After import into the matrix, cargo is unloaded and the receptors are recycled. Again, there is a 

paucity of mechanistic data and cargo unloading remains an obscure process. In yeast, Pex5p re-
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export requires the three RING finger peroxins, Pex2p, Pex10p and Pex12p, the ubiquitin-

conjugating enzyme Pex4p and its membrane anchor Pex22p, and the two AAA ATPases Pex1p 

and Pex6p, which are tethered to the membrane by Pex15p. The prevailing model (Figure 3) 

invokes Pex5p monoubiquitination by Pex4p (E2) and Pex12p (E3), and ATP-dependent 

dislocation of ubiquitinated Pex5p from the membrane via Pex1p and Pex6p (Grou et al., 2009). 

Although there is no direct evidence for PEX5 ubiquitination in plants, the machinery is 

conserved. The finding that the very mild pex13-1 mutant exacerbates the phenotypes of mutants 

in the early part of the pathway but ameliorates the phenotypes of mutants in the recycling limb 

of the pathway points to a need to balance receptor import and export (Ratzel et al., 2011). 

 

Knockout mutants of Arabidopsis PEX2, PEX10 and PEX12 are embryo lethal (Hu et al., 2002; 

Schumann et al., 2003; Sparkes et al., 2003; Fan et al., 2005) and RNAi lines all show PTS1 and 

PTS2 import defects and sucrose dependence following germination (Nito et al., 2007). In 

addition to these typical pex defects, some of the RING finger peroxin mutants display additional 

phenotypes, suggesting their involvement in biological processes other than import. For example, 

an RNAi line with strong PEX10 suppression also has variegated leaves, fused floral organs, 

aberrant ER morphology, and a defect in cuticular wax synthesis (Kamijaki et al., 2009). A 

transgenic Arabidopsis line expressing a PEX10 with a mutated RING finger also shows defects 

in photorespiration and interaction between chloroplasts and peroxisomes (Schumann et al., 

2007). A gain-of-function mutant of PEX2 (TED3) suppresses the photomorphogenetic defects 

of det1-1 (Hu et al., 2002). If indeed the RING finger peroxins are E3 ligases, they could 

potentially target proteins other than the import receptors. 

 

The pex4 RNAi mutant has a PTS1 protein import defect (Nito et al., 2007), and partial loss-of-

function mutations in PEX4 and PEX22 confer mild defects that are enhanced in the double 

mutant (Zolman et al., 2005), supporting the notion that PEX4 and PEX22 function in the same 

pathway. Indeed, Arabidopsis PEX22 and PEX4 interact and together can complement the S. 

cerevisiae pex4 or pex22 mutants (Zolman et al., 2005).  

 

PEX1 and PEX6 RNAi lines have a PTS1 protein import defect (Nito et al., 2007) and a 

missense allele of pex6 was isolated as an IBA resistant mutant (Zolman and Bartel, 2004). pex6 
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plants are small, pale, and have reduced seed set. At the cellular level, peroxisomes are enlarged 

and PEX5 levels are reduced. Recently, the membrane anchor for PEX1 and PEX6 has been 

identified from the collection of apm mutants. APEM9 is an integral PMP that binds PEX6 and 

recruits the PEX1-PEX6 complex to the peroxisome membrane (Goto et al., 2011). 

 

Degradation of the PTS1 Receptor PEX5 

 

As discussed above, PEX5 monoubiquitination is required for PEX5 recycling in yeast and 

mammals, and the conservation of the responsible ubiquitin-conjugating enzyme (PEX4), 

ubiquitin protein ligases (PEX2, PEX10, and PEX12), and AAA ATPases (PEX1, PEX6) in 

plants suggests that the PEX5 recycling mechanism also occurs in plants (Figure 3). Intriguingly, 

these receptor-recycling peroxins resemble proteins needed during ER-associated protein 

degradation (ERAD), the process of ubiquitination, retrotranslocation, and proteasomal 

degradation of misfolded ER proteins (Gabaldon et al., 2006; Schluter et al., 2006). Further 

supporting an ERAD analogy are the observations that yeast and mammalian PEX5 are 

polyubiquitinated and degraded by the proteasome when not efficiently recycled (Platta et al., 

2004) in a process termed RADAR (receptor accumulation and degradation in the absence of 

recycling) (Leon et al., 2006). For example, human PEX5 is degraded in the absence of PEX6 

(Yahraus et al., 1996). Although plant PEX5 ubiquitination has not been directly demonstrated, 

the Cys residue that is monoubiquitinated in other eukaryotes (Carvalho et al., 2007; Williams et 

al., 2007) is conserved in Arabidopsis PEX5. In addition, the Arabidopsis pex6-1 missense allele 

has reduced PEX5 levels, and overexpressing PEX5 partially restores peroxisome function in 

pex6-1 (Zolman and Bartel, 2004), suggesting that a RADAR mechanism also operates in plants. 

Reducing PEX4 function (Zolman et al., 2005) in the pex6-1 background restores PEX5 levels 

while exacerbating pex6-1 physiological and molecular defects (Ratzel et al., 2011), suggesting 

that PEX4 is needed for both the ubiquitination that promotes PEX5 recycling and the 

ubiquitination that triggers RADAR. The apparent conservation of RADAR processes suggests 

that this degradation prevents a deleterious build-up of PEX5 in the peroxisomal membrane. 

 

In addition to low PEX5 levels observed in pex6-1 mutants (Zolman et al., 2005; Ratzel et al., 

2011), PEX5 levels are reduced in light-grown pex7 mutants (Ramon and Bartel, 2010),  



17 

 

suggesting that the dependence of PEX7 on PEX5 for cargo delivery in plants (Hayashi et al., 

2005; Woodward and Bartel, 2005a) is mirrored by a dependence of PEX5 on PEX7 for stability. 

Whether the apparent PEX5 instability in pex7 mutants reflects inefficient recycling leading to 

RADAR or instability in the cytosol remains to be determined. 

 

Peroxisomal Proteases and Matrix Protein Degradation 

 

Two peroxisomal proteases are implicated in peroxisome biogenesis. One is DEG15, the PTS2 

processing protease. Originally purified from watermelon cotyledons, DEG15 is a trypsin-like 

Ser protease that cleaves PTS2 proteins to remove the N-terminal region both in vitro and in vivo 

(Helm et al., 2007; Schuhmann et al., 2008). Beyond a slight resistance to the inhibitory effects 

of IBA (Lingard and Bartel, 2009) and 2,4-DB (Schuhmann et al., 2008), the Arabidopsis deg15 

null mutant does not display growth or germination defects that would ascribe a physiological 

benefit to removing the PTS2 sequence following peroxisome entry. Indeed, yeasts lack a 

peroxisomal DEG15 ortholog and do not remove PTS2 sequences upon import (Helm et al., 

2007). The evolutionary advantage that has conserved the PTS2 removal process in plants and 

mammals remains to be identified. 

 

LON proteases are members of the AAA ATPase family originally discovered in bacteria, where 

they degrade both aberrant and regulatory proteins (reviewed in Van Melderen and Aertsen, 

2009). In plants, LON isoforms are found in chloroplasts, mitochondria, and peroxisomes 

(Ostersetzer et al., 2007); LON2 is the peroxisomal LON isoform. Interestingly, Arabidopsis 

lon2 mutants display molecular and physiological phenotypes indicative of peroxisomal defects. 

For example, although matrix proteins correctly localize in 4-day-old cotyledon cells, they 

mislocalize to the cytosol in older seedlings (Lingard and Bartel, 2009). Similarly, a PTS2-GFP 

reporter sorts to peroxisomes in lon2 root tip cells, but is largely cytosolic in mature root cells 

(Lingard and Bartel, 2009). The delayed onset of matrix protein sorting defects in lon2 mutants 

suggests that LON2 facilitates continued matrix protein import in mature peroxisomes. The 

increasing severity of lon2 import defects with age contrasts with several other pex mutants, 

which seem to recover peroxisomal function with age. For example, the severe matrix protein 

import defects of young pex14 seedlings lessen as seedlings mature (Hayashi et al., 2000; 
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Monroe-Augustus et al., 2011), and pex5-10 mutants recover normal pigmentation upon 

maturation (Khan and Zolman, 2010). The demonstration that LON2 promotes sustained 

peroxisomal matrix protein import (Lingard and Bartel, 2009) indicates that this protease is a 

previously unrecognized peroxin, and it will be interesting to discover the LON2 substrate(s) that 

hinder matrix protein import if not efficiently degraded. 

 

Although we are beginning to understand how proteins are delivered to the peroxisome matrix, 

little is known about how excess plant peroxisomes or peroxisomal proteins are degraded. A 

specialized form of autophagy, pexophagy, is important in removing excess peroxisomes in yeast 

and mammals (reviewed in Manjithaya et al., 2010), but pexophagy has not been reported in 

plants. Peroxisomal sequestration likely protects the cytosol from H2O2 produced by various 

peroxisomal oxidases. Although peroxisomes house catalase and other enzymes that decompose 

this H2O2, the protective capacity of the peroxisome can be exceeded (Eastmond, 2007). 

Moreover, certain matrix proteins, such as the glyoxylate cycle enzymes isocitrate lyase and 

malate synthase (ICL and MLS; see below), are susceptible to oxidative damage both in vitro 

and in vivo (Yanik and Donaldson, 2005; Eastmond, 2007; Anand et al., 2009), which may 

necessitate a degradation pathway that responds to oxidative damage. In addition, obsolete 

proteins are removed during developmental peroxisomal remodeling. For example, ICL and 

MLS are degraded when seedlings transition from fatty acid β-oxidation to photosynthesis 

(Nishimura et al., 1996). This degradation is accelerated in a catalase mutant (Lingard et al., 

2009), suggesting that oxidative damage by H2O2 promotes peroxisome-associated protein 

degradation. Furthermore, ICL and MLS must enter peroxisomes to be efficiently degraded 

(Lingard et al., 2009), suggesting that degradation is triggered following import or that the 

responsible protease is peroxisomal.  However, insertion alleles disrupted in any of the five 

predicted peroxisomal proteases (DEG15/At1g28320, LON2/At5g47040, PXM16/At2g41790, 

At2g18080, and At2g35615) display normal ICL and MLS degradation (Lingard and Bartel, 

2009), indicating that if ICL and MLS degradation is accomplished by a peroxisomal protease, it 

acts redundantly or remains to be identified. Interestingly, one of the receptor-recycling peroxins, 

PEX4, facilitates ICL and MLS degradation (Lingard et al., 2009), consistent with the alternative 

possibility that damaged and obsolete proteins actively exit peroxisomes for cytosolic 

proteasomal degradation, perhaps using the same ERAD-resembling machinery that is used to 
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recycle (or destroy) PEX5. It will be interesting to learn whether PEX5, which is essential for the 

entry of peroxisomal matrix proteins, also assists in the exit of these proteins when they are 

damaged or obsolete.  

 

PEROXISOMAL FUNCTIONS 

 

Plant peroxisomes mediate a multitude of processes crucial to development. Peroxisomes are the 

sole site of fatty acid β-oxidation in plant cells and are involved in generating two 

phytohormones, IAA and JA (Figure 4). They play an important role in photorespiration in 

conjunction with mitochondria and chloroplasts (Figure 5). In addition to these major processes, 

which are discussed in detail below, plant peroxisomes also participate or are implicated in a 

plethora of other metabolic and signaling pathways, such as the glyoxylate cycle, detoxification, 

generation of signaling molecules, biosynthesis of salicylic acid, and the metabolism of urate, 

polyamines, sulfite, and branched-chain amino acids (reviewed in Kaur et al., 2009). Recent 

studies have also revealed roles for peroxisomes in plant immune response (Lipka et al., 2005; 

Westphal et al., 2008; Bednarek et al., 2009; Clay et al., 2009; Maeda et al., 2009; Coca and San 

Segundo, 2010; Rojas et al., 2012) and the biosynthesis of biotin (Tanabe et al., 2011), S-

allantoin (Lamberto et al., 2010), phylloquinone (Widhalm et al., 2012), and isoprenoids (Sapir-

Mir et al., 2008; Tholl and Lee, 2011).   

 

Peroxisomal β-Oxidation 

 

Fatty Acid β-Oxidation 

 

Fatty acid oxidation is an essential process in the mobilization of seed oil reserves, which are laid 

down during seed development predominantly as triacylglycerol (TAG) and mobilized to support 

post-germinative growth prior to the seedling developing photosynthetic competence (Graham, 

2008). TAG lipases hydrolyze the TAG to release free fatty acids, whereby two oil body-

associated enzymes, SUGAR DEPENDENT 1 (SDP1) (Eastmond, 2006) and SDP1L (SUGAR 

DEPENDENT 1 LIKE) together account for 95% of TAG lipase activity (Kelly et al., 2011). 

Fatty acids (and other substrates of β-oxidation) are transported into peroxisomes by the 
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peroxisomal ATP Binding Cassette (ABC) transporter protein CTS/PXA1/PED3 (see details 

below). Mutants deficient in fatty acid degradation lack the energy or metabolites necessary for 

seedling establishment into a photosynthetic plant, and thus produce short hypocotyls when 

grown in the dark, a phenotype that can be rescued by sucrose. A severe β-oxidation block 

results in strongly reduced germination (Baker et al., 2006). In addition to roles in early seedling 

development, fatty acid β–oxidation also has important roles in re-mobilization of reserves 

during senescence and in survival in extended periods of darkness (Dong et al., 2009; Kunz et 

al., 2009; Slocombe et al., 2009). 

 

Following peroxisomal import, straight chain saturated fatty acyl-CoAs undergo a cycle of 

oxidation, hydration, oxidation and thiolysis, leading to release of acetyl-CoA and an acyl-CoA 

that has been shortened by 2 carbons (Figure 4; Graham, 2008). The first step is catalyzed by a 

family of acyl-CoA oxidases, ACX1-5 in Arabidopsis, with differing but partially overlapping 

chain length specificities (Hayashi et al., 1999; Hooks et al., 1999; Eastmond et al., 2000b; 

Rylott et al., 2003; Adham et al., 2005; Pinfield-Wells et al., 2005; Khan et al., 2012). These 

enzymes are flavin adenine dinucleotide-linked and the electrons are passed to molecular oxygen 

to produce H2O2. The resulting 2-trans-Enoyl CoA is the substrate for the multifunctional 

protein, which contains both hydratase and dehydrogenase domains.  

 

There are two peroxisomal multifunctional proteins in Arabidopsis, MFP2 (Rylott et al., 2006) 

and AIM1 (Richmond and Bleecker, 1999). MFP2 is the major seedling form; its mutant shows a 

typical β-oxidation deficiency phenotype (Rylott et al., 2006). The mfp2 mutant is not resistant to 

pro-auxins whereas the aim1 mutant is. Consistent with this resistance, AIM1 prefers short chain 

substrates (Richmond and Bleecker, 1999; Arent et al., 2010). MFP2’s hydratase activity prefers 

longer chains (Rylott et al., 2006) but shows little activity on acyl-CoAs above 14 carbons in 

length (Arent et al., 2010), suggesting that there is a yet undiscovered long chain hydratase.  

 

The final step of core β-oxidation is the thiolytic cleavage of 3-ketoacyl CoA by thiolase to 

produce acetyl-CoA and a shortened acyl-CoA. Of the three peroxisomal thiolases, PED1/KAT2 

is the major seedling form (Hayashi et al., 1998; Germain et al., 2001). The ped1/kat2 mutant has 

a more severe β-oxidation deficient phenotype than the mfp2 mutant, but interestingly both mfp2 
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(Rylott et al., 2006) and kat2 (Germain et al., 2001) have enlarged peroxisomes, suggesting that 

intra peroxisomal accumulation of acyl-CoAs could result in peroxisomal expansion or inhibition 

of division (Graham et al., 2002).  

 

The core β-oxidation machinery metabolizes straight chain saturated fatty acids. However, 

peroxisomes also metabolize unsaturated fatty acids with double bonds at both odd and even 

positions, which requires accessory enzymes to convert these molecules into suitable substrates 

(Goepfert and Poirier, 2007; Graham, 2008). For the degradation of fatty acids with double 

bonds at the odd position, e.g., C18:Δ9cis (oleic acid), the peroxisomal Δ3,5Δ2,4 dienoyl CoA 

isomerase encoded by AtDCI is essential (Goepfert et al., 2005). For even double bonds, an 

epimerase activity that is part of the multifunctional protein or a separate enoyl-CoA hydratase 

(ECH) is required (Goepfert et al., 2006). 

 

The acyl-CoA oxidase reaction produces H2O2, which is metabolized by catalase. However, 

under conditions of high H2O2 production, such as during TAG mobilization in early seedling 

growth, a membrane-bound system comprising ascorbate peroxidase and monodehydroascorbate 

reductase (MDAR) acts as a second line of defense to prevent H2O2 leakage into the cytosol. A 

mutant in MDAR (sdp2) has compromised β-oxidation due to excess H2O2 that causes oxidative 

inactivation of the TAG lipase SDP1 (Eastmond, 2007). 

 

The product of β-oxidation, acetyl-CoA, can be respired by mitochondria (Kunze et al., 2006) or 

can enter the glyoxylate cycle, where citrate synthase (CSY), ICL, and MLS convert it to 

succinate and malate used for gluconeogenesis (Pracharoenwattana and Smith, 2008). 

Arabidopsis CSY1 and CSY2 convert acetyl-CoA to citrate for export to mitochondria; the 

double mutant is unable to germinate without sucrose and physical removal of the seed coat, fails 

to degrade its oil bodies, and is resistant to 2,4-DB (Pracharoenwattana et al., 2005). The icl1 

mutant germinates and degrades oil bodies, presumably respiring the acetyl-CoA, but has 

reduced survival in periods of extended darkness (Eastmond et al., 2000a). mls mutants have 

mild phenotypes, suggesting MLS is partially dispensable for gluconeogenesis and lipid 

metabolism (Cornah et al., 2004)  
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The hydroxyacyl-CoA dehydrogenase activity of MFP produces NADH. Re-oxidation of NADH 

and therefore continued β-oxidation depends on a malate-oxaloacetate shuttle that involves 

peroxisomal and cytosolic isoforms of malate dehydrogenase (MDH). Double mutants defective 

in the two peroxisomal MDH genes, PMDH1 and PMDH2, germinate but are sucrose dependent 

for establishment, are resistant to 2,4-DB, and mobilize TAGs slowly (Pracharoenwattana et al., 

2007).   

 

Jasmonic Acid Production 

 

The major functions of jasmonates, phytohormones regulating development and stress response, 

include wounding and pathogen responses, stamen development, and pollen release. This 

hormone family is comprised of several related lipid-derived compounds: JA, its precursor 12-

oxo-phytodienoic acid (OPDA), and JA derivatives, including the methyl ester and the Ile 

conjugated forms (reviewed in Wasternack and Kombrink, 2009; Acosta and Farmer, 2010). 

Production of active jasmonates occurs sequentially in three locations: chloroplasts, 

peroxisomes, and the cytosol. 

 

Chloroplast-localized reactions convert polyunsaturated fatty acids to OPDA, which is released 

via an unknown mechanism (Wasternack and Kombrink, 2009; Acosta and Farmer, 2010). 

Following peroxisomal import, the OPDA reductase OPR3 converts OPDA to OPC8:0 (3-oxo-2-

(2’-[Z]-penenyl) cycopentane-1-octanoic acid). OPR3 has reductase activity in vitro (Costa et al., 

2000; Schaller et al., 2000) and opr3 was found as a male-sterile mutant rescued specifically by 

JA application (Stintzi and Browse, 2000). 

 

Three rounds of peroxisomal β-oxidation convert OPC8:0�OPC6:0�OPC4:0�JA. OPCL1 

activates OPC8:0, and ACX1 and ACX5, AIM1, and PED1/KAT2 are implicated in the core β-

oxidation of JA precursors. These isozyme assignments were inferred from three observations: i) 

OPCL1, ACX1, and KAT2 mRNAs strongly and rapidly accumulate in response to JA, as part of 

a positive feedback mechanism (Castillo et al., 2004; Koo et al., 2006); ii) OPCL1 (Koo et al., 

2006; Kienow et al., 2008) and ACX1 (Li et al., 2005) are biochemically active on JA 

intermediates; and iii) RNAi lines and opcl1, acx1, aim1, and ped1/kat2 mutants have decreased 
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JA biosynthesis (Castillo et al., 2004; Afitlhile et al., 2005; Pinfield-Wells et al., 2005; Koo et 

al., 2006; Delker et al., 2007). Moreover, disruptions of ACX1 or PED1/KAT2 delay systemic 

responses (Castillo et al., 2004) and a tomato acx1 mutant has reduced defense against chewing 

insects (Li et al., 2005). 

 

The modification of JA to JA-Ile (Staswick and Tiryaki, 2004), the active component in JA 

signaling (Thines et al., 2007), occurs in the cytoplasm. OPDA, JA, and JA-Ile have unique roles 

in plant cells (Wasternack and Kombrink, 2009; Acosta and Farmer, 2010). The transition 

between organelles may regulate the ratio of jasmonates and thereby affects the types or intensity 

of responses.  

 

OPDA regulates seed germination. Whereas mutants blocked in β-oxidation can be rescued for 

establishment by sucrose supplementation, indicating an insufficient supply of carbon and energy 

from fatty acid metabolism, severe mutants in core β-oxidation functions cannot germinate 

unless the testa is manually ruptured (Russell et al., 2000; Pinfield-Wells et al., 2005; Footitt et 

al., 2006). Peroxisomal transport or activity mutants, including cts/pxa1/ped3, ped1/kat2, and 

acx1 acx2 double mutants, accumulate OPDA and paradoxically, JA, in seeds. However, a pxa1 

opr3 double mutant, which accumulates high OPDA but lacks JA, maintains the germination 

defect, indicating that peroxisomal import and metabolism of OPDA is important for 

germination (Dave et al., 2011). Moreover, OPDA and ABA act synergistically to increase levels 

of the transcription factor ABI5 (Dave et al., 2011). ABI5 is also upregulated in the ped3 allele, 

which in turn leads to higher levels of polygalacturonase inhibiting proteins; removal of pectin 

using exogenous polygalacturonase can overcome the germination block in ped3 (Kanai et al., 

2010). 

 

The JA biosynthetic pathway was proposed in the 1980s (Vick and Zimmerman, 1983). 

Although great strides have been made identifying the peroxisomal components, several 

questions remain. An unknown thioesterase presumably is required to cleave the jasmonoyl-CoA 

to release JA. The transporter facilitating JA export also remains unknown. In addition, there is a 

high degree of redundancy in JA transport and biosynthesis, and residual JA still accumulates in 

single mutants. For instance, opr3 accumulates JA in certain conditions (Chehab et al., 2011), 
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and opcl1 accumulates JA to ~60% of wild type, allowing many expression targets to still be 

induced (Koo et al., 2006). Similarly, only in an acx1 acx5 double mutant is fertility and wound-

induced JA biosynthesis lost (Schilmiller et al., 2007). Further, different tissues may regulate JA 

synthesis differently. For instance, Dave et al. (2011) reported high JA levels in cts-2 seeds, but 

studies on the same allele showed almost no JA in leaves (Theodoulou et al., 2005). Similarly, 

acx1 acx5 makes no JA in wounded leaves, but produces JA in flowers and following fungal 

infections (Schilmiller et al., 2007). Further studies, including analysis of additional mutant 

combinations, could define the full complement of proteins involved in JA biosynthesis, but 

mutant analysis will require examination in multiple conditions for a complete understanding.  

 

Peroxisomal Conversion of IBA to IAA  

 

IAA is the principal form of auxin, a phytohormone regulating many aspects of development by 

influencing cell division and elongation (reviewed in Perrot-Rechenmann, 2010). IBA is 

structurally similar to IAA, but has a two carbon side-chain elongation; IBA is known for 

efficacy in root induction and is applied to cuttings or seedlings to ensure strong root 

development (reviewed in Woodward and Bartel, 2005b). Feeding studies have shown that IAA 

can be converted to IBA; IBA formation is hypothesized to relieve high IAA levels. IBA is also 

converted back to IAA, increasing free (active) IAA to match plant needs. Conversion of IBA to 

IAA removes the two extra side-chain carbons in a β-oxidation like pathway (Fawcett et al., 

1960). Because of the structural differences, IBA can be considered a proto-auxin, which is 

transported (reviewed in Strader and Bartel, 2011) or stored (reviewed in Simon and Petrasek, 

2011) without auxin activity.  

 

Our understanding of IBA activity is based on forward genetic screens, which revealed IBA 

metabolism to be a peroxisomal process. The predicted pathway for IBA metabolism parallels 

fatty acid β-oxidation: IBA is imported into peroxisomes, activated by CoA, and converted to 

IAA-CoA via the core β-oxidation steps (Figure 4). Mutants defective in AIM1 and PED1/KAT2 

show pleiotropic phenotypes, including fatty acid and JA defects (described above) and 2,4-DB 

(Hayashi et al., 1998; Richmond and Bleecker, 1999; Hayashi et al., 2002) and IBA (Zolman et 

al., 2000; Zolman et al., 2001) resistance, indicating IBA-to-IAA conversion is disrupted. 
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Therefore, AIM1 could catalyze the middle two steps of IBA metabolism, similar to fatty acid 

metabolism. PED1/KAT2 could act as a thiolase to release two side-chain carbons, producing 

IAA-CoA and acetyl-CoA (Hayashi et al., 1998; Zolman et al., 2000).  

 

Alternatively, ibr1, ibr3, ibr10, and ech2 only show IBA-response phenotypes, suggesting that 

the corresponding enzymes may act specifically on IBA intermediates. IBR3 encodes an acyl-

CoA dehydrogenase/oxidase, which could convert IBA-CoA to the α,β-unsaturated thioester 

(Zolman et al., 2007). Two enoyl-CoA hydratases are implicated in IBA responsiveness: IBR10 

(Zolman et al., 2008) and ECH2 (Strader et al., 2011). Although ECH2 and IBR10 have similar 

domain structures, complementation experiments indicate that they are not redundant (Strader et 

al., 2011). In addition to hydratase activity, ECH2 also has a hot dog domain common in 

thioesterases and therefore may be acting at the last step to convert IAA-CoA to IAA (Strader et 

al., 2011). Finally, IBR1, also identified as SDRa (Wiszniewski et al., 2009), encodes a short-

chain dehydrogenase/reductase (Zolman et al., 2008), which may catalyze the fourth step of IBA 

β-oxidation. AIM1-IBR1 redundancy at the dehydrogenase/reductase step could explain why the 

ibr1 defects are less severe than those of other mutants (Strader et al., 2011).   

 

Strader et al. (2010) demonstrated reduced IAA production from labeled IBA in pex6, pxa1, and 

the ibr1 ibr3 ibr10 triple mutant, confirming roles for peroxisomes and these enzymes in IAA 

production. However, the precise enzymatic assignments require biochemical confirmation; in 

particular, IBR10 and ECH2 placement and potential redundancy between AIM1 and IBR1 will 

require activity assays for resolution.  

 

ACX activity on IBA-CoA also remains a question. acx mutant analysis revealed that all five 

ACX enzymes promote IBA responsiveness (Adham et al., 2005) and acx1 acx2 double mutants 

have decreased IBA-to-IAA conversion (Strader et al., 2010). IBR3 and multiple ACX enzymes 

may catalyze this reaction in an overlapping manner or based on expression. However, ACX 

enzymes show substrate chain-length specificities (see above) that seemingly contradict the idea 

that all five act directly on IBA. Alternatively, IBR3 may act directly on IBA substrates while 

ACX activity affects IBA oxidation indirectly, perhaps based on limiting peroxisomal CoA pools 

(Adham et al., 2005). Further, two steps remain unresolved. The aae18 synthetase mutant is 2,4-
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DB resistant but responds normally to IBA (Wiszniewski et al., 2009); whether a different 

protein activates IBA (perhaps redundantly) remains to be determined. IAA export to the cytosol 

has not been defined, either. 

 

Finally, we do not know how the conversion of IBA to IAA is regulated or triggered, although 

one hypothesis is that low IAA levels stimulate IBA metabolism.  IBA-response mutants have 

reduced lateral root systems, smaller root meristems, defective cotyledon expansion, shorter root 

hairs, and reduced hypocotyl and stamen elongation (Zolman et al., 2000; Footitt et al., 2007; 

Strader et al., 2010; Strader et al., 2011), demonstrating the importance of this conversion in 

multiple aspects of plant growth and development.  

 

Photorespiration 

  

The Classical Pathway 

 

The most prominent role of peroxisomes in photosynthetic tissues is their participation in 

photorespiration. The oxidative C2 cycle is a salvage pathway for phosphoglycolate produced by 

the oxygenase activity of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), to the 

Calvin cycle intermediate phosphoglycerate. This pathway is one of the most sophisticated 

examples of subcellular compartmentalization and spatial and temporal coordination, as it 

combines enzymatic reactions in, and intermediate and co-factor exchange between, 

chloroplasts, peroxisomes, mitochondria and, as recently shown, the cytosol (Timm et al., 2008). 

Peroxisome-localized photorespiratory enzymes include glycolate oxidase (GOX), catalase 

(CAT), two aminotransferases, hydroxypyruvate reductase (HPR), and MDH, placing leaf 

peroxisomes at a central position in photorespiration (Figure 5).  

 

Downstream of RubisCO, the photorespiratory reactions continue in the chloroplast stroma with 

phosphoglycolate phosphatase (PGP), which dephosphorylates 2-phosphoglycolate (Schwarte 

and Bauwe, 2007). Glycolate diffuses into the matrix of peroxisomes, where it is oxidized to 

glyoxylate by GOX concomitant with H2O2 production. Glyoxylate is transaminated by two 

peroxisomal aminotransferases, Ser-glyoxylate and Glu-glyoxylate aminotransferase (SGT and 
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GGT), which ideally cooperate at a 1:1 stoichiometry (Liepman and Olsen, 2001; Igarashi et al., 

2003; Liepman and Olsen, 2003; Igarashi et al., 2006). Mitochondrial glycine decarboxylase 

decomposes glycine to CO2, NH3, and NADH, and transfers a C1 unit to 5,10-methylene 

tetrahydrofolate. Serine hydroxymethyl transferase attaches this methylene unit to the second 

Gly molecule to produce Ser. Serine diffuses back to leaf peroxisomes for transamination by 

SGT to yield hydroxypyruvate, which is reduced by HPR and NADH provided by peroxisomal 

MDH to form glycerate. Last, stromal glycerate kinase (GLYK) produces the Calvin cycle 

intermediate 3-phosphoglycerate (Figure 5) (Reumann and Weber, 2006; Maurino and 

Peterhansel, 2010). 

 

Molecular Identification of All Key Photorespiration Enzymes 

 

Photorespiration is an essential process in land plants, as evident from the conditionally lethal 

phenotype of mutants deficient in the participating enzymes or transporters. However, the 

photorespiratory pathway of C3 plants is inefficient in terms of energy, carbon and nitrogen 

usage (see below). To fill in the knowledge gaps about photorespiratory enzymes and increase 

plant biomass production, photorespiration research has been revitalized recently, with major 

activities led by groups such as the German research consortium PROMICS (www.promics.uni-

rostock.de). Major fundamental and applied biotechnological knowledge has been gained in the 

past few years, as described by several recent reviews (Foyer et al., 2009; Bauwe, 2010; Bauwe 

et al., 2010; Maurino and Peterhansel, 2010; Peterhansel and Maurino, 2011; van Dongen et al., 

2011).  

 

Molecular identification of the core photorespiration enzymes has been completed only recently. 

Using a candidate gene approach, the gene encoding PGP was revealed based on the 

characteristic photorespiratory phenotype of the knock-out mutant, i.e., non-viability in normal 

air but normal growth under elevated CO2 concentrations (Schwarte and Bauwe, 2007). Contrary 

to the other core photorespiratory enzymes, deletion of peroxisomal HPR1 does not lead to 

ambient air sensitivity but does increase the stoichiometry of photorespiratory CO2 release 

(Cousins et al., 2011). Identification of a second HPR (HPR2) suggests the existence of an 

efficient NADPH-dependent cytosolic bypass (Timm et al., 2008). A recent study identified a 
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third, chloroplast-localized HPR with high specificity for glyoxylate; the triple mutant of the 

three HPR genes shows increased growth retardation, decreased photochemical efficiency, and 

reduced oxygen-dependent gas exchange compared to the hpr1 hpr2 double mutant (Timm et al., 

2011). 

 

The gene encoding the last missing enzyme of the C3 plant photorespiratory cycle, GLYK, was 

identified from Arabidopsis; its knockout mutant is unviable in normal air but able to grow under 

elevated CO2 (Boldt et al., 2005). Contrary to that in C3 plants, maize GLYK is redox-regulated 

by an additional, C-terminal autoinhibitory domain, which forms a disulfide bridge at night, 

inhibiting enzyme activity and rendering the oxidized enzyme inactive (Bartsch et al., 2008).  

 

Photorespiration as a Prime Target for Crop Improvement 

 

Despite being a valuable salvage pathway, the photorespiratory C2 cycle remains inefficient 

because it renders i) suboptimal conversion of fixed carbon in the form of phosphoglycolate into 

phosphoglycerate (max. three of four C atoms, i.e., 75%), ii) loss of fixed N, and iii) loss of 

energy during glycolate oxidation by the production of H2O2 rather than NAD(P)H. Hence, the 

photorespiratory pathway, at least theoretically, bears a high optimization potential in C3 plants, 

making it a prime target for crop improvement for increased yield and biomass production.  

 

A bacterial glycolate oxidation pathway was introduced into Arabidopsis chloroplasts for 

alternative conversion of glycolate into glycerate, thereby shifting CO2 release from the 

mitochondrion to the chloroplast to increase CO2 concentration in the vicinity of RubisCO and 

reduce its oxygenase activity. Indeed, the transgenic lines showed enhanced growth (Kebeish et 

al., 2007). To conserve the glycolate carbon in malate, transgenic Arabidopsis plants 

overexpressing chloroplast-targeted GOX and MLS were generated. The transgenic lines 

developed oxidative stress lesions under photorespiratory conditions, most likely due to 

enhanced H2O2 production in chloroplasts, but showed enhanced growth under 

nonphotorespiratory conditions (Fahnenstich et al., 2008; Maurino and Flügge, 2009). To by-

pass the peroxisomal aminotransferases and glycine-dependent ammonia production, transgenic 

tobacco plants overexpressing bacterial glyoxylate carboligase and hydroxypyruvate isomerase 
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were generated. However, only the first enzyme was highly expressed in the transgenic plants, 

which exhibited stress symptoms when exposed to air, suggesting that some glyoxylate was 

directed into a deleterious short-circuit of the photorespiratory nitrogen cycle (Carvalho Jde et 

al., 2011). These first attempts to optimize photorespiration are promising. However, because the 

photorespiratory pathway is more tightly integrated into the whole plant primary and secondary 

metabolism than previously hypothesized, these manipulations also uncover technical challenges 

and unexpected negative side-effects and reveal the need for further studies. 

 

Although high CO2 levels reduce photorespiration, they often lead to a decline in the plant’s 

nitrogen status. Indeed, atmospheric CO2 enrichment reduced the efficiency of nitrogen use 

(Rachmilevitch et al., 2004). This inhibition of nitrate assimilation into organic nitrogen 

compounds may be largely responsible for CO2 acclimation, i.e., the decrease in photosynthesis 

and growth of plants conducting C3 carbon fixation after long exposures to CO2 enrichment 

(Bloom et al., 2010). Hence, ammonium and nitrate availability will become increasingly 

important in determining plant productivity as CO2 levels rise.  

 

PEROXISOMAL TRANSPORTERS FOR METABOLITES AND CO-FACTORS  

 

Several peroxisomal metabolic pathways require an interplay with other cellular compartments, 

including plastids, mitochondria, and the cytosol. Consequently, a considerable number of 

substrates, intermediates, end products, and cofactors must be exchanged between peroxisomes 

and other cell compartments. Their membrane passage is mediated by transport proteins (Linka 

and Esser, 2012).  

 

An ABC Transporter Importing the Substrates for β–Oxidation  

 

Fatty acids and other β-oxidation substrates are imported by the peroxisomal ABC transporter 

protein CTS/PXA1/PED3 (Zolman et al., 2001; Footitt et al., 2002; Hayashi et al., 2002); similar 

transporters also exist in fungi and mammals (Theodoulou et al., 2006). CTS/PXA1/PED3 was 

independently isolated from several forward genetic screens (hence its multiple names), 

underlining its pleotropic role in growth and development (reviewed in Theodoulou et al., 2006). 
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This transporter plays a crucial role in i) storage oil mobilization in seedlings and probably 

pollen (Zolman et al., 2001; Footitt et al., 2002; Hayashi et al., 2002; Footitt et al., 2007), ii) 

turnover of membrane lipids, especially under carbon and energy starvation (Kunz et al., 2009; 

Slocombe et al., 2009), iii) JA biosynthesis (Theodoulou et al., 2005), iv) auxin biosynthesis 

(Zolman et al., 2001; Hayashi et al., 2002; Strader et al., 2010), v) seed coat rupture during seed 

germination (Kanai et al., 2010), and vi) efficient fertilization in female reproductive tissue 

(Footitt et al., 2007).  

 

CTS/PXA1/PED3 is a full ABC transporter that comprises two nucleotide-binding domains 

(NBDs) providing the driving force for transport, and two TMDs involved in substrate 

recognition and translocation. The transport cycle requires intra-molecular communication 

between NBDs and TMDs, and modeling of CTS/PXA1/PED3 suggests that an interaction 

between NBD1 and TMD2 is critical for protein function. Mutation analysis shows distinct roles 

of the two NBDs in vivo (Dietrich et al., 2009).  

 

A point of debate is whether CTS/PXA1/PED3 transports free fatty acid or CoA esterified 

substrates. Free fatty acids are activated to acyl-CoAs by acyl-CoA synthetases present in 

multiple compartments and transporter mutants accumulate long chain acyl-CoAs (Footitt et al., 

2002). The two peroxisomal long chain acyl-CoA synthetases, LACS6 and LACS7 (Fulda et al., 

2002), are essential for fatty acid mobilization and seedling development (Fulda et al., 2004). 

The S. cerevisiae equivalent transporter Pxa1p/Pxa2p transports acyl-CoAs (Verleur et al., 

1997). The Arabidopsis CTS/PXA1/PED3 protein can complement the yeast pxa1 pxa2 double 

mutant and support the metabolism of a wide range of fatty acid substrates that differ in chain 

length and degree of unsaturation (Nyathi et al., 2010). Further, the ATPase activity of 

CTS/PXA1/PED3 is stimulated by acyl-CoAs but not appreciably by free fatty acids, which also 

supports the notion of acyl-CoAs as substrates (Nyathi et al., 2010). As proposed by Fulda et al 

(2004), one possible explanation of this discrepancy is that acyl-CoAs are the substrate, but the 

CoA is removed during transport and acyl-CoA is re-synthesized in the peroxisome by LACS6 

and/or LACS7. Resolution of this issue will require in vitro transport studies using reconstituted 

CTS/PXA1/PED3 protein; however, this technically challenging task has not yet been achieved.  

 



31 

 

An ATP Transporter Supplying Peroxisomes with ATP 

 

Arabidopsis PNC1 and PNC2 are members of the mitochondrial carrier family (Palmieri et al., 

2011), and function as peroxisomal adenine nucleotide carriers by importing cytosolic ATP into 

peroxisomes to drive energy-consuming reactions, such as the activation of β-oxidation 

substrates. Repression of both PNC genes by RNAi severely impairs β-oxidation during seed 

storage oil mobilization (Arai et al., 2008a; Linka et al., 2008), indicating that the PNC-mediated 

transport pathway is the primary source for peroxisomal ATP and that other major ATP-

generating system, such as substrate-level phosphorylation, may not exist in peroxisomes. 

 

Recombinant PNC proteins function as antiporters that exchange ATP for ADP or AMP (Linka 

et al., 2008). In β-oxidation, PNCs import ATP in exchange for AMP released by acyl-CoA 

synthetases in the matrix. The influx of ATP against ADP is required, for instance, to support the 

activities of kinases, which have been detected by recent proteomic analysis (Reumann et al., 

2007; Reumann et al., 2009). One future task will be to elucidate other roles of the PNC proteins 

in supplying ATP-dependent reactions beyond β-oxidation. Moreover, it is unknown how 

peroxisomes compensate their net transfer of negative charges (ATP(4-)/AMP(2-) or ATP(4-

)/ADP(3-)) across the membrane, and how the nucleotide pool in plant peroxisomes is loaded in 

the first place. 

 

PXN Serves as a Peroxisomal NAD+ Transporter 

 

The peroxisomal NAD+ transporter PXN is an abundant protein of the peroxisomal membrane 

identified as PMP38 by independent proteomic approaches (Fukao et al., 2001; Reumann et al., 

2007; Eubel et al., 2008; Reumann et al., 2009) and from a screen for mutants with abnormal 

peroxisome morphology (Mano et al., 2011). This protein exhibits high sequence similarity to 

the PNCs; however, recombinant Arabidopsis PXN transports NAD+ in vitro in exchange for 

NADH, AMP or ADP (Bernhardt et al., 2012). Considering that NAD+ is synthesized de novo in 

the cytosol (Noctor et al., 2006; Hashida et al., 2009) and that the free cytosolic NAD+ 

concentration is estimated to be 0.6 mM (Igamberdiev and Gardestrom, 2003), the physiological 

function of PXN is presumably to mediate an NAD+
 (in)/AMP(out) antiport, like the plastidic and 
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mitochondrial NAD+ transporters (Palmieri et al., 2009). A net NAD+ influx can be achieved 

either by an unknown adenylate uniporter re-importing cytosolic AMP or a peroxisomal reaction 

generating AMP to refill the peroxisomal AMP pool. Thus, PXN might provide the cofactor 

NAD+ to numerous peroxisomal reduction/oxidation enzymes, such as MFP2 in β-oxidation and 

HPR in photorespiration.  

 

Surprisingly, Arabidopsis pxn loss-of-function mutants do not show severe growth defects, but 

exhibit a subtle metabolic phenotype; fatty acid degradation is slowed down in the mutant 

seedlings (Bernhardt et al., 2012). It is possible that an alternative NAD+-import system exists in 

the peroxisomal membrane. Alternatively, plant peroxisomes may already contain sufficient 

NAD+ when pre-peroxisomal vesivles bud from the ER, or NAD+ may be taken up with NAD+-

dependent enzymes from the cytosol via protein import. 

 

Diffusion of Carboxylic Acids Facilitated by a Peroxisomal Pore-Forming Channel  

 

Based on enzyme latency analyses and electrophysiological experiments using membranes 

isolated from plant, mammalian, and yeast peroxisomes, peroxisomal pore-forming channels 

(porins) have been postulated for the passive diffusion of a broad spectrum of small solutes 

(Labarca et al., 1986; Lemmens et al., 1989; Reumann et al., 1995; Reumann et al., 1997; 

Reumann et al., 1998; Antonenkov et al., 2005; Antonenkov et al., 2009; Grunau et al., 2009). 

The peroxisomal porin-like channel in spinach leaves and germinating castor beans is anion-

selective and facilitates the diffusion of small carboxylic acids such as intermediates in 

photorespiration (e.g., glycolate, malate, glutamate, and glycerate), β-oxidation, and the 

glyoxylate cycle (succinate, aspartate) (Reumann et al., 1995, 1996; Reumann et al., 1997; 

Reumann et al., 1998). The current challenge is to assign genes that encode this observed 

channel activity. 

 

Two different transporter protein classes might be considered as prime candidates for the plant 

peroxisomal porin channel: i) the voltage-dependent anion-selective channel (VDAC) family, 

and ii) the PMP22 family. VDACs are large nonspecific diffusion pores with “sieve properties” 

in the outer mitochondrial membrane that are involved in metabolite transport (Colombini, 
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1994). Unexpectedly, proteomic approaches revealed VDAC homologs in cucumber and 

soybean peroxisomes, and their localization was confirmed by immunogold labeling and 

fluorescence microscopy using GFP fusion proteins (Corpas et al., 2000; Arai et al., 2008b). The 

mouse PMP22 homolog forms a channel for small organic acids when heterologously expressed 

in insect cells (Rokka et al., 2009). Arabidopsis PMP22 is present in peroxisomal membranes 

(Tugal et al., 1999; Murphy et al., 2003), yet its biochemical function remains unknown. 

Electrophysiological experiments with the respective recombinant proteins may elucidate 

whether peroxisomal VDAC homologs and/or Arabidopsis PMP22 exhibit channel activities and 

mediate the transfer of metabolites across the peroxisomal membrane. 

 

UNRAVELING THE COMPLETE ARRAY OF PLANT PEROXISOME FUNCTIONS 

 

Without comprehensive knowledge of all metabolic reactions of plant peroxisomes, biochemical 

pathway manipulations have a high probability of failure due to overlapping roles of individual 

enzymes and shared segments of pathways. The role of β-oxidation in the production of IAA and 

JA is a case in point. In addition to genetic screens described earlier, proteomics is another 

powerful tool to catalog new functions for peroxisomes and help to provide a more rational basis 

for the future redesign of peroxisome metabolism. 

 

Experimental Proteomics 

 

The proteome of plant peroxisomes varies between plant tissues, developmental stages and 

environmental conditions. To define the complete proteome, researchers have focused on soluble 

matrix proteins from Arabidopsis, Glycine max (soybean), and Spinacia oleracea (spinach) 

(Fukao et al., 2002; Fukao et al., 2003; Reumann et al., 2007; Arai et al., 2008b, a; Eubel et al., 

2008; Reumann et al., 2009; Babujee et al., 2010). In total, more than 100 putatively novel 

peroxisomal proteins, including many low-abundance and regulatory proteins, were identified. 

Because plant peroxisomes are difficult to separate from mitochondria and plastids, validation of 

peroxisome targeting using methods such as transient expression of the candidate proteins tagged 

by a green fluorescent protein variant, is generally required. Many new Arabidopsis proteins 

have been established in the past few years by the peroxisome community, with major 
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contributions from the Arabidopsis Peroxisome 2010 project (www.peroxisome.msu.edu; for 

review see (Kaur et al., 2009; Kaur and Hu, 2011; Reumann, 2011).  

 

Protein identification by experimental proteomics is only the first step toward characterizing 

protein functions and the functional diversity of plant peroxisomes. Computational tools, 

including protein annotations deduced from sequence homology to known proteins, 

identification of conserved domains and motifs, microarray-based expression data analysis, and 

phylogenetic analysis, give valuable hints to the physiological function of the novel proteins. The 

physiological functions of a number of enzymes and metabolic pathways indicated by proteomic 

data have been verified. Examples include the oxidative pentose phosphate pathway (Meyer et 

al., 2011), betaine aldehyde dehydrogenase (Missihoun et al., 2011), SDRa (Wiszniewski et al., 

2009), and the bifunctional transthyretin-like protein involved in purine catabolism and S-

allantoin biosynthesis (Lamberto et al., 2010), which have significantly broadened our 

knowledge of peroxisome metabolism.  

 

Despite this success, experimental peroxisomal proteome studies are limited to major plant 

tissues and organs and by technological sensitivity and peroxisome purity. Additionally, only a 

few plant species are suitable for peroxisome isolation. The success of future experimental 

proteome research of plant peroxisomes relies on sensitive quantitative mass spectrometry 

technology to efficiently subtract contaminants from peroxisome fractions, isotope tagging 

methodologies such as the LOPIT method (Dunkley et al., 2004), and efficient enrichment 

strategies to affinity-purify peroxisomes or peroxisome vesicles by tagging of selected 

membrane proteins (Reumann, 2011). 

 

The Prediction of Matrix Proteins from Genome Sequences 

 

The prediction of plant peroxisomal matrix proteins from genome sequences combined with in 

vivo targeting validations is an alternative, large-scale approach that complements experimental 

proteome research (Reumann, 2011). Prediction methods such as PeroxiP, the PTS1 predictor, 

and databases such as PeroxisomeDB, were developed to predict and assemble PTS1 proteins 

from primarily metazoan genomic sequences (see references in Lingner et al., 2011). However, 



35 

 

high-accuracy prediction tools have long been lacking for plants. Because approximately 80% of 

matrix proteins enter plant peroxisomes by the PTS1 import pathway (Reumann, 2004), 

prediction algorithms for PTS1 proteins are expected to significantly contribute to defining the 

plant peroxisomal proteome.  

 

PTS1 proteins carry either a canonical (major) or non-canonical PTS1 tripeptide. Proteins with 

major PTS1s, such as SKL> and ARL> (> indicates the stop codon), can often be predicted to be 

peroxisomal based solely on the PTS1 tripeptide (Reumann, 2004), because major PTS1s are 

generally sufficient for peroxisome targeting, provided that the PTS1 tripeptide is surface-

exposed and not overruled by targeting signals for other compartments. Simple tripeptide-based 

predictions of Arabidopsis PTS1 proteins are thus relatively straightforward, and candidate 

proteins have been assembled in the database AraPerox (www3.uis.no/araperoxv1; (Reumann, 

2004; Reumann et al., 2004)). The challenge is the prediction of proteins with non-canonical 

PTS1 tripeptides, such as ASL>, SLM>, and SRY>, because i) their PTS1 tripeptide identities 

are insufficiently known and are more diverse than previously thought, and ii) non-canonical 

PTS1 tripeptides generally are weak and require auxiliary targeting-enhancing patterns located 

immediately upstream for function. Such enhancer patterns have been poorly defined for plants. 

Hence, among many proteins with the same non-canonical PTS1 tripeptide, only a few are 

indeed peroxisome-targeted, and correct computational predictions are difficult. For instance, 

prediction tools developed for metazoa generally fail to correctly predict plant peroxisomal 

proteins with non-canonical PTS1 tripeptides (Lingner et al., 2011). The accuracy of prediction 

algorithms relies on the size, quality, and diversity of the underlying dataset of example 

sequences that is used for model training and limited pre-existing prediction algorithms 

(Emanuelsson et al., 2003; Boden and Hawkins, 2005; Hawkins et al., 2007). 

 

To develop prediction models specifically for plants, 60 known Arabidopsis PTS1 proteins, 

including low-abundance proteins with non-canonical PTS1s identified by proteome analyses, 

were used to generate a dataset of more than 2,500 homologous plant sequences, primarily from 

EST databases. Two prediction methods were developed, both of which showed high accuracy 

on example sequences. Due to the omission of a PTS1 tripeptide filter, the models were able to 

correctly infer novel PTS1 tripeptides and even include novel residues. In combination with in 
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vivo subcellular targeting analyses, 23 newly predicted PTS1 tripeptides were established for 

plants and several previously unknown Arabidopsis PTS1 proteins identified. This prediction 

method, i.e., the position weight matrices (PWM) model, predicts 389 Arabidopsis gene models 

to encode peroxisomal PTS1 protein variants; approximately 70% of them were not known to be 

peroxisomal. Some confirmed peroxisomal PTS1 proteins are located in a grey-zone below the 

prediction threshold, indicating that the number of Arabidopsis peroxisomal proteins might 

exceed 400-500 (Lingner et al., 2011). 

 

Despite good accuracy, prediction algorithms can be improved by increasing the representation 

of non-canonical PTS1 protein sequences in the underlying dataset. By iterative experimental 

validation of newly predicted Arabidopsis proteins, identification of homologous ESTs, dataset 

expansion with the addition of positive sequences, and improvement of the discriminative 

machine learning methods, the prediction accuracy can be further increased. Finally, we need to 

develop prediction algorithms for plant PTS2 proteins, which are more challenging due to the 

smaller number of example sequences and the variable positions of the PTS2 nonapeptide in the 

N-terminal domain. 

 

PERSPECTIVES 

 

Recent years have witnessed tremendous progress in understanding the complexity of plant 

peroxisomes in their dynamic biogenesis and function. However, many questions about 

peroxisomes remain unanswered and new strategies and technologies are needed to address these 

issues.  

 

A major challenge is to elucidate whether de novo synthesis of peroxisomes actually occurs at 

the ER in plants and if so how this process compares to those in other kingdoms. Notably, these 

types of questions may begin to be addressed by studies of viruses that specifically exploit 

peroxisomes during their infection cycle (reviewed in Mullen and Gidda, 2009; Lazarow, 2011). 

Certain plant RNA tombusviruses, for instance, appear to engage a pER-destined retrograde 

vesicle sorting pathway (McCartney et al., 2005). While the functional significance of this 

pathway and its existence in non-infected plant cells have not been determined, speculation that 



37 

 

it represents an additional level of connectivity between peroxisomes and the ER is intriguing. 

Likewise, the sharing of division factors for peroxisomes, mitochondria, and chloroplasts 

suggests that these functionally connected organelles may also coordinate the remodeling of their 

abundance as another mechanism for inter-organellar communication. Further characterization of 

dual-localized proteins may shed light on these processes. Additional pathways that control 

peroxisome abundance, such as those regulated by the dual-targeted PMD1 or by the 

accumulation of acyl-CoAs and other molecules, need to be investigated further.  

 

Many null mutants of peroxins appear to be gametophytic or embryo lethal. Alternative 

approaches such as chemical genetics can be valuable in the dissection of essential processes 

(Hicks and Raikhel, 2009). A group of benzimidazole compounds have been identified to 

differentially disrupt PTS1 protein import at nanomolar concentrations, whereas PTS2 import 

inhibition is only seen after long incubation at micromolar concentrations (Brown et al., 2011). 

Protein import in general is poorly understood at the mechanistic level, and kinetic and 

quantitative data on protein interactions within the import pathway would help in building and 

testing models. 

 

Additional studies of the enzymes acting in peroxisomal processes are required to understand the 

complexity of the pathways. β-oxidation pathways for straight-chain fatty acids and other diverse 

substrates have been defined, although specific isozyme assignments remain in progress and 

questions of regulation must be addressed. JA and IAA are generated in peroxisomal reactions, 

but knowledge on key biosynthetic enzymes and how these hormones are exported to the cytosol 

is missing. In addition to pathways discussed in this review, recently uncovered pathways, 

including terpene (isoprenoid) and biotin biosynthesis pathways, must be further explored to 

identify the extent of peroxisomal involvement. For example, the mevalonic acid pathway 

(MVA) that generates isoprenoid precursors of terpenes was long placed in the cytosol/ER, but 

recent work has localized at least four biosynthetic enzymes to peroxisomes (Reumann et al., 

2007; Sapir-Mir et al., 2008; Simkin et al., 2011; Thabet et al., 2011).  The relative contributions 

of this pathway to the terpene pool and the regulation of intermediate transport between the 

cytosol, peroxisomes, and the ER can now be investigated.  The complex subcellular distribution 

of many of these pathways leads to further questions.  For example, when and why did specific 
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pathway steps shift to peroxisomes?  How are peroxisomal pools of hormones, co-enzymes, and 

co-factors regulating metabolic activities within peroxisomes, or the cell as a whole?  A 

complete description of the pathways and knowledge of all the enzymes will facilitate our 

understanding of the roles of peroxisomes within a cell.   

 

To uncover the full array of peroxisomal functions and the dynamics of the peroxisomal 

proteome, technologies need to be improved to identify low-abundance and membrane proteins 

and peroxisomal proteins present in specific tissue or cell types and under certain environmental 

conditions. Although validations are required, the prediction that the number of plant 

peroxisomal proteins may exceed 400 suggests there are many additional roles of peroxisomes 

yet to be realized. The necessity for plants to cope with numerous abiotic and biotic stresses 

appears to have been a major driving force to evolve adaptation mechanisms in peroxisomes. 

Plant peroxisomes thereby emerge as a new model even for fungi and mammals in understanding 

and exploring stress adaptation functions.  

 

In this post-genomic era, systems approaches utilizing transcriptomics, genomics, proteomics, 

metabolomics, and computational biology will assist us in establishing a complete map of 

peroxisomal pathways and their regulatory networks. In addition to efforts aimed at engineering 

plants for improved biomass production by manipulating photorespiration and lipid metabolism, 

it is also time to translate peroxisomal research from reference plants to agronomically important 

crops. The extensive conservation of the peroxisomal proteomes of Arabidopsis and rice (Kaur 

and Hu, 2011) suggests that knowledge gained from model plants can readily aid in the study of 

peroxisomes in other prominent cereal crops. 
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FIGURE LEGENDS 

 

Figure 1. Models for the biogenesis of peroxisomes in plants.  

In the ER vesiculation model (A), all of the protein constituents of the peroxisomal boundary 

membrane and matrix are considered to be synthesized co-translationally on the ER and then 

sequestered into a specialized region of the ER, where an expanding smooth membrane vesicle 

eventually buds off to yield (de novo) a nascent, functional peroxisome. By contrast, in the 

growth and division model (B), all PMPs and matrix proteins are synthesized on free 

polyribosomes in the cytosol and sorted post-translationally to pre-existing and new (“daughter”) 

peroxisomes, resulting in their growth. Daughter peroxisomes arise from pre-existing 

peroxisomes by fission, and the ER somehow (e.g., via ER-peroxisome contact sites and/or lipid 

transfer proteins) provides the membrane lipids necessary for peroxisome growth. In the ER 

semi-autonomous model (C), some PMPs (group I PMPs) are post-translationally inserted either 

directly into the peroxisomal ER (pER) subdomain or first into the ‘general’ ER and then routed 

to the pER. The subsequent transport of these group I PMPs (and membrane lipids) from the 

pER to pre-existing and daughter peroxisomes involves the (de novo) formation (via vesiculation 

or fragmentation) of putative pre-peroxisomal carriers that travel to, or form, an ER-peroxisome 

intermediate compartment (ERPIC). All matrix proteins and group II PMPs are sorted post-

translationally from the cytosol to daughter peroxisomes and pre-existing peroxisomes, and 

perhaps pre-peroxisomes at the ERPIC, the former of which arise by fission (as depicted in more 

detail in Figure 2). Adapted from Mullen and Trelease (2006). 

 

Figure 2. Proteins that mediate peroxisome division in Arabidopsis. 
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(A) A molecular model of peroxisome division in Arabidopsis. Peroxisome elongation is 

promoted by the PEX11 proteins, among which PEX11b can be transcriptionally activated by 

light through a phyA-mediated signal transduction pathway. The fission machineries of 

peroxisomes and mitochondria share at least five components: DRP3A, DRP3B, FIS1A, FIS1B, 

and PMD1. DRP5B is a common fission factor for peroxisomes and chloroplasts. PMD1 appears 

to function independently from PEX11 and the FIS1-DRP3 complex by an unknown mechanism. 

For mitochondrial and chloroplast division, only factors shared with peroxisomes are depicted. 

(B) Confocal micrographs of leaf mesophyll cells showing peroxisome phenotypes in plants 

ectopically expressing PEX11a and loss-of-function mutants of DRP3A and DRP5B. Images 

were modified from photos in Orth et al., (2007) and Zhang and Hu (2009; 2010). Bars = 10 µm. 

(C) Transmission electron micrographs of leaf mesophyll cells showing the organelle phenotype 

of plants overexpressing PMD1. Photos were modified from images in Aung and Hu (2011). 

Bars = 1 µm. 

 

Figure 3. Schematic diagram of matrix protein import into peroxisomes. 

Cytosolic PEX5 and PEX7 recognize their cargo proteins (square and round shapes) via binding 

of specific targeting sequences, PTS1 and PTS2 respectively. Cargo-loaded PEX5 associates 

with the membrane via interactions with PEX13 and PEX14, and probably also via interactions 

with the lipid phase. PEX7 cannot dock to the membrane on its own and depends upon physical 

interaction with PEX5 for docking. PTS1- and PTS2-bound cargo are released to the matrix and 

the receptors are recycled back into the cytosol via a mechanism that probably requires ATP-

dependent ubiquitination of PEX5 (represented by a star) by PEX4 and the RING complex 

comprised of PEX2, PEX10 and PEX12. The ubiquitinated PEX5 is then removed from the 

membrane via the action of the AAA ATPases PEX6 and PEX1, which are tethered by APEM9. 

The route that PEX7 takes through the pathway, in particular whether it accompanies PEX5 

throughout the import cycle, is unknown. 

 

Figure 4. Proteins acting in peroxisomal β-oxidation.   

(A) Mutants disrupting peroxisomal function frequently have IBA response and sucrose-

dependent phenotypes.  Left, wild-type seedlings grown with applied IBA have shorter primary 

roots and abundant secondary roots, whereas peroxisome-defective mutants (e.g., pxa1 mutant 
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shown) do not respond to IBA application because of their inability to β–oxidize IBA to 

IAA.  Right, wild-type seedlings germinate and grow normally without an external carbon 

source, but peroxisome-defective mutants have disruptions in seedling establishment, ranging 

from failed to delayed development.  Photos were modified from Zolman et al., 2001 

(www.plantphysiol.org, “Copyright American Society of Plant Biologists”) and Adham et al., 

2005.  Bar = 2mm.  

(B) Major metabolic pathways in peroxisomes use a core set of enzymes.  Fatty acid β-oxidation 

(center) in developing seeds involves conversion of very long-chain fatty acids (VLCFA) stored 

as TAG through long-chain fatty acid (LCFA), medium-chain fatty acid (MCFA), and short-

chain fatty acid (SCFA) intermediates.  Each round of β-oxidation releases two carbons as 

acetyl-CoA.  IBA (left) and OPDA (right) are metabolized in parallel pathways that use an 

overlapping but distinct set of enzymes; OPDA is produced from polyunsaturated fatty acids 

(PUFAs) in a multi-step pathway in chloroplasts.  *, CTS/PXA1/PED3 may import unmodified 

substrates or CoA-derivatives.  For all pathways, substrate activation by acyl-CoA synthetases is 

shown in purple, the initial oxidation enzymes are in red, the hydration/oxidation intermediate 

steps (frequently performed by a multifunctional enzyme) are shown in blue, and the thiolysis 

step is shown in green; if known, specific isozymes catalyzing the reaction are indicated. 

Peroxisomal acetyl-CoA is a central intermediate in various branches of cellular metabolism, 

including i) the conversion to succinate via the glyoxylate cycle, which enters gluconeogenic 

pathways to produce glucose; ii) the production of malate, necessary for the malate-oxaloacetate 

shuttle to re-oxidize NADH produced by MFP2/AIM1; and iii) the conversion to citrate, which 

enters the TCA cycle.   

 

Figure 5. The central role of leaf peroxisomes in photorespiration.   

Photorespiration is compartmentalized between chloroplasts, leaf peroxisomes, mitochondria, 

and the cytosol. Eleven enzymes are directly involved: RubisCO, ribulose-1.5-bisphosphate 

carboxylase/oxygenase; PGP, phosphoglycolate phosphatases; GOX, glycolate oxidase; CAT, 

catalase, GGT, Glu:glyoxylate aminotransferase SGT, Ser:glyoxylate aminotransferase; GDC, 

glycine decarboxylase; SHMT, serine hydroxymethyl transferase; HPR, hydroxypyruvate 

reductase; pMDH, peroxisomal malate dehydrogenase; GLYK, glycerate kinase. Four enzymes, 

i.e., glutamate synthase (GS), Glu:oxoglutarate aminotransferase (GOGAT), and 
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mitochondrial/chloroplast malate dehydrogenase (mMDH/cMDH), are indirectly involved. For 

the transport of photorespiratory intermediates, different translocators and a porin-like channel 

have been characterized biochemically (translocators, green; porin-like channel, blue) or cloned 

(translocator, black). Photorespiratory metabolites are abbreviated as follows: RuBP, ribulose-

bisphosphate; 3-PGA, 3-phosphoglycerate; THF, tetrahydrofolate. Adapted from Reumann and 

Weber (2006). 
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Figure 2. Proteins that mediate peroxisome division in Arabidopsis.
(A) A molecular model of peroxisome division in Arabidopsis. Peroxisome elongation is promoted by the PEX11 proteins, among which 
PEX11b can be activated by light through a phyA-mediated pathway. The fission machineries of peroxisomes and mitochondria share at least 
five components: DRP3A, DRP3B, FIS1A, FIS1B, and PMD1. DRP5B is a common fission factor for peroxisomes and chloroplasts. PMD1 
appears to function independently from PEX11 and the FIS1-DRP3 complex with an unknown mechanism. For mitochondrial and chloroplast 
division, only factors shared with peroxisomes are depicted.
(B) Confocal micrographs of leaf mesophyll cells showing peroxisome phenotypes in plants ectopically expressing PEX11a and loss-of-function 
mutants of DRP3A and DRP5B. Images were modified from photos in Orth et al (2007) and Zhang and Hu (2009; 2010). Bars = 10 µm.
(C) Transmission electron micrographs of leaf mesophyll cells showing the organelle phenotype of plants overexpressing PMD1. Photos were 
modified from images in Aung and Hu (2011). Bars = 1 µm.
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Figure 5. The central role of leaf peroxisomes in photorespiration.
Photorespiration is compartmentalized between chloroplasts, leaf peroxisomes, mitochondria, and the cytosol. Eleven enzymes are 
directly involved: RubisCO, ribulose-1.5-bisphosphate carboxylase/oxygenase; PGP, phosphoglycolate phosphatases; GOX, 
glycolate oxidase; CAT, catalase, GGT, Glu:glyoxylate aminotrans-ferase SGT, Ser:glyoxylate aminotrans-ferase; GDC, glycine
decarboxylase; SHMT, serine hydroxymethyl transferase; HPR, hydroxypyruvate reductase; pMDH, peroxisomal malate
dehydrogenase; GLYK, glycerate kinase. Four enzymes, i.e., glutamate synthase (GS), Glu:oxoglutarate aminotransferase
(GOGAT), and mitochondrial/chloroplast malate dehydrogenase (mMDH/cMDH), are indirectly involved. For the transport of 
photorespiratory intermediates, different translocators and a porin-like channel have been characterized biochemically 
(translocators, green; porin-like channel, blue) or cloned (translocator, black). Photorespiratory metabolites are abbreviated as 
follows: RuBP, ribulose-bisphosphate; 3-PGA, 3-phosphoglycerate; THF, tetrahydrofolate. Adapted from Reumann and Weber 
(2006).
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