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Abstract  6 

Open ditch drainage is a commonly implemented land management practice in upland blanket peatlands, 7 

particularly in the UK, where policy decisions between the 1940s and 1970s lead to widespread drainage 8 

of the uplands. The change in the hydrological regime associated with the drainage of blanket peat is 9 

poorly understood, yet has perceived importance for flooding, low flows and water quality. We propose a 10 

new simplified physics-based model that allows the exploration of the associated hydrological processes 11 

and flow responses. The model couples four one-dimensional models to represent a three-dimensional 12 

hillslope, allowing for the exploration of flow and water table response throughout the model domain for 13 

a range of drainage configurations and peat properties. The model is tested against a data set collected 14 

from Oughtershaw Beck, UK, with results showing good model performance for wet periods although 15 

less compatibility with borehole observations during rewetting periods. A wider exploration of the model 16 

behaviour indicates that the model is consistent with the drained blanket peat hydrological response 17 

reported in the literature for a number of sites, and therefore has potential to provide guidance to decision 18 

makers concerning the effects of management practices. Through a global sensitivity analysis, we 19 

conclude that further field investigations to assist in the surface and drain roughness parameterisation 20 

would help reduce the uncertainty in the model predictions. 21 
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1. Introduction 24 

Peatlands are located across the globe, from the tropics to the high latitudes, covering approximately 3% 25 

of the Earth’s surface. These environments are of particular nature conservation value due to their unique 26 

and diverse biodiversity. Moreover, they store soil carbon and water; it is estimated that 10% of the 27 

world’s freshwater resources and up to one-third of global soil carbon are stored in peatlands (Rubec, 28 

2005). 29 

 30 

In the UK, 87 % of peat covered areas take the form of blanket peat. The UK uplands include 31 

approximately 2.9 M ha of blanket peatland (Holden et al., 2004), constituting approximately 15% of the 32 

global amount of blanket peatland (Milne and Brown, 1997). These regions have traditionally been 33 

heavily managed for low density farming, energy, forestry and game rearing. In recent times, in 34 

recognition of the significant ecosystem services provided by peatlands (including biodiversity, carbon 35 

sequestration, water supply, and recreation (Bonn et al., 2009)), many areas of upland blanket peatland 36 

have been designated as ‘Sites of Special Scientific Interest’, ‘Areas of Outstanding Natural Beauty’, 37 

‘Special Protection Areas’, ‘Environmentally Sensitive Areas’, ‘Special Areas of Conservation’ and 38 

National Nature Reserves (Condliffe, 2009). Peatlands also generate a large proportion of the UK water 39 

supply; therefore water quality and colour are also significant considerations (Armstrong et al., 2010). 40 

The management of these areas is thus of interest to a range of stakeholders, including physical and 41 

social scientists, and land owners and managers. Given the inherent significance of the upper areas of 42 

catchments for downstream flooding, with their higher rainfall rates and generally flashier response 43 

(Wheater et al., 2008), the management of upland blanket peatland also has the potential to affect flood 44 

risk. 45 

 46 

In the UK, approximately 50% of upland blanket peatland has been drained (Milne and Brown, 1997), 47 

which in England alone amounts to 75,000 ha. Drainage of peats is typically via a series of open ditches, 48 

with the aim of improving vegetation and therefore the production of livestock and game (Stewart and 49 

Lance, 1983). The rationale is that drainage will remove excess surface runoff and lower the water table, 50 
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thereby creating more conducive environments for plant species suitable for stock grazing. However, 51 

these predicted benefits have rarely been realised since blanket peat cannot sustain anything above very 52 

small sheep populations without undergoing severe degradation (Stewart and Lance, 1983); and peatland 53 

drainage is also generally considered to have adverse effects on the natural environment.  54 

 55 

The implementation of an open ditch drainage scheme causes two key processes to occur: (1) water is 56 

drained from the soil matrix directly into the open drains, lowering water tables and creating more soil 57 

storage capacity, and (2) surface runoff and direct rainfall are captured in the drains and transmitted to 58 

the catchment outlet more rapidly (Holden, 2009b). How peatland drainage affects flooding in the 59 

catchment depends on the interaction of these two counteracting processes, where process (1) tends to 60 

reduce storm peaks and increase base flows, while process (2) tends to increase the flashiness of the 61 

response and increase peak flows. The dominance of each process is likely to depend on a number of 62 

factors including: drainage density and geometry, hydraulic conductivity, drain and peat surface 63 

roughnesses, topography, event size, and antecedent conditions. 64 

 65 

Observations have shown that drained peatlands typically have a shorter time to peak, higher peak flow 66 

and a quicker recession than undrained areas, and are associated with increased water table fluctuations 67 

(Ahti, 1980; Conway and Millar, 1960; Holden et al., 2006; Robinson, 1986; Stewart and Lance, 1991). 68 

The zone of influence of the water table drawdown (i.e. process (1) above) due to the drains is quite 69 

limited in blanket peats, due to very low hydraulic conductivities, particularly in the deeper layers 70 

(Robinson, 1986; Stewart and Lance, 1983), therefore the spacing of the drains plays a significant role in 71 

both the short and long term effects of drainage. The effect is also not uniform in space, particularly in 72 

blanket peat on sloping terrains, since the reduction in upslope contributing area is most significant 73 

immediately downslope of a drain (Coulson et al., 1990; Holden et al., 2006). In a minority of field 74 

studies, drainage of peatlands has been observed to decrease flood peaks (e.g. Burke, 1967; Coulson et 75 

al., 1990; Newson and Robinson, 1983). However, in all of these cases some aspects of the site 76 

conditions are at the extreme of the range of conditions that are typically encountered in drained 77 

peatlands. For example, Burke (1967) studied a site with especially dense (3.5m) drain spacing and 78 
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drains running along contours, thus minimising drain flow velocity; Newson and Robinson (1983) 79 

examined a peaty soil with a hydraulic conductivity higher than typical blanket peats; and Coulson 80 

(1990) studied a site with lower altitude and lower annual rainfall than typical for UK peatlands. 81 

 82 

Given the uncertainty about best management practices for peatlands, due largely to the complexity of 83 

process interactions, there is a need for suitable process-based models to aid understanding of impacts of 84 

management interventions. Due to the difficulties in observing and quantifying land management effects 85 

at the catchment scale, the simplest case to consider is the response at field or hillslope scales. Some 86 

modelling has been performed to examine drainage in the uplands, notably hillslope simulations using 87 

SHETRAN (Dunn and Mackay, 1996) and a modified TOPMODEL (Lane, 2002; Lane et al., 2004; Lane 88 

et al., 2003). However, while the TOPMODEL simulations can explicitly represent drainage networks, 89 

the conceptual nature of the model does not provide detail about the subsurface behaviour, particularly at 90 

the sub-drain spacing scale. The conceptual stores in the model that represent saturated subsurface 91 

storage are independent of each other, hence, although the topographic index concept partly 92 

accommodates the way a cell may be affected by upslope areas, downslope effects, such as the presence 93 

of drains and the level of water in them, cannot be simulated. The studies have also not been compared 94 

against any observed flow or water table time series. The SHETRAN simulations of Dunn and Mackay 95 

(1996) are physically based, but the drainage configurations were limited to alignments with the grid 96 

boundaries (due to their representation as ‘channel elements’), thereby providing a limited range of 97 

potential drain configurations. Also, the inter-drain regions were represented by a single grid cell, not 98 

allowing examination of the local changes in water table heights. Hence, although both approaches had 99 

some success at the large scale, in order to explore and examine the hydrological processes associated 100 

with the management of drained peatlands there is a need for a physics-based model that provides 101 

flexibility in the representation of drainage configurations and can provide information about the spatial 102 

variability of the internal model states.  103 

 104 

In this paper, a new fine resolution simplified physics-based model is proposed to test hypotheses about 105 

hydrological processes and to investigate the effects of peatland land management. The new model aims 106 



 5 

to allow the impacts of management scenarios to be explored, as an extension to the limited experimental 107 

data currently available, and as a complement to any future extensive experimental programmes. The 108 

model is tested against flow and water table data from a drained peatland site in the UK. The results from 109 

the analysis are used to explore the model performance and to identify processes that require refinement 110 

and the data that would reduce the uncertainties in the model predictions. Finally, the wider applicability 111 

of the model is assessed. 112 

2. Model description 113 

The modelling approach used in this study was to identify the key hydrological processes for intact and 114 

drained peatlands from the literature and include them in a model that has an appropriate level of 115 

complexity relative to the level of information available on the system hydrological processes. To avoid 116 

over-parameterisation, minor processes have been excluded or treated in a simplified manner. In 117 

particular, the development has focused primarily on ombrotrophic (rain water fed) blanket peatlands in 118 

the UK, where deep groundwater flows are expected to be negligible, and on representing processes 119 

known to influence flood generation.  120 

2.1. Conceptual model 121 

Blanket peat deposits are typically found draped over gently rolling terrain in areas with a cool climate, 122 

high rainfall and impeded substrate drainage.  These conditions allow peat formation, which occurs when 123 

organic material decomposes slowly due to anaerobic conditions associated with waterlogging (Allaby, 124 

2008). Typically, peats exhibit two major zones: the upper layer (acrotelm), which is composed of live 125 

and decaying plant material and can range from 5 to 50 cm thick, and a lower zone (catotelm), which is 126 

denser, usually saturated and anoxic (Evans et al., 1999; Holden and Burt, 2003b; Ingram 1978, 1983).  127 

 128 

Water tables in blanket peat catchments are generally observed to fluctuate between the top of the 129 

catotelm and the ground surface and are highly responsive to changes in the soil water balance (Evans et 130 

al., 1999). Due to these typically high water tables, soil water storage does not contribute significantly to 131 

the attenuation of winter floods and surface runoff in peat catchments is generally observed to be due to 132 
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saturation excess (Holden and Burt, 2002a). These local scale responses lead to very flashy responses at 133 

the catchment scale (Bragg, 2002; Evans et al., 1999; Holden and Burt, 2003c; Holden et al., 2001) and 134 

generally low base flows. 135 

 136 

Although soil storage may not be a major factor in attenuating flows, micro-relief elements (Kellner and 137 

Halldin, 2002) and land cover (Weiss, 1998) both significantly affect runoff as they can provide local 138 

storage and increase the effective roughness of the surface. Additionally, pipes are also often observed in 139 

blanket peats and can couple the shallow acrotelm with the deeper catotelm, contributing between 10-140 

30% of the total flow (Holden and Burt, 2002b), although their relative contribution to runoff is lower 141 

under saturated conditions, due to the dominance of overland flow processes (Holden, 2005).  142 

 143 

The saturated hydraulic conductivity (KS) of peat soil is observed to reduce with depth (Clymo, 2004; 144 

Holden et al., 2001; Surridge et al., 2005; Van Seters and Price, 2002), with decreases of as much as five 145 

orders of magnitude by a depth of 0.4 to 0.8m (Bradley, 1996). In the catotelm, high compaction and 146 

greater humification of the material leads to a greater bulk density (Holden and Burt, 2002a) and a 147 

reduction of the voids in the substrate, thereby reducing the saturated hydraulic conductivity. In contrast, 148 

macropores due to voids created from the decaying plant material are particularly important in the 149 

acrotelm and contribute significantly to the higher hydraulic conductivity of this layer (Holden, 2009a). 150 

Shallow throughflow along the boundary of the acrotelm and catotelm is a significant flow mechanism 151 

due to the discontinuity of hydraulic conductivities between the two layers (Holden and Burt, 2003a).  152 

 153 

Based on literature, a simplified conceptualisation of the hydrological functioning of drained blanket 154 

peatlands has been developed (Figure 1), consisting of three main hydrological components: soil blocks, 155 

drains between soil blocks, and a collector drain. This is used as the basis of a mathematical model to 156 

represent a three-dimensional drained blanket peat hillslope. The parameters in Figure 1, as well as 157 

others that are introduced in the following sections, are defined in the Appendix. 158 
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2.2. Mathematical model 159 

Given that the water table in undrained blanket peats is always observed to be close to the surface, and 160 

the high degree of uncertainty in the parameterisation of a full Richards’ equation-based model with 161 

limited or no unsaturated data, a physics-based unsaturated zone representation has been excluded from 162 

the model. This has the added benefit of significantly reducing computational time (Pancioni et al, 2003). 163 

By removing the unsaturated zone, it is assumed that exchanges between the subsurface and the surface 164 

(i.e. evaporation and infiltration) occur instantaneously; and it is assumed that subsurface lateral fluxes 165 

can be described using Darcy’s law: 166 

( )
x

h
hKV T

SS
∂

∂
−=         (1) 167 

where V is velocity in the downslope direction (LT
-1

), 
SK  (LT

-1
) is the depth averaged saturated 168 

hydraulic conductivity, hS is the depth of the water table above the impermeable bed (L), hT is the total 169 

hydraulic head (L) and x is the downslope subsurface ordinate (L). The continuity equation is defined as: 170 
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) are exchange terms representing the fluxes across the peat surface due to infiltration and 173 
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where θS is the site slope. Substituting equation 4 into equation 2 gives the Boussinesq equation: 179 
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The more commonly used version of the Boussinesq equation (e.g. Beven, 1981; Childs, 1971; 181 

Henderson and Wooding, 1964; Verhoest et al., 2002) can be derived from equation (5) by assuming 182 

constant KS and using a transformation of hs’=hs/cos(θS) and x’=x/cos(θS) (where x’ and hs’ are the 183 

rotated distance and water table height measures). The gravitational frame of reference was chosen here 184 

to assist in the coupling between the subsurface, overland and drain flows and also allows the drain walls 185 

to remain vertical. Importantly, the Boussinesq equation still retains dependence on the downslope 186 

boundary condition, which will be significant once the model is adapted to represent blocked drains. In 187 

their comparison study of the performance of the Boussinesq equations compared with a full Richards’ 188 

equation representation, Pancioni et al. (2003) concluded that the Boussinesq equation was able to 189 

successfully capture the shapes of the storage and outflow profiles, particularly for low air-entry pressure 190 

soils under draining conditions. Given the typically low air entry pressure of the acrotelm (Letts et al, 191 

2000), the benefits of reduced parameterisation for the Boussinesq equation are likely to outweigh the 192 

performance benefits of a Richards’ equation representation. 193 

 194 

The acrotelm-catotelm layering is represented in the model through depth-averaged saturated hydraulic 195 

conductivity 
SK and depth-averaged porosity ε defined by 196 

( )
( )

dz
h
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s
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S
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and  198 
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h
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h
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z
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=
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ε

ε
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199 

This depth-averaging provides an approximation of the dual layer system for application in the one-200 

dimensional Boussinesq equation. As the model solution is sensitive to discontinuities in the hydraulic 201 

conductivity a smoothing function is used to describe the variation of hydraulic conductivity with depth:  202 

( ) ( ) ( )[ ]( ) 2100tanh1 cScSaScS dzKKKzK −+−+=     (8) 203 

where z is the coordinate measured vertically from the impermeable lower boundary, KSc is the saturated 204 

hydraulic conductivity of the catotelm, KSa
 
is the saturated hydraulic conductivity of the acrotelm, and dc 205 
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is the thickness of the catotelm. A step function is used to describe the variation of effective porosity 206 

with depth: 207 

( )( )
( )( ) ac

cc

dzz

dzz

εε

εε

=>

=≤
        (9) 208 

where εc is the effective porosity of the catotelm and εa is the effective porosity of the acrotelm. 209 

Examples of these relationships are shown in Figure 2. 210 

  211 

Natural soil pipes have not been explicitly represented in the model, as the data required to parameterise 212 

a pipe model are unlikely to be available for typical model applications; pipe flow contributions are 213 

assumed to be accounted for in the acrotelm hydraulic conductivity. As hydraulic conductivities are 214 

known to be very low at depth (Letts et al., 2000), a zero-flux boundary is imposed at the depth of the 215 

drains. Fluxes into the peat, represented by i in Equation 5, are firstly from any surface water 216 

(reinfiltration at a maximum rate equal to the saturated hydraulic conductivity), and then directly from 217 

rainfall (snow is not explicitly represented). The rainfall infiltration rate is set at the smaller of the 218 

rainfall rate or the saturated hydraulic conductivity of the upper layer. When the soil is saturated no 219 

infiltration is allowed, due to the no-flux condition at the lower boundary. Infiltration and saturation 220 

excesses are added to the overland flow. For the peat blocks, water is firstly evaporated at the potential 221 

rate from any surface water (ETOF), and then from the acrotelm (ETp). Soil evaporation is assumed to 222 

cease when the water table is below the acrotelm. Evaporation from the drains and collector drain (ETd  223 

and ETc) occurs at the potential rate while water is present. 224 

 225 

Overland and channel flows are represented by the kinematic wave equation, an approximation of the 226 

Saint Venant equations of gradually varied unsteady flow commonly used for representing surface flow 227 

dynamics (Singh, 1996). The approximation neglects the acceleration and pressure terms in the full 228 

equations, replacing the momentum equation with a steady state depth-discharge relationship. The 229 

general form of the kinematic wave equation is:  230 
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Q

t
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       (10) 231 
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where H is the flow depth (L), Q is the unit width flux (L
2
T

-1
), Sink represents sink and source terms for 232 

the channel (LT
-1

) and y is a distance ordinate (L). When applied to the drain, collector drain and 233 

overland flow, the following three equations are generated:  234 

Drain: 235 
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Collector drain: 237 
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Overland flow:   239 

( )iETRain
x

q

t

h
OF

OFOF −−+
∂

∂
−=

∂

∂
                      (11c) 240 

where hd is the drain flow depth (L), hc is the collector drain flow depth (L), hOF is the overland flow 241 

depth (L), Rain is the unit area rainfall (LT
-1

), qOF is the unit width overland flow (L
2
T

-1
), qd is the unit 242 

width drain flow (L
2
T

-1
), Wd is the width of the drain (L), xd is the drain ordinate (L) and xc is the 243 

collector drain ordinate (L). 244 

 245 

The depth-discharge relationship for the drains was represented by the Manning equation, as friction 246 

factors quoted in the literature are more commonly Manning’s roughness coefficient values. The depth-247 

discharge relationship for the drains is: 248 
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where n is the Manning’s roughness coefficient and θd is the slope of the drain, where 250 

( )dSd βθθ sinsinsin 1−= . For the collector drain: 251 
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 253 

In order to utilise data in Holden et al. (2008) for depth varying overland flow friction factors, the 254 

overland flow depth-discharge relationship is calculated using a Darcy-Weisbach equation, given by: 255 

( )
( )
f

hg
hxtxq OF

OFdOF

θtan8
,, =        (14) 256 

where g is the acceleration due to gravity (9.81 ms
-2

) and f is the Darcy-Weisbach friction factor. Holden 257 

et al. (2008) investigated values of f for four different land cover types, which in order of increasing 258 

roughness were: bare (Ba), Eriophorum (E), Eriophorum/Sphagnum mix (E/S) and Sphagnum and 259 

Juncus (S/J). f was also found to vary with overland flow depth. The mathematical relationship between f 260 

and depth proposed by Holden et al. (2008) has a discontinuity in the relationship at approximately 1cm 261 

and f tends to infinity as the overland flow depth tends towards zero. Both of these properties cause 262 

numerical difficulties when introduced into the continuous simulations. Therefore a continuous 263 

polynomial that passes though the origin was identified for each land cover type with the general form 264 

f(hOF)= ahOF +bhOF
2
, where parameters a and b were optimised to closely recreate the original data. 265 

Parameter b could be described as a function of a; the final relationship used is f(hOF)= ahOF –266 

(2.21a+3.82)hOF
2
, with values of a: (Ba) 20.79, (E) 5.05, (E/S) 3.48 and (S/J) 1.90. Parameter a was used 267 

as a proxy for f for the purpose of model calibration and sensitivity analysis.  268 

 269 

The resulting model couples four one-dimensional models that represent respectively subsurface, 270 

overland flow, drain flow and collector drain flow (Figure 1). The one-dimensional models are run 271 

simultaneously with feedbacks between the subsurface and surface through the infiltration and 272 

evaporation terms, and between the subsurface and the drains through the drain depth and seepage face 273 

water level. By limiting the model to four one-dimensional models rather than a fully integrated three-274 

dimensional model, some of the computational demands of the modelling procedure are reduced 275 

(assuming that fewer nodes and fewer equations will lead to reduced computational time) and the 276 

parameterisation of the model can be limited to those parameters for which information can be taken 277 

from the literature (such as the saturated hydraulic conductivity and surface roughness). The model uses 278 
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inputs of rainfall and potential evaporation, and outputs flow and water depths throughout the model 279 

domain.  280 

 281 

The model space is discretised into a number of soil blocks (Figure 1), which are bounded upstream and 282 

downstream by drains. The block lengths tested ranged from 5m (close drain spacing) to 500m (to 283 

simulate intact peatland). The model space domain may include a large number of blocks, depending on 284 

the application. Although the drains may be at any angle relative to the contours, the soil blocks are 285 

always aligned downslope, meaning that surface and subsurface flow in the block are always 286 

perpendicular to the contours and parallel to the edge of the block. In this way, flow paths on and in the 287 

soil block may be represented by the single dimension and there is no exchange flow between the soil 288 

blocks. This representation neglects any cross-slope flow paths that may be present.  289 

 290 

The partial differential equations to describe the variation of flow depths with time for each of the one-291 

dimensional models were discretised in space using finite differences. The resulting ordinary differential 292 

equations were then integrated in time using Matlab’s ODE15s solver (Shampine and Reichelt, 1997; 293 

Shampine et al., 1999). The solver uses an adaptive time grid, which limits the numerical error associated 294 

with each time step to within a user defined tolerance. For the soil block and overland flow calculations, 295 

nodes in the x-direction are in a log10 space, allowing nodes to be more closely spaced toward the 296 

boundaries. By using a varying x-spacing, computational efficiency can be increased, by focusing nodes 297 

in the regions of rapidly varying flows.  298 

3. Model calibration and testing 299 

3.1. Case study application 300 

Oughtershaw Beck, a tributary of the River Wharfe, is a catchment of approximately 13.8 km
2 
(Lane et 301 

al., 2004) located at 54
o
13’54” N, 2

o
15’09”W, in the Yorkshire Dales, Northern England (Figure 3). The 302 

average annual rainfall is 1850mm (Wallage et al., 2006). The catchment ranges in elevation from 353m 303 

at the outlet to 640m, and is primarily blanket peat with an average thickness of 2m. The catchment is 304 
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underlain by carboniferous limestone and millstone grit that is covered with a glacial boulder clay 305 

deposit (Wallage et al., 2006). Open cut drainage was installed over a large portion of the catchment in 306 

the 1960s. There was no maintenance of the drains in the intervening period, but Holden et al. (2007) 307 

surveyed the drains in the area, finding that most had either remained the same dimensions as when cut 308 

or had eroded; there were very few that had naturally infilled or become vegetated. 309 

 310 

A monitoring programme ran from December 2002 until August 2004, consisting of 6 boreholes in a 311 

transect across a drained peatland site within the catchment (Figure 4a), with water table depths below 312 

the surface recorded at approximately 10 minute intervals. The boreholes were monitored continuously 313 

over a 419 day period starting on 17
th
 February 2003. A 25

o
 V-notch weir was located in a drain 314 

approximately 32 m downstream of the borehole transect (see Figure 4); the notch was 28cm above the 315 

base of the drain and water level measurements were taken at approximately 5 minute intervals. The weir 316 

equation, calibrated in-situ, is QW=0.21 hW
2.3

, where QW (m
3
s

-1
) is weir flow and hW (m) is water level 317 

over the crest. 304 days of reliable observations are available during the 21 month period. Because the 318 

field experiment was not originally designed to support a physics-based model, a detailed survey of the 319 

site was not completed prior to the removal of field equipment; therefore information regarding exact 320 

ground surface heights is unknown. A transect survey across the site in the approximate location of the 321 

boreholes indicates that the ground surface level fluctuates by up to 10cm around the average slope of the 322 

site. The schematic map of the site, shown in Figure 4a, is based on information from aerial photographs 323 

and topographic maps. A rain gauge was located approximately 300m from the site, with measurements 324 

made at 15 minute resolution. As evaporation data were not available for the location, an approximate 325 

time series of daily potential evaporation was synthesised using the EARWIG weather generator (Kilsby 326 

et al., 2007). The dataset is unique in its simultaneous high resolution measurements of rainfall, drain 327 

flow and water table in blanket peat and therefore provides an important opportunity to calibrate and test 328 

the model performance. 329 

 330 

The model boundaries were defined by the drains at the top and bottom of the transect, the weir at the 331 

outlet and the upstream end of the central drain (Figure 4b). 10 soil blocks were used in the simulation (5 332 
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upslope and 5 downslope from the central drain), each with 20 nodes, with spacing of these nodes 333 

ranging from 40cm near the drain to 3.5m in the centre of the soil block. Borehole locations were 334 

explicitly added as nodes, to avoid interpolation errors when comparing the model output against 335 

observations. The original model configuration was altered slightly in order to incorporate the routing 336 

effect of the weir: the drain upstream of the weir was modelled as a reservoir with outflows set by the 337 

weir equation measured in the field. This assumes that the residence time in this drain is dominated by 338 

the storage effect of the weir, and that travel time of the wave is negligible compared to the simulation 339 

output time step, which is considered reasonable because of the short drain length.  340 

 341 

The model was calibrated by performing a Monte Carlo analysis. 2000 random samples were taken from 342 

the a priori parameter ranges shown in Table 1. The calibrated model parameters were: the acrotelm and 343 

catotelm hydraulic conductivities, the thickness of the acrotelm, the angle of the drain, the surface slope 344 

and the type of land cover. Some of the a priori ranges were more easily constrained (i.e. the slope and 345 

drain angle) as there was some knowledge about these parameters from information such as maps and 346 

aerial photographs. However, we chose not to fix these parameters, in order to investigate the parameter 347 

sensitivity and also to reflect the uncertainty in this information. The drain length was fixed at 46m based 348 

on the results of a long term mass balance, and the acrotelm and catotelm porosities were set as functions 349 

of their respective hydraulic conductivities following the relationship presented by Letts et al. (2000). 350 

Simulations were then performed for each of the a priori parameter sets for a 50 day calibration period 351 

from 24 September 2003 with a preceding 50 day model warm up period (not used for comparison 352 

against the observations) to allow sufficient time for the model behaviour to become independent of the 353 

user-defined initial conditions. The simulations took 6-10s per simulation day using an Intel Core 2 Duo 354 

Processor (E6850, 3.00 GHz). 355 

 356 

The observed data points were interpolated to the same time samples as the model output (10 minutes). 357 

The model performance was determined for each parameter set using the Root Mean Square Error 358 

(RMSE) for observed discharges (over all the parameter sets RMSE ranges from 0.049 to 0.095 l/s), and 359 

for water table depths for all six boreholes (RMSE ranges from 0.021 to 0.161 m). None of the sampled 360 
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parameter sets could simultaneously optimise the RMSE for all seven sets of observations. In order to 361 

accommodate the multi-objective nature of the problem and also recognising the uncertainty in the data 362 

and the model, rather than performing verification and predictions with a single “optimal” parameter set, 363 

the parameter sets considered most consistent with the observed hydrology of the site are selected. These 364 

are referred to here as the “behavioural” parameter sets (B). The behavioural parameter sets are selected 365 

by firstly taking only the best 5% for the weir flow simulations (100 parameter sets), then further 366 

reducing this set by keeping only the 50 parameter sets that had the best average RMSE for all six 367 

boreholes. Less emphasis is placed on the borehole observations in this combined criteria because our 368 

primary interest is to replicate peak flow hydrographs, and as there is inevitable uncertainty in the 369 

borehole simulations associated with heterogeneity as well as the uncertainty related to the inexact 370 

datums from which the borehole measurements were made. The selection of the criteria was arbitrary; 371 

however it achieved the purpose of constraining the model towards the observed behaviour within an 372 

uncertainty analysis framework. 373 

 374 

Figure 5 shows the confidence limits of the predictions obtained using the a priori parameter sets and 375 

those obtained using the behavioural parameter sets, plotted with observed weir and borehole data for the 376 

largest event during the calibration period. This shows that the behavioural parameter sets give good 377 

performance during the main flow peak and demonstrates that non-behavioural parameter sets were 378 

typically rejected as they produced soil conditions that were too dry preceding the onset of the rainfall 379 

event and therefore tended to underestimate the first peak. Following the flood peak, all simulations 380 

reflect saturated conditions with the water table at the ground surface; the observations reflect a similar 381 

water table level, fluctuating between -2cm and the surface.  382 

 383 

To test the model outside the calibration period, simulations using only the behavioural parameter sets 384 

were performed for the entire observation period (Figure 6). Regions of missing data in Figure 6 are 385 

periods when observations were not made, and periods with missing simulations are periods where 386 

rainfall data were not recorded. Figure 7 illustrates a period of relatively poor performance and high 387 

uncertainty in the transition from a dry to wet period. In this period, the observed rewetting (the time it 388 
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took for the water table to increase by approximately 10cm) took approximately 3 hours according to the 389 

observations, whereas in the simulation it took approximately 1 day (although the simulations did react 390 

earlier). For the second flow peak, the upper bound reflects the observations; however, the lower bound 391 

indicates no flow. Once the soil became saturated, the third peak shows that the simulation improved 392 

significantly, although the lower bound prediction is only approximately 40% of the observed flow and is 393 

also delayed by approximately 45 minutes.  394 

 395 

Figure 8 shows good flow performance and reduced uncertainty in a consistently wet period. During this 396 

period the water table was always very close to the surface (<5cm) in both the observations and the 397 

model outputs. Figure 6 demonstrates that ground water levels are generally well predicted in the winter 398 

time, when evaporation is low and the water table is very close to the surface. However, during summer 399 

periods, the magnitude of the drawdown tends to be under-predicted and the time for rewetting tends to 400 

be over-predicted. Predictions for the borehole located 10cm upstream from the drain were consistently 401 

worse than those in the centre of the upslope soil block. 402 

 403 

The behavioural parameter sets can also be used to examine the sensitivity of the model to each of the 404 

parameters, by making comparisons between the frequency distributions of the behavioural parameters 405 

F(θx|B) and the frequency distributions of the a priori parameter F(θx) (following the approach of Spear 406 

and Hornberger, 1980). Figure 9 shows the cumulative distribution functions (cdfs) of the a priori and 407 

behavioural distributions for each parameter; the greater the deviations of the behavioural cdfs from the 408 

a priori cdfs, the more sensitive the model prediction is to the parameter. The significance and magnitude 409 

of the difference between these distributions (and therefore the sensitivities) is quantified using the 410 

Kolmogrov-Smirnov (KS) test (see McIntyre et al. 2003). All behavioural parameter distributions were 411 

significantly different from the a priori parameter distributions at the 95% confidence interval. For the 412 

parameter ranges tested in this example, the parameters ordered from most sensitive to least sensitive, 413 

based on their KS test statistic values, are: acrotelm saturated hydraulic conductivity (KSa), acrotelm 414 

thickness (da), drain angle (βd), catotelm saturated hydraulic conductivity (KSc), land cover (a) and site 415 

slope (θd). The model sensitivity to the evapotranspiration was also tested by running 10 parameter sets, 416 
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randomly selected from the original 2000 parameter sets, each for five different EARWIG stochastic 417 

realisations for a 150 day period. The mean difference in RMSE between the best performing and worst 418 

performing simulations for each parameter set was 0.0023 l/s for the flow simulations and 0.0036 m for 419 

the water table simulations. This variation was considered to have little significance on the selection of 420 

behavioural parameter sets. 421 

3.2. Generalised parameter space response 422 

The model performance in the case study application suggests that the model captures the key processes 423 

in drained blanket peatlands under wet conditions. For sites that may be modelled with the same structure 424 

but different parameter values, the model was used to explore aspects of hydrological response 425 

throughout the potential parameter space. In these simulations, the original model structure shown in 426 

Figure 1 was used, rather than the version adapted to accommodate the weir. It is assumed that all 427 

possible surface roughnesses for peatland sites can be represented by values of a between the smoothest 428 

(Ba) and roughest (S/J) land cover types. The parameter ranges for this broader exploration are shown in 429 

Table 1. This allows a qualitative validation of the model results relative to responses reported in the 430 

literature for a range of sites as well as providing a more general picture of the sensitivity of the flow 431 

peaks to the model parameters.  432 

 433 

The model parameter space was quantised and simulations performed for all the possible parameter 434 

combinations. The model domain was fixed to a 500m x 500m area, and tested with seven design storms 435 

taken from the Flood Estimation Handbook (Robson and Reed, 1999), assuming a winter profile. The 436 

seven events were: 10 year return period with 1 hour duration, 10 year 2 hour, 10 year 6 hour, 10 year 12 437 

hour, 10 year 18 hour, 2 year 12 hour and 50 year 12 hour. As only large design storms were examined, 438 

evaporation was not included in the model. Initial water table levels were set as the steady state solution 439 

for infinite duration rainfall of 0.1 md
-1

 and drains were assumed to be empty. The peak flows were 440 

found to be independent of this choice of initial condition. In order to reduce parameterisation, the depth 441 

averaged hydraulic conductivity was assumed to be constant within each simulation, therefore removing 442 

the acrotelm-catotelm representation. The results from the study are shown in Figure 10. For each 443 
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sampled value of a parameter xi (i=1 to 6 representing the six sampled parameters), the mean of the peak 444 

flow values over all rainfall events and sampled values of the other parameters is calculated and plotted 445 

against xi. The xi values have been scaled to range between 0 and 1; the hydraulic conductivity is shown 446 

on a log scale.  447 

 448 

The model behaviour was found to be consistent with observations from the literature. For example, at 449 

high hydraulic conductivities, drainage is found to be very effective in reducing peak flows; with low 450 

hydraulic conductivities (such as in peatlands), drainage is found to increase model peak flows and 451 

decrease times to peak, with the effects generally larger in systems with closer drains and lower 452 

hydraulic conductivities (e.g. Holden et al., 2006; Robinson, 1986; Stewart and Lance, 1991). At very 453 

close drain spacing, the peak model flows begin to reduce, suggesting that spacing contributes to both 454 

increased storage and increased conveyance. Examination of the water table profiles also shows that the 455 

spatial variation in water table depth observed in the field (Coulson et al., 1990; Holden et al., 2006) is 456 

also replicated in the model. 457 

4. Discussion 458 

A new hydrological model has been presented for drained blanket peats that can explicitly represent 459 

varied drainage networks and the water table response between these drains. The simplified physics-460 

based model allows for the exploration of the internal model behaviour, whilst still being relatively 461 

computationally efficient. High quality data from small scale peatland sites are quite limited, and as 462 

model complexity increases, there is less likelihood that suitable observational data are available to 463 

constrain the model parameters (Freer et al., 2004). Despite the limited complexity of the new model, and 464 

the fact that the dataset used for calibration is unique in the UK for the high level of information that it 465 

contains about peatlands, there are still challenges in the calibration, in particular, simultaneously 466 

optimising the model performance against individual observation time series. There are many possible 467 

causes for inconsistency between model outputs and observations, related to the model conceptualisation 468 

as well as the quality or suitability of the observations.  469 

 470 
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Our approach to model calibration in this paper has taken into account responses that it would be 471 

reasonable to expect the model to simulate given its relative simplicity. A spatially homogeneous 472 

representation of site properties is unlikely to provide consistently accurate representations of multiple 473 

point estimates of water table levels. We also note that without a detailed survey of the site, and only the 474 

site averaged slope to work from, water table measurements made from a ground surface reference level 475 

may have several centimetres of error in them. In the field, it is also difficult to precisely define the 476 

surface of a peat, as in reality, the change from peatland vegetation to acrotelm is more of a continuum 477 

than a discrete layering. Therefore, the influence of the water table levels was down-weighted in the 478 

calibration so that that the simulated response was considered acceptable if it was broadly consistent with 479 

the general response of the six boreholes. Despite the reduced weighting of the boreholes in the 480 

calibration, they provided important information in the calibration process, particularly in refining the 481 

behavioural range of the slope; without the information from the boreholes, the slope would not have 482 

been identified as a sensitive parameter. 483 

 484 

Even with these challenges, the longer term behaviour of the water table is generally reliably predicted 485 

(see Figure 6), with seasonal variability represented well. However, Figure 6 also highlights the 486 

relatively poor prediction of the water table near the drain edge. This is unsurprising as the assumptions 487 

made in the Boussinesq equation are no longer valid in regions near the drainage ditches, where 488 

streamlines begin to converge and the Dupuit-Forcheimer approximation fails (Bear, 1988). Drain edges 489 

are also modelled as vertical, whereas in reality they will have some degree of incline. Whether distances 490 

to the boreholes are measured from the drain edge at the top or the bottom of the drain will therefore 491 

have an impact on the location of the borehole in the model domain. Near the edges of the peat blocks, 492 

where the water table level is rapidly varying, water table predictions are very sensitive to movement of a 493 

matter of centimetres upslope or downslope of a given location. Should more accurate simulations of the 494 

water table within 1m or less of the drain edge be required, it would be necessary to reassess the 495 

suitability of the Boussinesq equation. 496 

 497 
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Despite the inevitable conflict resulting from the desire to accurately represent local scale hydrological 498 

processes and the requirement that the model should be computationally efficient, the model performs 499 

consistently well during wet periods (e.g. Figure 8). Performance during drying periods and the 500 

following recoveries was more poorly represented and had the greatest uncertainty. We assume that the 501 

slower recovery of the water table is probably related to the exclusion of an unsaturated zone 502 

representation, as in reality water stored in the unsaturated zone would add to the infiltrating water to 503 

increase the rate of water table rise. However, we suggest that, in the context of flood response, the loss 504 

of precision for these periods is outweighed by the significant gains in computational time (assuming that 505 

number of model nodes can be taken as a proxy for computational time, (e.g. Pancioni et al, 2003)), and 506 

also note that a poorly constrained complex subsurface representation would be unlikely to provide 507 

greater precision in these periods. It is also important to note that our calibration period was during 508 

winter; therefore it is possible that if there had been suitable data to use for a calibration period in the 509 

summer time, that drying and rewetting of the peat may have been better captured in the behavioural 510 

parameter set. 511 

 512 

Based on an examination of the response of the modelled flow across the parameter space under large 513 

rainfall events, the model parameter to which the peak flow response is most sensitive is the drain 514 

spacing followed by the hydraulic conductivity. However, at low hydraulic conductivities (e.g. typical of 515 

UK blanket peats) the peak flow is almost independent of the hydraulic conductivity. In that case, apart 516 

from drain spacing, the peak flows are most sensitive to the parameters related to the land surface and 517 

drain roughnesses. This is unsurprising given that the simulations were for large rainfall events, where 518 

any storage in the subsurface could be rapidly filled. The high sensitivity of flow to the roughness 519 

parameters also reflects their high uncertainty. Further field investigations of these parameters (e.g. 520 

Holden et al., 2008) would greatly enhance any hydrological modelling efforts for blanket peatlands. 521 

5. Conclusions 522 

The processes and responses associated with drained peatlands have been captured in a new simplified 523 

physics-based model. The model has advantages over previous physics-based and lumped conceptual 524 
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models, as it provides flexibility in the drainage configurations that can be represented and can provide 525 

outputs of the spatial variability of model internal states. The results of the generalised parameter space 526 

response indicate that peak flows are sensitive to the geometric properties of the hillslope and drainage 527 

configurations, therefore models that are spatially lumped or restricted in their model configuration 528 

cannot as accurately distinguish those sites that pose the greatest flood hazard. The model therefore has 529 

potential in terms of specifically identifying and prioritising areas for flood hazard mitigation measures 530 

in terms of potential reduction of downstream flood risk. The model has been tested against a dataset 531 

from the UK and has been shown to perform well in terms of capturing peak flow responses under 532 

saturated or near-saturated soil moisture conditions. Poorer performance under drier conditions was 533 

explained by lack of an accurate unsaturated zone model, which while not of great concern for flood flow 534 

applications, could restrict the model’s usefulness for the exploration of other peat management impacts 535 

on, for example, low flows and water quality. Although the unknown surface levels at the boreholes 536 

created challenges with the simultaneous optimisation of all six boreholes, long term behaviour of water 537 

table levels was reasonably well predicted, and the general water table behaviour was consistent with 538 

observations from other studies. How far the model can be generalised will need to be explored further 539 

through testing against more data sets. The effect of spatial heterogeneity of the model parameters should 540 

also be investigated. The modelling process has helped identify the overland and channel flow roughness 541 

parameters as being particularly important controls on peak flow response. Further field research towards 542 

constraining these parameters is expected to enhance the model performance. 543 
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Appendix  549 

List of parameters: 550 
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a Proxy overland flow friction factor 551 

βd Drain angle (Degrees)  552 

εa Effective porosity of acrotelm (-) 553 

εc Effective porosity of catotelm (-) 554 

θd Drain slope (Degrees) 555 

θs Site slope (Degrees) 556 

θx A priori parameter sets 557 

B Behavioural parameter sets 558 

da Thickness of the catotelm (L) 559 

dc Thickness of the catotelm (L) 560 

ETc Actual evaporation from collector drain (LT
-1

) 561 

ETd Actual evaporation from drains (LT
-1

) 562 

ETOF Actual evaporation from overland flow (LT
-1

) 563 

ETp Actual evaporation from peat soil (LT
-1

) 564 

f Darcy Weisbach friction factor (-) 565 

g Acceleration due to gravity (9.81 ms
-2

) 566 

H Generic water depth (L) 567 

hd Depth of water in drain (L) 568 

hOF Depth of overland flow (L) 569 

hT Total hydraulic head (L) 570 

hS Depth of water table above impermeable bed (L) 571 

hW Height of water above weir crest (L) 572 

i Infiltration (LT
-1

) 573 

KSa Saturated hydraulic conductivity of acrotelm (LT
-1

) 574 

KSc Saturated hydraulic conductivity of catotelm (LT
-1

)  575 

LC Length of the collector drain and site length (L) 576 

Ld  Length of the drain (L) 577 

n Manning’s n 578 
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Q Generic unit width flux (L
2
T

-1
) 579 

qc Collector drain flow (L
2
T

-1
) 580 

qd Drain flow (L
2
T

-1
) 581 

qOF Unit flux of overland flow (L
2
T

-1
) 582 

qS Unit flux of subsurface flow (L
2
T

-1
) 583 

QW Weir flow (L
3
T

-1
) 584 

t Time (T) 585 

V Generic velocity in downslope direction (LT
-1

) 586 

W Drain spacing (L) 587 

Wd Drain width (L) 588 

x Peat block ordinate (L) 589 

xC Collector drain ordinate (L) 590 

xd Drain ordinate (L) 591 

y Generic downslope distance ordinate (L) 592 
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Table 1: Parameter ranges for Oughtershaw Beck Monte Carlo simulations and general sensitivity 

analysis 

 

 Ranges for Oughtershaw Beck 

Monte Carlo Simulations 

Ranges for Sensitivity Analysis 

Parameter Lower value Upper value Lower value Upper value 

Acrotelm hydraulic 

conductivity (m/d) 
0.1 4 

Catotelm hydraulic 

conductivity (m/d) 
0.001 0.05 

(Depth 

Averaged) 

0.001 

(Depth averaged) 

10 

Acrotelm thickness 

(m) 

0.05 0.2 FIXED  

Drain angle (degrees) 10 20 15 60 

Surface slope 

(degrees) 
5 10 2 14 

Land cover  Sphagnum & 

Juncus 

(roughest) 

Eriophorum 

(smoothest) 

Sphagnum & 

Juncus 

(roughest) 

Bare (smoothest) 

Manning’s n n/a n/a 0.2 1.4 

Drain spacing (m) FIXED 5 500 

 

Figures: 

 

 
 

Figure 1: conceptual model of drained peatland 
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Figure 2. Variation of 
SK  and ε with hS, and variation of KS and ε with z, given KSa=1 md

-1
, KSc=0.01 

md
-1

, εa = 0.6, εc = 0.4, da =0.2m and dc = 0.8m 

 

 

 
Figure 3: Location map of Oughtershaw Beck; (a) Location within the British Isles (b) Site location 

within the Yorkshire dales, marked by the star. Major towns in the area are marked with large circles; 

Oughtershaw is a small hamlet and marked with a small circle. 

 

 
 

Figure 4: (a) Field site schematic diagram, (b) Model domain and soil blocks 
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Figure 5: Four day sample from the calibration period, showing the largest peak and water table (WT) 

depth at borehole A2. Light grey: 90% confidence interval for all simulations; dark grey: 90% 

confidence interval for behavioural simulations; black dots: observations 
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Figure 6: Rainfall, flow and upstream water table depth for the verification period. Grey area: 90% confidence interval of behavioural simulations; black line 

or black dots: observations. 
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Figure 7: Flow hydrograph and water table (WT) depth for borehole A2 from verification period. Grey 

area: 90% confidence interval of behavioural simulations; black dots: observations. 

 

 

 

 
Figure 8: Flow hydrograph and water table (WT) depth for borehole A2 from verification period. Grey 

area: 90% confidence interval of behavioural simulations; black dots: observations 
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Figure 9: Cumulative density plots of the a priori and behavioural parameter distributions. Black line: 

a priori parameter distribution; grey line: behavioural parameter distribution 

 

 

 
Figure 10: Mean flow rates and mean times to peak versus scaled parameter values 
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