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Causality of Optimized Haskell
What is burning our cycles?

Peter M Wortmann ∗ David Duke
University of Leeds

{scpmw,d.j.duke}@leeds.ac.uk

Abstract
Profiling real-world Haskell programs is hard, as compiler opti-
mizations make it tricky to establish causality between the source
code and program behavior. In this paper we attack the root issue
by performing a causality analysis of functional programs under
optimization. We apply our findings to build a novel profiling in-
frastructure on top of the Glasgow Haskell Compiler, allowing for
performance analysis even of aggressively optimized programs.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Debugging Aids; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Languages—
Operational semantics

Keywords Profiling; Optimization; Haskell; Causality

1. Introduction
A major selling point of functional languages is their clean model
of computation, prioritizing ease of composition over efficient map-
ping to hardware. By strictly dividing up responsibilities, aggressive
compiler optimizations can then often close the gap again. Unfortu-
nately, this also makes it hard to reason about compilation process:
Where a performance problem ends up falling through the cracks,
it often becomes exceptionally hard to explain. Therefore we need
specialized profiling tools to assist the programmer in pin-pointing
the performance problems and explaining the root causes behind
them. These tools must bridge the full abstraction gulf, accurately
measuring low level performance while relating it all the way back
to the original source code.

1.1 Context
The ecosystem of real world Haskell development currently centers
mostly around the Glasgow Haskell Compiler GHC [19]. And this
for good reason, as it is has managed to make extensive optimization
techniques such as heavy in-lining [18], rules [4, 22] and lax code-
reordering [17] relevant to everyday programming tasks. This has
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enabled Haskell programs to perform competitively even while
taking full advantage of the language’s abstraction mechanisms.

However, there have been common complaints that the perfor-
mance of Haskell programs can be quite unpredictable [28]. And
while there has been a robust and well-tested profiling framework
for the GHC compiler for some years now [25], it has to impose
significant restrictions on what optimizations the compiler is al-
lowed to perform. Furthermore, newer work [14] suggests that its
cost attribution scheme still has room for improvement.

1.2 Motivation
Consider the following popular example program in Haskell:

f a c : : I n t → I n t
f a c n = f o l d r ( * ) 1 [ 1 . . n ]

We compute the factorial of a number n by multiplying out the
numbers from 1 to n. What performance would we expect?

The answer is surprisingly complicated, even for this simple
program using common library functions. If we compile with GHC,
we have to account amongst others for specialization, inlining,
short-cut deforestration [7], strictness analysis as well as the worker-
wrapper transformation [5]. After many steps, these transformations
strip our function down to its core loop:

go !w ! n | w == n = w
| o t h e r w i s e = w * go (w+1) n

This is remarkable – yet for large inputs the optimized code still
runs out of stack space needlessly, as it was not constructed to be
tail-recursive! To make matters worse, conventional profiling would
be useless here, as it would either prevent key optimizations from
happening – or present information so coarsely that we would have
to guess at what is happening in the inner loop.

1.3 Contribution
We have built a profiling framework that is able to handle profiling
even for such tricky interactions between various code pieces and
compiler optimizations. This is fundamentally about balancing two
concerns: Accurate tracking of causes for performance problems,
and feasibility of actual instrumentation and profile analysis.

We will attack these separately: In Section 2 we will explain our
causality model and apply it to derive exact cause-effect relations
for the evaluation of a simple lazy functional language. In Section 3
we will then show how we can extend the approach to reason about
compiler optimizations as well.

Starting with Section 5 we will consider how to use the anno-
tations for real-world profiling. We explain necessary simplifica-
tions and analyze their consequences, with the existing cost-centres
framework [25] as our reference. Finally Section 6 will introduce
our own profiling framework, which offers high-accuracy profiling
of fully optimized programs at minimum overhead.



2. Tracking Causality
In profiling, we are ultimately looking for explanations: Why did
this performance problem occur? This invariably leads to deeper
questions: Why did the machine behave like that? Where exactly
was that call coming from? What made the compiler generate the
code in that way? The answers to these questions make up the actual
causal story behind the performance of the program.

In this section we will start out by showing how we can find
such answers for a simplified lazy functional language. The idea is
that we track the cause for every piece of code, value or run-time
cost. As long as we make sure that we identify causality correctly
at every step along the data flow, this promises us profiles that are
correct by construction.

2.1 Counter-Factual Causation
In order to formally reason about causality, we need a causality
model. Our goal is to be able to support claims such as:

Using foldr here causes excessive stack usage.

How would we show such a statement to be true? Let us negate both
sides to get counter-factual conditionals [13]:

Not using foldr here can cause less stack usage.

This we can actually somewhat test: If we could show that similar
programs without foldr lack the original problem, we have indeed
demonstrated a causal connection. This approach forms the basis of
Lewis’ classic theory of counter-factual causality [13].

To put this formally, let us call the original program and its
behavior a “world” W . Then if we have a cause α (using foldr)
and effect ω (stack usage) that are true in W , we are allowed to
derive the counter-factual causation relation

¬α �→ ¬ω
if and only if the closest world W ′ where α would be false would
also see β becoming false.

Perhaps surprisingly, Lewis theory leaves it almost completely
open what the “closest” world should be – it is a parameter that has
to be set intuitively based on the problem at hand. In our case, this
means we first need to define how to reason about programs and
their execution! In the following we will continue to notate causes
as α, β, γ and δ, and use αβ = α ∧ β for a cause conjunction.

2.2 Definitions
Let us define a simple cause-annotated lazy functional language
to continue our discussion. We will notate variables as x or y,
constructors as C or D, values as v and expressions as e:

v ::= C x1 x2...

| λy.e

| ⊥
e ::= v

| e x

| x

| let {x1 = e1, x2 = e2, . . . } in e
| case e of {C x1 x2...→ e1; D y1 y2...→ e2; . . . }

where e = 〈α〉e is an expression annotated with its cause α. By this
we mean that if we have β as the event of encountering 〈α〉e, we
have ¬α �→ ¬β: if α becomes false, it might cause e to change.

To reason about performance, we introduce cost terms O:

O ::= L | C |A | V | T | E |⊥
with each unit of abstract cost corresponding to an application of
a rule from the language semantics we are about to define. For

example each evaluation of a let expression should produce one
unit of T cost. Cost annotations will have the same meaning as on
expressions, but use the slightly more compact notation O = αO.
We define profiles θ = αO1 + βO2 + · · · as bags of such cause-
annotated costs.

At this point we have enough to consider evaluation semantics.
We will use Launchbury’s natural semantics for lazy evaluation [12]
as our starting point, but extend it with annotations and profiles. Our
judgments will take the following form:

Γ : 〈β〉e ⇓θ Γ′ : 〈γ〉v

With Γ standing for the heap (a variable map x 7→ e; ...) before
evaluation and 〈β〉e the annotated expression to evaluate. On the
right side the judgment yields the profile θ, a new heap Γ′ and
an annotated result value 〈γ〉v. The profile notation was inspired
by Launchbury as well as Sansom et al [25]. As usual, where a
judgment can not be derived (finitely) from the semantics, the
judgment result are ⊥ terms.

2.3 Deriving Annotations
Consider the application rule:

Γ1 : e ⇓θ2 Γ2 : 〈δ〉λy.e2 Γ2 : e2[x/y] ⇓θ3 Γ3 : v

Γ1 : 〈β〉(e x) ⇓?A+?θ2+?θ3 Γ3 : 〈?〉v

So far this is just Launchbury’s rule with annotations and profiles
added where syntactically required. Unfortunately it is not quite
immediately obvious how we should annotate: Do we need extra
annotations on v, and what about the various costs in the generated
profile? We must consult our causality model and derive causes
from the terms the rule match depends on (highlighted).

First consider the application expression (e x). To find its effects,
our causality model says that we need to consider an alternate world
W ′ where (e x) was “miraculously” replaced with a different e′

just as we were about to apply the rule. Let us pick e′ = ⊥ as our
replacement. As no rule is allowed to match ⊥, this would lead to
the following W ′ judgment:

Γ1 : ⊥ ⇓⊥ ⊥
We observe that in W ′ the judgment does not generate v or any
of the costs in question. We can therefore conclude that they were
caused by encountering (e x) and therefore – by transitivity – by β.
Hence we must annotate β on all costs in the profile as well as on
the return value.

Let us repeat this procedure with the result of the evaluation of e,
which the rule expects to be 〈δ〉λy.e2. Again we ask: What if in an
alternate worldW ′′ we switched out the returned value by e′′ = ⊥?
By matching as far as possible1 we obtain the W ′′ judgment

Γ1 : e ⇓θ2 Γ2 : ⊥
Γ1 : 〈β〉(e x) ⇓βA+βθ2+β⊥ 〈β〉⊥

Accordingly, it follows that we need to annotate the profile θ3
as well as the return value v. We arrive at the fully annotated
application rule:

Γ1 : e ⇓θ2 Γ2 : 〈δ〉λy.e2 Γ2 : e2[x/y] ⇓θ3 Γ3 : v

Γ1 : 〈β〉(e x) ⇓βA+βθ2+βδθ3 Γ3 : 〈βδ〉v

Note that we completely ignore heaps where the result was ⊥,
even though alternate worlds would probably also update the heap
differently! This is because we have to think of expressions and
values as graphs and our rules as graph reductions: a free variable
is actually a place-holder for a shared expression or value from
the heap. Consequently, the heap state does not matter without a
reference to it.

1 We are essentially using small-step semantics for a moment.



Γ : 〈β〉C x1 x2... ⇓βC Γ : 〈β〉C x1 x2... (Con)
Γ : 〈β〉λy.e ⇓βL Γ : 〈β〉λy.e (Lam)

Γ1 : e ⇓θ2 Γ2 : 〈δ〉λy.e2 Γ2 : e2[x/y] ⇓θ3 Γ3 : v

Γ1 : 〈β〉(e x) ⇓βA+βθ2+βδθ3 Γ3 : 〈βδ〉v
(App)

Γ1 : e ⇓θ Γ2 : v

Γ1;x 7→ e : 〈β〉x ⇓βV+βθ Γ2;x 7→ v : 〈β〉v
(Var)

Γ1; yi 7→ ei[〈βγ〉yi/〈γ〉xi, ...]; ... : e[〈βγ〉yi/〈γ〉xi, ...] ⇓θ Γ2 : v

Γ1 : 〈β〉let {xi = ei, ...} in e ⇓βT+θ Γ2 : v
(Let)

(with y fresh variables)

Γ1 : e ⇓θ2 Γ2 : 〈δ〉Ci yj ... Γ2 : ei[yj/xj , ...] ⇓θ3 Γ3 : v

Γ1 : 〈β〉case e of {Ci xj ...→ ei, ...} ⇓βE+βθ2+βδθ3 Γ3 : 〈βδ〉v
(Case)

Γ1 : e ⇓θ2 Γ2 : 〈δ〉C yj ... Γ2 : e0[〈βδγ〉yj/〈γ〉xj , ...] ⇓θ3 Γ3 : v

Γ1 : 〈β〉case e of {C xj ...→ e0} ⇓βE+βθ2+θ3 Γ3 : v
(Case’)

Figure 1. Annotated evaluation rules

2.4 Advanced Annotations
In the last section, our recipe for removing expressions in the
alternate world was to replace them by e′ = ⊥. On one hand,
this is very effective, as it clearly removes any trace of the original
expression. On the other hand, it always forced an immediate rule
mismatch, which is rather crude. After all, Lewis’ theory suggests
comparing to a world that is as close as possible to the original.

Consider for example the Sestoft-style let rule [26]:

Γ1; yi 7→ ei[yi/xi, ...]; ... : eB [yi/xi, ...] ⇓θ Γ2 : v

Γ1 : 〈β〉let {xi = ei, ...} in e
B ⇓?T+?θ Γ2 : 〈?〉v

Here the evaluated expression is the only interesting input term. If
we again set e′ = ⊥ we would obtain the following annotated rule:

Γ1; yi 7→ ei[yi/xi, ...]; ... : eB [yi/xi, ...] ⇓θ Γ2 : v

Γ1 : 〈β〉let {xi = ei, ...} in eB ⇓βT+βθ Γ2 : 〈β〉v

with annotations both on all costs as well as the returned value.
However, this result might sound a bit suspicious: The role of a
let expression is to add bindings, not influence control flow or the
result of the evaluation of the body. From this point of view, the
annotations on θ and v look a bit shaky.

Can this intuition be supported formally? If we were right, we
would have to find another world W ′′ where the let expression
was gone, but the costs as well as the result of the body’s evaluation
would still appear. Well, let us try to simply set e′′ = eB ! In the
unlikely case that evaluation of the naked body happens to never
use the now-undefined xi variables, this would allow the following
W ′′ judgment:

Γ1 : eB ⇓θ Γ2 : v

Which would indeed be the same θ and v that we originally obtained.
This in turn would mean that we would not have to annotate either,
matching the intuition of not seeing them as directly influenced by
the let expression!

2.5 Binding Effects
We seem to be going into the right direction: Simply by changing
the alternate expression under consideration we have identified a
case where we can safely reduce the amount of annotation. On

the other hand, we can obviously not simply ignore the possibility
that let-bound variables might be in use. Launchbury defines three
rules where bindings influence program evaluation:

1. The variable rule, which would fail to look up xi on the heap.

2. The constructor rule, which might produce a constructor men-
tioning xi instead of yi.

3. The application rule, which could sub-evaluate an expression
using xi instead of yi

We see that all three rules can be expected to produce different
results where they use the eliminated xi bindings. Therefore we
want their result terms to get annotated.

We can achieve this using a trick: If we look ahead to Figure 1,
we see that all three rules add their expression annotation to their
results. Therefore, we can simply have the annotated let-rule add
the annotations on the affected expressions:

Γ1; yi 7→ ei[〈βγ〉yi/〈γ〉xi, ...]; ... : e[〈βγ〉yi/〈γ〉xi, ...] ⇓θ Γ2 : v

Γ1 : 〈β〉let {xi = ei, ...} in e ⇓βT+θ Γ2 : v

where ei[〈βγ〉yi/〈γ〉xi] is a replacement rule updating the variable
name as well as the annotation on the expression directly containing
it. This way ensures indirectly that any (potentially) differing result
will be annotated with the cause of the let expression.

2.6 Assembling
We see that a smart choice for the “closest world” can lead to more
specific annotations. However, as the last subsection should have
demonstrated, actually finding ways of getting the right annotations
is not always trivial. As a compromise between accuracy and
resulting annotations rule complexity, we will from here on use
the following alternate world rule for removing an expression e:

e′ =

8>>><>>>:
eB if e = let {...} in eB

eB if e = case ... of
˘
...→ eB

¯
with eB sole branch

⊥ otherwise

Note that we added a new special case for one-branch case state-
ments here, as they work very similar to let expressions. This



comes with just one extra subtlety: The removal might skip a non-
terminating scrutinee computation, a change that strictly speaking
would require an annotation. However, note that the object of an-
notation would be a profile or value that in W would never be
produced in the first place, therefore this is inconsequential for pro-
filing. Annotating all remaining rules accordingly, we finally arrive
at the rule set laid out in Figure 1.

3. Optimizations
At this point we can derive program behavior and profiles for anno-
tated programs in our toy language. With this we could, for example,
already de-sugar a higher level language into our representation and
derive meaningful profiles.

However in real-world situations we will rarely want to execute
a program exactly as it was written. Compiler optimizations allow
more flexibility for the programmer in how to write the program, by
taking advantage of functionality-preserving transformations that
are expected to improve program performance.

Optimizations pose a special challenge for tracking causality:
While such transformations will often radically change how the
program looks and executes at the point of optimization, in the end
we are still bound to arrive at the same values and cost profiles
with only a few local changes. For our analysis this means that just
looking at the transformation in isolation would be short-sighted.
Instead we must look all the way through evaluation and consider
what effect the transformation has on the costs of the evaluation
of the full program. Then we can again derive annotations, this
time using the behavior of the unoptimized program as the “closest
world” point of comparison.

3.1 Beta Reduction
Assume we have a situation where the function expression of an
application is a lambda. We can then optimize the expression by
eliminating both the application and the lambda expression using
beta reduction. The rule could look like follows:

〈β1〉
`
〈β2〉λx.e

´
y =⇒ 〈?〉e [y/x]

To derive the annotation, we compare the behavior of the unop-
timized version (W ) with the optimized one (W ′). Plugging the
original expression into the semantics from Figure 1, we derive for
W :

Γ : 〈β2〉λx.e ⇓β2L Γ : 〈β2〉λx.e Γ : e[y/x] ⇓θ Γ′ : v

Γ : 〈β1〉
`
〈β2〉λx.e

´
y ⇓β1A+β1β2L+β1β2θ Γ′ : 〈β1β2〉v

This looks promising: In both worlds we end up evaluating e[x/y].
Moreover, both the result value v and the profile θ gain just an β1β2

annotation in W . So we just have to make sure all costs generated
by e[x/y] get a β1β2 annotation in W ′ and the difference of the
profiles will be exactly the optimized-out costs A+ L!

Unfortunately, we can not quite achieve this by adding a simple
β1β2 annotation on the right side of the optimization rule. After
all we have to account for let and one-branch case expressions,
which as explained in Section 2.4 do not add their expression cause
to all their results. Yet we can still achieve the desired effect by
“pushing” the annotation inwards on these occasions:

〈〈α〉〉e =

8>>>>><>>>>>:
〈β〉let{...}in 〈〈α〉〉e′

if e = 〈β〉let{...}in e′

〈β〉case ... of
˘
C0 ...→ 〈〈α〉〉e

′¯
if e = 〈β〉case ... of {C0 ...→ e′}

〈α〉e otherwise

For which we now can easily see that:

Γ : e ⇓θ Γ′ : v ⇒ Γ : 〈〈α〉〉e ⇓αθ Γ′ : 〈α〉v

And therefore re-state the beta reduction rule as:

〈β1〉
`
〈β2〉λx.e

´
y =⇒ 〈〈β1β2〉〉e [y/x]

In the end, let us reiterate that our approach lead to the exact same
profile – minus the cost for the sub-expressions that was optimized
out. Clearly it is not impossible to rework the program significantly
without reducing the profile quality.

3.2 General Case
Consider the evaluation of an arbitrary expression e that was trans-
formed to e′ = opt(e) by an optimization:

Γ1 : e ⇓θ Γ2 : 〈β〉v ⇒ Γ1 : opt(e) ⇓θ′ Γ′2 : 〈β′〉v

As long as the optimization is correct, we know that we have to
arrive at the same result value v once we have evaluated it to
normal form by resolving all referenced thunks. Given that most
optimizations are local improvements, we would also expect a lot
of costs to appear in both θ as well as θ′. As we only have to account
for effects that actually change, this means that we do not have to
reconsider their causes: The annotation rule should attempt to match
them and ideally arrange for the annotations to stay the same after
transformation. On the other hand, there are some cases where we
have to allow changes to the profile. We will explain the interesting
cases in the following subsections.

3.2.1 Preemption
In some situations, preemption might make it impossible to actually
retain the same annotations. Consider the example:

let{x = ... , y = 〈α〉case x of ...}in ... x ... y ...

Will the cost for evaluating x be annotated with α? Obviously, this
depends on whether x or y will end up getting evaluated first. Now
suppose we have an optimization that changes the order in which x
and y get evaluated: Should we require that it somehow retains or
suppresses the α annotation on the costs for evaluating x?

This however would be very hard to achieve in this case. Luckily,
we can argue that it is not actually required: We can see the different
possible causes for the evaluation of x as preempting each other.
Either of them would be a sufficient cause, it just so happens that
only one of them can actually occur in any given program execution.
Therefore causes that preempt each other are interchangeable in our
analysis, and we can allow optimizations to freely substitute them
with each other.

3.2.2 Overheads
Furthermore, sometimes optimizations might not just remove or
reorganize costs, but actually introduce new costs. Such overheads
might for example happen where an optimization rule replaces one
cost type by another: We would see it as optimizing out one cost
and introducing the new one as overhead.

This constitutes an actual alternate world change, with the trans-
formation as its cause. Therefore our causality model demands
annotating such effects with the transformation cause. For typi-
cal transformation rules, this will be the annotations of the sub-
expressions that the transformation matches on, such as β1β2 in
Section 3.1.

3.2.3 Annotation Overreach
The only way for optimization rules to influence annotations on
the final profile is to feed carefully chosen expression annotations
to the evaluator. However, annotating even just one expression can
have far-reaching effects in the resulting profile. In this situation we
might often be forced to produce extra annotations on one term in
order to reach enough annotations on another.



Γ : 〈α1〉case e1 of
˘
C x→ 〈α2〉let {y = e2} in e3, ...

¯"
Γ : e1

⇓θ1 Γ1 : 〈δ〉C x̂266664
Γ1 : 〈α2〉let {y = e2} in e3[〈α1δγ〉x̂/〈γ〉x]"

Γ1; ŷ 7→ ê2 : ê3[〈α1δγ〉x̂/〈γ〉x]

⇓θ2 Γ2 : v

⇓α2T+θ2 Γ2 : v

⇓α1E+α1δα2T+α1θ1+α1δθ2 Γ2 : 〈α1〉v`
with ê = e[〈α2γ〉ŷ/〈γ〉y]

´

Γ : 〈β2〉let {y = e2} in
`
〈β1〉case e1 of {C x→ e3, ...}

´266666666664

Γ; ŷ 7→ ê2 : 〈β1〉case e1 of {C x→ ê3, ...}"
Γ; ŷ 7→ ê2 : e1

⇓θ1 Γ1; ŷ 7→ ê2 : 〈δ〉C x̂"
Γ1; ŷ 7→ ê2 : e3[〈β2γ〉ŷ/〈γ〉y][〈β1δγ〉x̂/〈γ〉x]

⇓θ′2 Γ2 : v′

⇓β1E+β1θ1+β1δθ
′
2

Γ2 : 〈β1〉v
′

⇓β1E+β2T+β1θ1+β1δθ
′
2

Γ2 : 〈β1〉v
′`

with ê = e[〈β2γ〉ŷ/〈γ〉y]
´

Figure 2. Evaluation before and after floating optimization

When handling tricky cases, this will end up as our main source for
profile degradation, and we will see an example in the next section.
Note however that overestimating effects is a common and relatively
benign mistake – essentially introducing circumstantial information
of little direct relevance into the profile. As long as do not overload
the profile with such annotations we can be reasonably sure that it
will still have value in performance analysis.

3.3 Floating
Let us test these rules to the “floating” optimization, which relocates
bindings within an expression [20]:

〈α1〉case e1 of
˘
C x→ 〈α2〉let {y = e2} in e3, ...

¯
=⇒ 〈β2〉let {y = e2} in

`
〈β1〉case e1 of {C x→ e3, ...}

´
Here we are floating the y binding out – for example because we
are in the process of promoting it to a statically allocated top-level
constant. This is a very common optimization, hence we would like
it to have little impact on profile quality. Can we set β1 and β2 in a
way that achieves this?

Figure 2 shows the evaluation of both versions under the assump-
tion that the e3 branch gets actually taken and all sub-evaluations
terminate. Note that the profiles look very similar if we assume
β1 = α1 and β2 = α2, mostly thanks to the special let rules we
derived in Section 2.4. However there is one problem with setting
β2 this way: The T cost would lose the α1δ annotation.

This is hardly surprising: Clearly the execution of the let
expression used to depend on what case branch was taken, whereas
now it gets evaluated unconditionally. How do we handle this? No
preemption takes place, and due to δ getting only determined at
run-time, we have no way to include it in β2. The only option left is
therefore to see T as first optimized out, then re-introduced again as
an overhead. This shifts its cause to the transformation, and makes
it valid to annotate it with β2 = α1α2:

θ =α1E +α1δα2T +α1θ1 +α1δθ2

⇓ (remove) (new) ⇓ ⇓
θ′ =α1E +α1α2T +α1θ1 +α1δθ

′
2

However, we are still not quite finished: Note that β2 gets inserted
into e3 via substitution, therefore potentially propagating the extra
α1 annotation into θ′ and v′ – an instance of annotation overreach.
Yet note that this does no actual harm, as both terms get annotated
with β1 = α1 by the case rule anyway, and we actually know
that α1θ2 = α1θ

′
2. So in the end the only difference between θ

and θ′ will be that the α1δ annotation on T gets replaced by α1α2,
truthfully reflecting exactly the relocation of the let expression.

3.4 Arbitrary Optimizations
At this point we have shown that our system is flexible enough to
accommodate two transformations commonly used in optimization.
But what can we find a way to satisfy the requirements from Sec-
tion 3.2 no matter what the optimization rule is? This is interesting
as we would ideally like to support programmer-supplied optimiza-
tion rules [22] that are allowed to make almost arbitrary program
modifications.

Consider the basic short-cut list fusion rule from the cited paper:

{−# RULES “foldr/build”

∀kz(g :: ∀b.(a→ b→ b)→ b→ b).

〈α〉foldr k z (〈β〉build g) = 〈αβ〉g k z #−}
The idea here is that k and z encode a way to consume a list,
while g describes how the list should be built. The rule says that
whenever we find them combined in this way, we can just eliminate
the immediate list and construct the result directly.

For the profile, this is a dangerous change: Just from the rule,
we know very little about its cost implications. We can just estimate
them to be substantial, given that we eliminate calls to two non-
trivial functions. Saying more would require deep analysis of the
reasoning behind the rule, which is a task that the compiler cannot
perform automatically. Therefore we have to either ask the rule
writer to provide the proper annotation method for us, or find a way
to annotate that requires no further knowledge about the rule.

In the last section we have already seen how we can handle
cost changes that we fail to map cleanly: We simply declare them
as being removed, then being re-created by the transformation as
overheads. In our case, the most conservative annotation strategy
is therefore to see this as happening for all costs touched by the
optimization. Fortunately, in a pure language we know these to
be exactly the returned profile and result value, therefore forcing
annotations on these two terms should yield a valid program profile.

As shown in Section 3.1, we can achieve this using a push
annotation. In general, if we have an optimization opt that gets
triggered by an event αβ (as above), it is always correct to annotate:

〈α〉...e1...〈β〉...e2 =⇒ 〈〈αβ...〉〉opt(e1, e2)

Note that for unmatched sub-expressions ei we do not need to
touch annotations, as the rule application does not depend on
them. As a result, while this is the most conservative choice, we
still end up with fairly non-intrusive annotations. In the example
of the foldr/build rule, it is actually easy to see that this is
the only valid choice. Paired with the fact that such specialized
rules generally are not applied very often compared with, say, let
floating, this treatment can be expected to retain acceptable profile
quality.



〈α〉let {f = ..., g = ...,

h = 〈γ〉case y of{C1 x→ f, C2 x→ g}}

in 〈β〉h x

f = ..., g = ...

h = 〈γ〉...

in 〈β〉h x

lexical

evaluation

value

value

Figure 3. Scopes for an application expression

4. Profiling Design
Up to this point, we have only considered what cost causes would
be if assigned by a perfect outside observer with limitless memory.
This is the appropriate viewpoint to take while compiling and
optimizing source code, as there is no good reason to sacrifice
diagnostic power at that point. However once we deal with an actual
running program, cost analysis and attribution has a tricky problem:
If measurements consume significant resources itself, it will skew
the very results we are interested in! In practice, this means that we
must reduce the amount of causes we track if we want to produce
useful results.

This section will investigate the design space, outlining different
ways we can cut down on the amount of information gathered. We
will use this occasion to discuss other profiling frameworks and
evaluate their design decisions.

4.1 Prioritization
If we have to drop annotations, which ones should we choose?
Observe that cause annotations vary in usefulness: For example,
every cost will causally depend on the evaluation of the entry point
“main”. Therefore unless the performance problem resided exactly
in this function, this lead would be pretty useless while tracking
down a performance problem.

We therefore postulate that some causes are more closely cou-
pled to an effect than others: The fewer other effects a cause has,
the more likely it is to be the root of the problem. We even have a
way to reason about this from our semantics: Note that outer rule
applications generally add annotations to all costs that are produced
by nested rule applications. Therefore outer rules annotate strictly
more effects and are therefore less specific.

This “ranking” of causes is very commonly exploited by pro-
filing frameworks to cut down the amount of information to track,
while at the same time structuring it for easier analysis. For example
the original profiling solution proposed by Sansom et al [25] only
ever tracks the upper-most cost-centre. Other implementations track
cause terms as stacks, as for example gprof [8] or newer imple-
mentations of cost-centre profiling [24]. This practice is especially
prevalent in profiling tools for imperative languages, as call stacks
are relatively stable there.

Note however that this is generally not the case for optimized
purely functional programs. In fact we made no attempts whatsoever
so far to ensure stack consistency or annotation order, in contrast to
Sansom’s work. This is a deliberate, as we see no way to maintain
stack consistency while allowing enough freedom for optimizations.

4.2 Value Annotations
Our semantics annotate every value with its full causal history.
As there is no way to predict the annotations statically, a direct
implementation would have to store and dynamically compose
causes at run-time. This however would come at considerable cost,
as programs typically process large amounts of data. Tracking every
value would increase memory access and consumption significantly.
Figure 1 also tells us that there are merely two rules where value

annotations make their way into the profile: (App) and (Case) –
unsurprisingly the two points where control flow depends on values.

The most common simplification is to skip value annotations
in the (Case) rule, which allows ignoring annotations on all non-
lambda values at run-time. This helps a lot, as non-lambda values
can be expected to make up most of the run-time data. And while it
is entirely possible to encode program behavior as data, primitive or
constructor values rarely end up being the most interesting influence
on program performance.

4.3 Lambda Annotations
Lambda values, on the other hand, need more consideration. It is
characteristic for the functional style to not only control execution
by calling functions, but also by passing functions to be called by
other code, for example when using monads [29]. Therefore, both
the origin of the lambda as well as the application site might turn out
to be a fruitful lines of inquiry for solving a performance problem.
For example in Figure 3 we should get the full αβγ annotation on
costs coming from f or g. However implementing this would be
expensive, as there is no cheap way for h to update the annotation
of the closure as it gets passed through.

To solve this, Sansom et al track only the cause of the lambda
allocation, the lexical scope α. The advantage of this approach is
that the allocation site is constant for any closure object on the heap,
and therefore does not need to be updated. This design ignores
the cause for the evaluation of the application, a deliberate design
choice [24]. However recent work by Marlow [14] concludes that
this often leads to misleading cause stacks, and extends Samson’s
work by merging lexical and evaluation scope in applications. This
would lead to an annotation of αβ in the above example.

Either solution would miss γ, which is arguably acceptable for
the same reasons that we regard value annotations as less important.
Note that cost-centre profiling already has to pay significant over-
heads just for tracking evaluation and lexical scopes in this fashion.
Most critically, it requires a non-trivial heap layout change, which
not only changes the space complexity of the program, but also
makes it impossible to use normally compiled code in a program
that uses profiling.

4.4 Static Lexical Scope
To get around this, note that we can actually know a good portion
of the lexical scope just by looking at the closure identity. Suppose
we find out that e1 in the following example was evaluated:

〈α〉let
˘
f = 〈β〉λx.e1

¯
in e2

Here we know that αβ must be part of the cause of costs, as the
evaluation of e1 clearly causally depends on the parent let and
the lambda expression. This technique can be quite powerful as
optimizations such as in-lining or specialization work in our favor
by making the control flow more predictable. This means that as
long as we maintain information about the “static context” of a
given intermediate code piece, we can often extrapolate significant
cause terms without the need for complex instrumentation.



5. Implementation
At this point we have a solid idea of how we expect the compiler
to attribute code with cause terms, and in the last section we out-
lined the general trade-offs involved in an implementation. We will
now describe our implementation of a new profiling framework for
Haskell. In line with the theoretical work, we will focus on allow-
ing profiling of fully optimized programs with high accuracy and
minimum overhead. We will especially use zero code instrumenta-
tion, basing everything off maps of the generated machine code and
non-intrusive run-time system changes.

The reasons for this focus are two-fold: Firstly, the framework
by Sansom et al [25] is already well-established for big-picture
profiling. But more importantly, modern Haskell usage has shown
its great potential for heavy optimization, leading to tight inner
loops that require careful performance analysis. We aim to provides
useful results even under these demanding circumstances.

5.1 Cause Tracking in Core
Our work is based on the Glasgow Haskell Compiler [19]. The
first step in the implementation of a proper profiling framework
is to make sure that we can track causes throughout its compilation
according to the rules we explained in the first sections.

To make this work, we have to represent cause annotations in
every representation the program takes throughout the compilation
process. The first stage in the process is that GHC will “de-sugar”
full Haskell into a significantly reduced functional language called
“Core” [17]. We can use existing facilities [6] at this point to en-
sure that every interesting program expression will be annotated
with a “src” tick expression. For example, the program from the
introduction could look like follows after de-sugaring:

f a c n : : I n t → I n t
f a c n =

s r c < f a c . hs :2 ,1−2 ,27 >
f o l d r ( s r c < f a c . hs :2 ,15−2 ,18 > ( * ) )

( s r c < f a c . hs : 2 , 1 9 > 1)
( s r c < f a c . hs :2 ,21−2 ,27 > [ 1 . . n ] )

Note that in contrast to our syntax from Section 2.2 we now repre-
sent causes as an expression type. Additionally, we will actually see
them as applying to every profile and value that gets passed through,
making their semantics that of the see them as corresponding to the
“push” annotations from Section 3.1. These choices make annota-
tions fit naturally with the compiler design. For example in-lining
“foldr” right away would yield:

f a c n : : I n t → I n t
f a c n =

s r c < f a c . hs :2 ,1−2 ,27 >
s r c <Base . l h s :14 ,1−17 ,36>
l e t go ys =

s r c <16 ,13−17 ,36> case ys of
[ ] → s r c <Base . l h s : 1 6 , 2 5 >

s r c < f a c . hs : 2 , 1 9 > 1
( y : ys ) → [...]

in go

This is consistent with our rules. Consider how we would achieve
this result: We would first let-bind the parameters to “foldr”, then
unfold its definition and β-reduce it according to Section 3.1. This
leads to the double-annotation on the top-level expression.

Second, we would let-float the parameters inwards as described
in Section 3.3 until we have reached the usage site. On the way,
we do not have to add additional annotations on the expressions we
pass, as we established. Only when we unfold the values in question
at the usage site we take over the respective annotation, leading to
the “inner” annotation on the “1” expression in the example.

5.2 Core Issues
Unfortunately, this mapping is not a perfect implementation of
our semantics. While giving annotations “push” semantics makes
it more straight-forward to relocate expressions, this means that
there is no way of annotating let or one-branch case expressions
themselves. For a more complete solution, we should probably
allow attaching ticks individually to these sub-expressions.

On the other hand, note that the interaction between push anno-
tations and binding expressions allows us to “float” src ticks easily.
This means that we are allowed to optimize ticks like follows:

src<1> let ... in src<2> ...
=⇒ src<1> src<2> let ... in ...

By repeating this process, we can limit the places in the expression
that we can encounter source ticks, which makes it easier to make
sure that we they do not get into the way of GHC’s optimizations.

5.3 Cause Tracking in Cmm
After the Core optimizations have taken place, GHC will translate
the Core program into a high-level assembly language called Cmm
(related to C-- [21]). The inner loop of our factorial function would
be implemented by the following annotated Cmm code:

Main . $wgo_ent ry ( )
{
A: src < f a c . hs :5:15−17 > , . . .

ctx <B> ctx <C>
i f ( Sp−16 < SpLim ) goto B ; e l s e goto C ;

B : R1 = Main . $wgo_c losu re ;
c a l l s t g _ g c _ f u n ( R2 , R1 ) ;

C : ctx <D> ctx <E>
_tmp = R2 ;
i f ( _tmp != 20) goto D; e l s e goto E ;
[...]

}

While Cmm borrows conventions from C, it is quite a low-level
language. We can see that all code has been broken down into blocks
that are jumped to directly – and that the stack check that might
eventually cause our program to fail is now spelled out explicitly.

To track source code annotations, we again insert meta-
statements that “color” the code following it. However note that in
contrast to functional code, Cmm does not have a recursive struc-
ture that we can exploit: Without further annotations, it would be
unclear whether the source annotation in block A should apply to,
for example, block C as well. This is a special instance of the prob-
lem mentioned in Section 4.4: We want to be able to follow control
flow backwards in order to maximize the annotations we are able to
“see”. We solve this by introducing special “context” annotations
that declares the containing block to be the static context of the
second block, which is therefore allowed to inherit all annotations.

5.4 DWARF
The final step for the compiler is to translate the Cmm code into
native machine code. As our goal is to minimize profiling overhead,
we want to generate the same code as if our annotations had
not been present in the first place. To achieve this, we generate
DWARF debugging information [1], which is a standard for object
file meta-data explaining structure and functionality of machine
code. Adhering to a known industry standard has the big advantage
that we can use existing infrastructure and tools to retain source
code relations even after linking and relocation. At the point of
writing we support generation of DWARF for both GHC’s own
native code back-end as well as the LLVM back-end [11, 27].



5.5 Sampling
At this point, we have enough information to track any piece
of executable code back to at least one position in the source
or library code – and typically many more due to inlining, as
explained in Section 4.4. This means that all we require in order
to profile a program is an approximate map of positions in the
executable to costs. The standard process of obtaining such a map
is called sampling: We stop the program at periods proportional to
its resource usage, and inspect the program state to find clues as to
what lead to the resource hunger of the program.

Currently we implement the following sampling methods:

1. By hardware counters: Such counters exist in all modern CPUs
and allow interrupting the program whenever a certain processor
action has been executed a certain number of times. Allows
sampling by cycles, branch mis-predictions or cache misses.

2. By heap allocation: Programs compiled with GHC request
heap memory from the run time system in certain “chunks” of
moderate size. By sampling program locations as they requested
blocks, we can easily identify hot allocation spots.

3. By heap retention: On each major garbage collection, the GHC
run-time system can build a map of all closure types that remain
on the heap [25]. As closure types correspond directly with
code pointers, we can simply use these as sampling data. The
advantage of this approach over standard memory profiles is
that we can not only track space usage of raw data, but also of
delayed calculations waiting for execution (thunks).

Even though it is normally offered by profiling frameworks, we do
not yet offer simple timer-based sampling. This is because hardware
counter profiling is strictly more flexible where available. We plan
to correct this in future to improve portability.

Collected sampling data gets streamed to the hard disk using
GHC’s event-log format [9]. To keep run-time overheads low we
perform only minimal pre-processing of the samples, leaving most
of the heavy-lifting to the analysis tools.

5.6 Presentation
The complicated and sometimes unpredictable nature of profiles
makes it especially important to communicate profiling data well to
the user. We have extended ThreadScope [9] to allow analysis of our
profiles within the existing graphical user interface (see Figure 4).
Apart from its flexible event-log back-end, this approach allows us
to re-use user interface elements such as the CPU activity time-line.

A full explanation of the user interface design is beyond the
scope of this paper, however our main idea is to focus on one source
code element at a time, which can be selected from a hierarchical
list on the left. We show a rough estimate of how much cost was
associated with the cause in question. Note that due to optimizations,
significant portions of the cost might be associated with multiple
source code elements at the same time.

Such overlap might be slightly surprising to users of classic
profiling tools. Yet note that it represents the situation truthfully, as
program behavior is rarely just determined by a singular program
element. On the contrary, by exposing such overlap we can identify
which program elements interacted at the critical points of the
program’s execution. Notice that in Figure 4, the user interface
highlights multiple entries to indicate source interaction. This is
meant to suggest visiting their definitions in order to learn more
about how the code was translated.

Finally, the main view is dedicated to understanding the selected
source code element and its translation. We show both the original
source code for reference, as well as the fully-optimized Core [17]
code to give advanced users a way to follow the actions of the
optimization passes.

Figure 4. Profile analysis in ThreadScope

6. Evaluation
We have tested out profiling solution on a variety of programs, rang-
ing from small example programs with obvious performance prob-
lems to large applications with well-hidden inefficiencies. We gen-
erally compile as much code as possible with annotations present,
which means that we end up with full debug information for not
only the application, but also libraries as well as parts of the run-
time system.

Making claims about accuracy and usefulness of profiling results
is a bit harder, as we can not directly verify them. In this paper we
will split the evaluation into three parts: Overheads and side-effects
of debug information generation, overheads and possible inaccura-
cies of the different sampling methods, and finally usefulness of the
resulting profile.

6.1 Base Overhead
First let us investigate “set-up” costs that we even have to pay when
not doing any actual profiling. We will for example use the event-
logging framework, which contributes some cost due to tracking
the program state and garbage collections alone [9]. Furthermore,
we have to verify that compiling while tracking source code links
does not result in significantly different object code and therefore
performance.

In Figure 5 we have collected benchmark results for running
the nofib benchmark suite [15] using different configurations. We
use the GHC master development version as of 30-05-2013 as our
baseline. “Ev” will mark builds with event-logging enabled, and
“Ann” builds use our modified annotation-tracking compiler. All
benchmarks were using the “slow” data sets on a single core of an
Intel Xeon® CPU at 3.1 GHz. In order to focus on significant results
and make the presentation more compact, we discarded results
under 0.4 seconds run-time, and omitted them from the table if
under 1 second (except notable outliers).

First consider the overhead of event-logging: Clearly the over-
head is minor, showing +0.7% and -0,1% mean change respectively.
The amount of spread among the benchmarks is a bit surprising
though, with especially the relatively simple “tak” benchmark pro-
ducing large outliers for all three configurations.

More importantly, we see that compiling with annotations
clearly has side-effects as well, with for example the “reverse-



Base Ev Ann Ann+Ev
[s] [%] [%] [%]

atom 1.24 +0.6 +2.1 +2.3
binary-trees 11.52 +1.7 -0.3 +4.2
constraints 2.25 -0.7 +4.2 +4.9
exp3-8 1.84 +2.6 +0.2 +1.3
fannkuch-redux 47.59 +0.1 +2.2 +3.2
fasta 3.81 +1.2 +2.1 +1.3
integer 1.53 +2.1 -0.5 +3.0
k-nucleotide 51.88 +0.4 +3.8 -0.2
kahan 0.86 -1.6 -6.1 -5.8
lcss 1.35 +0.9 +0.4 +0.6
n-body 11.31 -0.4 -0.7 -0.4
pidigits 1.15 +0.9 -0.2 +1.6
reverse-complement 0.77 +3.6 +14.3 +13.0
solid 0.41 +4.9 +4.9 +0.0
tak 0.60 -8.0 +22.6 +13.0
Min -8.0 -6.1 -5.8
Max +4.9 +22.6 +13.0
Geometric Mean +0.7 +3.2 +3.1

Figure 5. Runtime overhead of event-logging and annotations

complement” benchmark losing about 14% of performance. Sadly,
this means that our aim to be as unobtrusive to the compilation
process as possible has not been completely successful, as we have
to conclude that some program transformations produced different
results with out annotations present. On the other hand, 3.2% mean
overhead means that no important optimization has gone missing,
and that the annotated program is still a valid target for profiling.

Note that we have ignored one source of overhead at this point:
The cost for relocating and copying the contents of the debug
sections to the event log. This often is a considerable amount of
data, as it maps every single piece of machine code to both the
source code as well as intermediate Core code. For example, the
meta-data for profiling GHC weights around 350MB (about 5.2
million records covering 1.8 million code blocks) which take several
seconds to be copied to the hard disk. However as start-up cost does
not impact the validity of profiling results, we have performed all
benchmarks with “stripped” executables.

6.2 Sampling Overhead
Next we consider the cost for doing actual performance measure-
ments – taking samples at points of interest and writing them out
to the hard disk. As mentioned before, we support three separate
ways of sample collection: Hardware counter profiling, heap reten-
tion profiling and heap allocation profiling. For the measurements
in Figure 6, we configured all three to yield about 1000 sample val-
ues per second, which is enough data to allow meaningful analysis
down to time-slices of about a second.

The “Cycle” configuration uses Linux’ perf_events hardware
counter kernel interface to take samples at an interval of 100,000
cycles. This method of sample collection is extremely robust, as we
can delegate the actual profiling task to the operating system. From
the program’s point of view, we just have to flush a memory map
at regular intervals. The overhead will therefore be paid mostly in
context switches to the operating system, which means that outside
of timings, our program executes exactly as it would have without
profiling. This means that while 8% mean overhead is not a stellar
result, it is enough to support meaningful profiling.

The “Alloc” sampling method takes one sample every 4096
bytes of allocation, which we achieve through a relatively cheap
run-time system change. As a result, we see that the overhead is
almost not noticeable across all tests.

Ann+Ev Cycle Alloc Heap
[s] [%] [%] [%]

atom 1.27 +4.4 +0.6 -0.3
binary-trees 12.01 +5.7 -0.6 +79.1
constraints 2.36 +5.4 +0.2 +15.3
exp3-8 1.87 +8.0 +0.7 +0.2
fannkuch-redux 49.13 +8.4 -0.4 +0.0
fasta 3.86 +11.5 +0.0 +0.4
integer 1.57 +9.7 -0.8 +0.0
k-nucleotide 51.78 +10.2 -0.5 -4.1
lcss 1.36 +3.5 +0.4 +4.3
n-body 11.26 +10.7 +0.0 +0.6
paraffins 0.70 +3.1 +2.0 +10.8
pidigits 1.17 +14.6 +0.0 +0.5
primes 0.69 +7.2 -2.9 -0.6
reverse-complement 0.87 +8.3 +5.1 +0.7
spectral-norm 8.26 +9.0 -0.4 +0.0
Min +3.1 -2.9 -4.1
Max +14.6 +5.1 +79.1
Geometric Mean +8.0 +0.3 +3.6

Figure 6. Runtime overhead of sampling

The “Heap” configuration on the other hand works quite differently
from the first two – we are basically using GHC’s standard mech-
anism for heap retention profiling [25] for our purposes. This will
take snapshots of the heap at major garbage collection a minimum
of 0.1 seconds apart. As a result, we can see in Figure 6 that the
overhead varies a lot, depend on the heap size and the frequency
of garbage collection. Note that the overhead does not reduce the
quality of the memory profile, as the amount of heap retention will
not change due to our analysis.

6.3 In Practice
The profiling work-flow with our tool will generally consist first
of finding points in the profile that do not match expectations. It
is in fact quite common to see obvious “hot spots” which provide
obvious starting points. For example, we can see in Figure 4 that
98% of the time is spent in one block of Core code.

Due to optimizations, these blocks might often have quite com-
plicated relations to the source code, so the second step will consist
of investigating what caused the program behavior around the fo-
cal point. Solutions to performance problems then often come from
considering how library code and optimizations interacted with the
application’s source code.

6.3.1 Example 1: String Escaping
To illustrate how this process would look like for real-life programs,
let us walk through the performance analysis of some example
programs. First, let us look at a program that escapes a byte-string
using the blaze-builder library2:

e s c a p e : : B y t e S t r i n g → B u i l d e r
e s c a p e = B . f o l d l ’ f mempty

where f b c = b ‘ mappend ‘ e s c a p e 1 c

The idea is clear: With escape1 taking care of escaping an individual
character, we use foldl ’ to apply it to every byte in the string and
combine results using mappend. All functions and libraries used
have a great reputation for speed, so it seems reasonable to expect
this approach to yield a fast program.

2 This program was submitted to StackExchange’s code review section
by Joey Adams (http://codereview.stackexchange.com/questions/9998). The
blaze-builder library was authored by Jaspar Van der Jeugt and Simon Meier.

http://codereview.stackexchange.com/questions/9998


Figure 7. Profile of string escaping

However in practice we find quite the opposite: The activity time-
line in Figure 7 shows that the program is actually really slow,
spending just 20% of time on productive work and the rest on
garbage collection! Searching for hot spots, we unsurprisingly find
a specialized version of the worker of the foldl ’ function busily
reading bytes from the input byte-string. However, it does not seem
to be writing any output right away, instead constructing lambda
closures that we can identify as having blaze-builders’s “Builder”
type. Using foldl ’ we have merely forced the construction of a
chain of builder closures instead of the result byte-string itself!

Unfortunately, this is an instance where forcing strictness does
not help. We need to give blaze-builder control of the outer loop:

e s c a p e = mconcat $ map e s c a p e 1 $ B . unpack c

By using lists, we can now take advantage of the list fusion opti-
mization [22], which eliminates intermediate closures and indeed
yields a much faster loop for our example.

6.3.2 Example 2: The Glasgow Haskell Compiler
The Glasgow Haskell Compiler itself is written in Haskell, and has
been under active development by Haskell experts for a long time.
Therefore it simultaneously represents one of the largest and best-
optimized Haskell programs available today.

This is clearly reflected in the profile (Figure 8): In contrast
to previous examples, cost is spread evenly across hundreds of
functions and dozens of modules. However, using our tool we
can still pick out inefficiencies: For example we see a surpris-
ing amount of allocation in the simplification phase between the
functions “simplExprF1”, “simplIdF” and “completeCall”. Going
further, we find that the code is actually allocating a number of
“Outputable .SDoc” thunks, a data structure used for pretty-printing
code. By selecting the thunks, we can trace them back to the defini-
tion of “completeCall”, which looks roughly as follows:

c o m p l e t e C a l l : : [...] → SimplCont → SimplM [...]
c o m p l e t e C a l l [...] c o n t = do

d f l a g s ← ge tDynF lags
[...]
when ( dop t Opt_D_dump_in l in ings d f l a g s ) $

[...] ( ppr c o n t ) [...]

Figure 8. Profile of the Glasgow Haskell Compiler

Clearly the “(ppr cont)” part only gets used in the unlikely event
that we request it on the command line using -ddump-inlinings.
So why does GHC allocate thunks unconditionally?

Another look into the Core code reveals that the innocent-
looking call to “getDynFlags” has the effect of wrapping the whole
function body into a lambda, as “SimplM” is a reader monad. This
in turn makes GHC think that it would be a good idea to apply
the full-laziness transformation: Float out thunks for every sub-
expressions that does not depend on the “ dflags ”. This would
be a very good idea if we were to call “completeCall” multiple
times using different “ dflags ” every time – yet unfortunately this
particular lambda will actually be evaluated exactly once.

One way to fix this is to force an earlier dependency on “ dflags ”
using seq, for example in “simplExprF1”. This indeed eliminates
the allocations in question, but unfortunately does not affect pro-
gram performance enough to produce measurable speed-ups.

7. Literature
The problem of debugging and profiling optimized code has been
addressed in a number of ways before, with Appel et al [2] of-
fering early thoughts on how to do it in functional languages.
The later works by Sansom et al [24, 25] as well as Röjemo and
Runciman [23] built properly fleshed out profiling frameworks for
Haskell, but still dealt with causality and optimizations in a rela-
tively informal manner. Furthermore, a recent paper by Perera et
al [16] tracks effects throughout a functional program in a similar
manner. However, they seem to take a formal approach in deriving
cause and effects, and do not consider optimizations nor applica-
tions in profiling.

In the world of imperative languages, most early work has
been on allowing meaningful debugging of optimized code. The
work of Brooks et al [3] already introduces the idea that we might
have to give up a one-to-one correspondence between source and
output code, as well as outlining user interface principles that
have parallels with the ones we are employing. Modern compilers
such as LLVM [11] follow their tradition when tracking source
code relations for optimized low-level code. Kaneshiro et al [10]
address profiling of optimized code, employing similar ideas by
having statements gather annotations when getting moved out of
the context of loops.



8. Future Work
While we are quite confident that our profiling framework is already
useful in its current state, we had to compromise on a number of
issues. Firstly, while this work was inspired by the design decisions
involved in building our profiler as an extension of the Glasgow
Haskell Compiler, we have not formally checked that the translation
fully adheres to what we can derive as the optimal annotation
strategy. Especially when dealing with user rules, we probably end
up with more annotations than needed.

On the technical side, we would really like to support stack
tracing in some form, as it would allow us to say more about “big
picture” profiling issues. Additionally, we believe that we could
increase the usefulness of our profiling even more by not only
tracking the effects of source code, but also of individual compiler
optimizations. Cross-checking this data against both source code
relations and performance data could give deeper insights into the
effects of the decisions of the compiler.

9. Conclusion
Our work aims at the heart of the supposed divide between high-
level languages and high-performance programming: The notion
that we cannot possibly reason about both at the same time. While
optimizations indeed add complexity to the task of following causal-
ity, we believe that careful analysis of compiler passes can yield an-
notations that are still valid after aggressive transformations. With
good profiler and user interface design, we can use these to uncover
performance problems that would otherwise seem impenetrable.
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