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Introduction

Abstract

A linkage map of the ruff (Philomachus pugnax) genome was constructed based
on segregation analysis of 58 microsatellite loci from 381 captive-bred individu-
als spanning fourteen breeding years and comprising 64 families. Twenty-eight
of the markers were resolved into seven linkage groups and five single marker
loci, homologous to known chicken (Gallus gallus) and zebra finch (Taeniopygia
guttata) chromosomes. Linkage groups range from 10.1 to 488.7 cM in length
and covered a total map distance of 641.6 cM, corresponding to an estimated
30-35% coverage of the ruff genome, with a mean spacing of 22.9 cM between
loci. Through comparative mapping, we are able to assign linkage groups Ppul,
Ppu2, Ppu6, Ppu7, Ppul0, Ppul3, and PpuZ to chromosomes and identify sev-
eral intrachromosomal rearrangements between the homologs of chicken, zebra
finch, and ruff microsatellite loci. This is the first linkage map created in the
ruff and is a major step toward providing genomic resources for this enigmatic
species. It will provide an essential framework for mapping of phenotypically
and behaviorally important loci in the ruff.

polymorphism in male mating behavior consistent with a
single-locus, two-allele autosomal Mendelian mode of

Uniquely among birds, ruffs (Philomachus pugnax) exhibit
three different and distinct permanent alternative male
reproductive morphs, with correlated differences in terri-
torial lekking behavior, body size, and the presence or
coloration of ornamental breeding plumage. All popula-
tions include: (1) dark-plumed territorial “Independents,”
(2) white-plumed nonterritorial “Satellites,” and (3) small
female mimics called “Faeders” (Hogan-Warburg 1966;
Hoéglund and Lundberg 1989; Van Rhijn 1973; Jukema
and Piersma 2006). Status as an independent or satellite
has been previously shown to be due to a genetic
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inheritance (Lank et al. 1995). More recently, it has been
discovered that a dominant autosomal allele controls
development in to female-mimicking faeders (Lank et al.
2013).

With the current evidence for Mendelian genetic
determination of behavioural type (Lank et al. 1995) and a
strong genetic basis also suspected for plumage characters
(Dale et al. 2001), the ruff presents an ideal species for the
study of functional genetic variation underlying phenotypic
traits. However, genomic resources for the ruff are limited;
only nine previously published microsatellite markers were
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available (Thuman et al. 2002) until the recent publications
of Farrell et al. (2012) and Verkuil et al. (2012). As a step
toward developing genomic resources for the ruff and to
allow mapping of phenotypic traits, we performed linkage
analysis of 58 microsatellites from 381 captive individuals
comprising 64 families, and present here the resulting
linkage map.

Methods

Mapping population

The genetic mapping population consisted of 381 individ-
uals belonging to a captive population maintained by
DBL over fourteen breeding years at Simon Fraser
University, Canada. This population was established from
31 individuals raised from eggs collected on breeding
grounds near Oulu, Finland in 1985, to which 63 addi-
tional wild birds were added during the years up to 1990.
In 2006, two faeders, one satellite male, and one female
captured in the Netherlands were added to the captive
population. The pedigree used in this project contains
individuals from 64 families, with 62 fathers and 93
mothers, with hatch years extending from 1985 for the
original parental generation to 2009 for the most recent
chicks. Breeding records held by DBL and genotyping of
several loci by SB McRae (SBM; East Carolina University)
determined parentage prior to this study.

Microsatellite markers

In total, 102 microsatellite markers were tested, of which 52
were found to be polymorphic and were developed and
characterized (Farrell et al. 2012). Forty-seven of these were
selected for linkage mapping and used together with 11 ruff
loci previously developed for population genetic studies
(Thuman et al. 2002; Verkuil et al. 2012), and 5 other
shorebird loci identified from cross-utility testing in the
ruff and many other avian species (Saether et al. 2007; St.
John et al. 2007; Kiipper et al. 2008; Blomqvist et al. 2010;
Dawson et al. 2010), which had all been tested previously
in the current population (Lank et al. 2013; S. B. McRae,
unpublished). There is as yet no reference genome for the
ruff; therefore, to verify the position of each microsatellite
marker and ensure adequate spacing and complete genome
coverage, we predicted microsatellite locations for all mark-
ers in both the chicken and zebra finch genome assemblies
(Table 1) by performing a search for sequence similarity
using BLAST software via the ENSEMBL interface (www.
ensembl.org), following approaches described elsewhere
(Dawson et al. 2006, 2007). Chromosomal positions were
plotted and visualized using MAPCHART (Voorrips 2002).
Sequence data relating to the 63 markers were input into
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MULTIPLEX MANAGERv.1.0 (Holleley and Geerts 2009)
to optimize marker reactions and create 13 multiplex panel
sets that were then used to genotype the 381 individuals
contained within the ruff pedigree (Table 1).

DNA extraction and genotyping

We obtained DNA from blood and frozen tissue that had
been collected from individuals and stored in absolute
ethanol. Genomic DNA was extracted using an ammo-
nium acetate precipitation method (Nicholls et al. 2000;
Richardson et al. 2001). Each 2-ul. PCR contained
approximately 10 ng genomic DNA, 0.2 umol/L of each
primer, and 1 uL Qiagen Multiplex PCR Mix (Qiagen
Inc). PCR amplification was performed using a DNA
Engine Tetrad 2 Thermal Cycler (MJ Research, BioRad,
UK) with the profile: 15 min at 95°C, followed by 35
cycles of 94°C for 30 sec, annealing temperature (Table 1)
for 90 sec and 72°C for 1 min, then a final step of 60°C
for 10 min. PCR products were loaded onto an ABI3730
Genetic Analyzer (Applied Biosystems) using ROX500 size
standards, and genotypes were scored with GENEMAP-
PER v4.0 software (Applied Biosystems). Observed and
expected heterozygosities were calculated using CERVUS
v3.0 (Kalinowski et al. 2007; Table 1). Deviations from
Hardy—Weinberg equilibrium and linkage disequilibrium
were assessed using GENEPOP v.4.0 (Rousset 2008). Four
loci identified in ruffs (Ppu042, Ppu023, Ppu033, and
Ppu012; Farrell et al. 2012), and one primer set from
another species (Chmo06; St. John et al. 2007) failed to
amplify in the genotyping multiplexes and were excluded
from further analysis.

Pedigree assembly and linkage mapping

Parentage assignment was performed using genotypic data
for all 58 microsatellite markers in 381 individuals
(including 8% data replicates) using CERVUS v.3.0. The
resulting parentage assignments were compared with the
previous pedigree, held by DBL and SBM, for inconsisten-
cies. Grandparent—Parent—Offspring genotypic inconsis-
tences arising from incorrect parentage assignment or
microsatellite genotyping errors were detected through a
three-generation Pedigree Program (K. W. Kim, unpub-
lished) and either resolved by rechecking the parentage
and past genotyping records held by DBL and SBM,
reviewing raw allele peaks on GENEMAPPER v.4.0 or, in
any remaining cases of uncertainty, rescored as untyped.
Linkage analysis was performed using a version of
CRIMAP v.2.4 (Green et al. 1990), modified by Xuelu Liu
(Monsanto) to accommodate large numbers of markers
in complicated pedigrees. Prior to input into CRIMAP,
CRIGEN was used to simplify the pedigree and omit
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any noninformative individuals. A two-point linkage
analysis of all markers was then performed based on a
LOD score > 3.0. Markers were also assumed to be
linked if they were supported by a LOD > 2.0 and an
expectation of linkage based on a priori knowledge (Slate
et al. 2002), that is, linkage was expected based on
BLAST search (Altschul et al. 1997) and assignment of
chromosomal location in chicken and zebra finch (Daw-
son et al. 2006, 2007). Linkage groups were created
using AUTOGROUP and markers belonging to the same
linkage group were analyzed using the BUILD command.
PUK_LIKE_TOL and PK_LIKE_TOL values were lowered
from 3.0 to 2.0, and then 2.0 to 1.0, and the BUILD
command rerun until no further markers were added.
Marker order was determined and confirmed by the
FLIPS command, where new marker orders were tested
against alternative orders to determine whether they
fitted the data. Recombination frequencies and positions
of all loci in linkage groups were visualized using the
CHROMPIC function. During map construction, both
sex-averaged and sex-specific maps were built; however,
only the sex-averaged maps per linkage group are
presented, with map distances based on the Kosambi
mapping function.

Ppu1 Ppu2 Ppu6
0.0 Ppu021 0.0 Ppu022 0.0 Ppu047
23.6 Ppu018 17.4 Chmo21
46.8 Ppu038
100.0 Ppu048
138.7 Ppu001 Ppu12 Ppu13
0.0 —©— RGT83 0.0 Ruffé
179.8 Ppu025 196 _Ppu031
36.0 Ppu024
248.4 Ppu028
314.5 Ppu039
414.5 Phil2
458.0 Ppu049
488.7 Ruff1

Linkage Map of the Ruff

Genome coverage

The mean marker spacing was calculated by dividing the
total length of the map by the number of intervals. Aver-
age intramarker spacing for each linkage group was calcu-
lated by dividing the length of each linkage group by the
total number of intervals on that linkage group. Linkage
map coverage was calculated by summing the difference
in base-pair position in chicken of the first and last inter-
val on each linkage group, and dividing by the total base-
pair length of the chicken genome (~1.07 Gb; Ensembl
database www.ensembl.org/Gallus_gallus/index.html).

Results and Discussion

Based on comparative mapping methods of microsatellite
loci homologous to the ruff, chicken, and zebra finch,
homologs of 55 of the 58 typed microsatellite loci were
assigned predicted chromosomal locations in the chicken
genome and 53 were assigned locations in the zebra finch
(Table 1). Five ruff microsatellite sequences (Ppu008,
Ruffl, Ruff4, Ruff6, and Ruffl2) could not be assigned
predicted chromosomal locations in either genome based
on sequence similarity.

Ppu7 Ppu9 Ppu10
0.0 Ppu027 0.0 —&— GgaRGB18 0.0 Ppu036
10.1 Ppu008 18.4 Ppu034
Ppu18 Ppu24 Ppu26
0.0 —©— Ruff5 0.0 —&— Ppu014 0.0 —&— Ppu037

Figure 1. A first-generation linkage map of the ruff (Philomachus pugnax) consisting of seven linkage groups and five single markers ordered by
homologous chromosome size. Positions given in centimorgan. Linkage groups with marker order supported by either LOD > 3.0, or LOD > 2.0 in
agreement with a predicted location are presented, as well as single-marker loci assigned locations on chromosomes. Loci in italics are described
in Farrell et al. (2012); loci underlined are cross-utility shorebird loci (Thuman et al. 2002; Klpper et al. 2008; St. John et al. 2007; Blomaqvist
et al. 2010; Verkuil et al. 2012). Loci in bold are four loci previously unassigned a chromosomal location by a predictive mapping method that are

here assigned a chromosomal location via linkage analysis.

© 2013 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
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The first-generation linkage map of the ruff consisted
of 23 microsatellite markers resolved into 7 linkage
groups (Ppul, Ppu2, Ppu6, Ppu7, PpulO, Ppul3, and
PpuZ) homologous to chicken and zebra finch chromo-
somes. Each linkage group was numbered according to
the homologous chicken and zebra finch chromosome
number (with the prefix Ppu; Fig. 1). An additional five
loci were not expected to be linked to any other marker,
based on predicted genomic locations. This expectation
was confirmed by the two-point analysis, and so these
were treated as linkage groups with a single marker
(Fig. 1). The remaining 30 markers were expected to form
linkage groups, but were found to be unlinked to all
other markers. The map covers 641.6 cM with an average
spacing of 22.9 cM. The size of linkage groups, ignoring

L. L. Farrell et al.

those that consisted of a single marker, ranged from 10.1
to 488.7 cM. The number of markers per linkage group
varied from 2 to 9. The intermarker interval for each
linkage group varied from 5.0 to 54.3 cM, with a mean of
16.7 cM.

Four of the markers that lacked predicted genomic loca-
tions were subsequently assigned to chromosomes on the
basis of the linkage mapping: Ruffl, Ruff6, Ppu008, and
Ruff8 were assigned to chromosomes Ppul, Ppul3, Ppu7,
and Z, respectively. Ruff8 was known to be Z-linked from
previous work by Thuman et al. (2002); however, its
genomic location on chromosome Z is reported here for
the first time. Chromosomes PpulA, Ppu3, Ppu4, Ppu5,
Ppu8, Ppull and Ppu22 were all predicted to contain
more than one typed marker; yet, linkage groups could

Ppu1 Gga1 Tgu1A Ppu2 Gga2 Tgu2 Ppué Ggab Tgué
Ppu021—A) N N N 19— N )
quo48—— Ppu048——e———=o——Ppu048 Phil9—e— (1 phiig
Ppu00T~H Pou015— N Ppu057~ oo —Ppu0s7
Ppu025— Ppu025— o N Ppu047 PouOd7~l g FPUOT
Ppu032—| Chmo?21 Chmo21 Chmo21
Ppu028—| PouU039
L~ Ppu -
Ppu039——| gzzgg?>—% N Ppu001 Ppu032
Ppu022— ><Ppu018—— -\
U Ppu018— Ppu022—-e— [T I’z l’;zggg
SnipeB2——
(1-phi2 Ppu038—-e—ePpu038——
_<Ppu059 P P e[ Ppu38
Phil2 —— Phil2~{| Ppu003
- Ppu059~/_| Ppu030—| |
Ppu003~] pu e Ppu030
Ppu028-T7
Ppu021~- ——Ppu021 U U U
—|e o Ppu049~_ rTPpu016Ppu049
Ppu049 Ppu016-—H]
Ruff1 —| ——Ppu055
——SnipeB2
Ppu055—
v ——Ppu028
U
Ppu? Gga7 Tgu7 Ppu10 Gga10 Tgu10 Ppu13 Gga13 Tgu13
Ppu036: Ppu036 Ruffé~ o
Ppu023 Ppu036—e———eChmo0s é Chmo06 Ppu03 ﬁ p"ggi
Ppu034 o Ppu029 Ppu029 Ppu024 o——*Fpul
Ppu027 ———ePpu027 74 Ppu027 p Ppu034 Ppu034 P Ppu031
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Ppu008:

PpuZ GgaZ TguZ
Ppu058
Ppu058
Ruff§ —— U Ruffs
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Figure 2. A comparative map of microsatellite loci in ruff (Ppu; Philomachus pugnax), chicken (Gga; Gallus gallus), and zebra finch (Tgu;
Taeniopygia guttata) homologous chromosomes. Distinctions between loci in italics, bold font, and underlined are explained in the legend of
Figure 1. Three possible intrachromosomal rearrangements between the homologs of chicken, zebra finch and ruff microsatellite loci are reported
here for the first time (chr1: loci Pou001, Pou021, and Ppu028; chr2: loci Pou018 and Ppu022; chr7: loci Pou023 and Ppu027).
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not be formed. There are two possible explanations for the
failure to assign the markers to these chromosomes. First,
the pedigree may have been insufficiently powerful to map
all linked markers, especially if they were relatively far
apart on a chromosome. Second, the predicted chromo-
somal locations may not be an accurate indication of the
true locations; in other words, synteny may not be highly
conserved between ruffs and other birds. Given that no
mapped markers were assigned to locations other than
their predicted locations, we believe that the failure to
assign markers to these chromosomes is an issue of power
rather than poorly conserved synteny.

Following the methods of Backstrom et al. (2008), we
used available physical data on the chicken genome to cal-
culate the proportion of the ruff genome covered by the
map. The distance on the chicken genome assembly
between the homologs of the most distal markers on each
ruff linkage group was estimated, and summing across
chromosomes was found to be 270 Mb, or 26% of the total
~1.07 Gb chicken genome (Ensembl database www.ensem-
bl.org/Gallus_gallus/index.html). However, additional seq-
uence is covered by the ruff map if the five chromosomes
with single markers and the sequence immediately beyond
the first and last markers on each linkage group are
included. Assuming the ruff has a similar genome size to
the chicken (http://www.genomesize.com/), it may be esti-
mated that our map covers 30-35% of the ruff genome.
The proportion of the total genetic (i.e., recombination)
length of the ruff genome covered by the map is harder to
assess, as the microchromosomes are mostly unmapped.
Although microchromosomes are physically short and con-
tribute little to the physical genome size, they each have an
obligate crossing-over event during meiosis, which contrib-
utes 50 cM to the total map length (Jones and Frankin
2006). Thus, compared with its coverage of the physical
genome, the map must cover a lower proportion of the
total linkage (recombination) map length of the ruff gen-
ome.

Despite the highly conserved synteny generally believed
to exist among avian genomes (Griffin et al. 2007), com-
parative mapping among the homologs of chicken, zebra
finch, and ruff microsatellite loci results in three possible
intrachromosomal rearrangements being reported for the
first time on chromosome 1 (involving loci Ppu00I,
Ppu021, and Ppu028), chromosome 2 (loci Ppu018 and
Ppu022) and chromosome 7 (loci Ppu023 and Ppu027;
Fig. 2). These types of rearrangements were once thought
to be relatively rare in birds (Stapley et al. 2008). However,
with the recent sequencing of the turkey (Meleagris gallop-
avo) genome, comparative analyses between the turkey,
zebra finch (Taeniopygia guttata), and chicken (Gallus
gallus) have identified a large number of intrachromoso-
mal rearrangements, reflective of avian genome evolution

© 2013 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Linkage Map of the Ruff

(Skinner and Griffin 2012). Therefore, these regions are of
evolutionary interest in the ruff.

In summary, the map of seven linkage groups and
length 641.6 cM covers an estimated 30-35% coverage of
the ruff genome. It is the first linkage map of any shore-
bird species and will be of utility, even at this low density,
as previous studies with approximately 30% map coverage
have met with some success in the mapping of pheno-
typic loci (Miwa et al. 2006). Thus, this map has the
potential to provide an essential framework for further
studies mapping important behavioral and plumage traits
in this species.
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