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Abstract
Real-life systems are known to exhibit considerable day-to-day variability. A better under-
standing of such variability has increasing policy-relevance in the context of network reliability
assessment and the design of intelligent transport systems.

Conventional equilibrium models are ill-suited, because deterministic models such as these do
not account for any kind of variability. At best, these types of models are restricted to finding
a steady state of the mean flow patterns, they cannot capture the variance in flows as well.
A more suitable alternative are stochastic day-to-day dynamic models studied by Cascetta
(1989). These types of traffic assignment models represent the traffic flows via a Markov
process, where the current route flows are modelled as a function of previous traffic conditions.
Day-to-day dynamic models differ from equilibrium models in that day-to-day changes in the
system are modelled dependent on the time and thus allow for a far wider representation of
traveller behaviour. However, to some degree they still suffer from some of the limitations of
equilibrium analyses, in that while they permit variation they are still wedded to the concept
of ‘stationarity’.

In this paper, we show how these Markovian day-to-day dynamic traffic assignment models can
be extended by replacing a subset of the fixed parameters in the Markov model with random
processes. The resulting models are analogous to Cox process models. They are conditionally
non-stationary given any realization of the parameter processes. We present numerical examples
that demonstrate that this new class of doubly stochastic day-to-day traffic assignment models
can indeed reproduce features such as the heteroscedasticity of traffic flows observed in real-life
settings.
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1 Introduction

Traffic assignment models translate origin-destination travel demands into flows and travel times
on the links of a network, by modelling the interaction between traffic congestion and drivers’
route choice decisions. Historically these models have been based on notions of deterministic or
stochastic equilibrium, potentially time-sliced within the day as in dynamic traffic assignment
approaches. Such models are not based on empirical considerations, but rather are based on
idealised behaviour that economic agents might display, if fully informed and travelling in a
system with no variability. Real-life systems are known to exhibit considerable day-to-day
variability, and indeed understanding such variability has increasing policy-relevance in the
context of network reliability assessment and the design of intelligent transport systems. It
is therefore relevant to question the relationship between the models of idealised systems and
the considerable real-life evidence we now have. As Cascetta (1989) notes, this is no simple
task, since due to the non-linearity of the traffic assignment process, by neglecting variation
equilibrium models cannot even be interpreted as unbiased estimators of mean traffic conditions.
We believe it is therefore timely to ask: if starting instead with the kind of empirical evidence
typically available for traffic networks, what kind of traffic assignment model might we develop
in order to describe the underlying features and characteristics of the observed traffic flows?
The present paper aims to propose such an empirically-inspired class of models.

Suppose, then, that we obtain traffic flow data from successive points in time over a period
of days. We may encounter a variety of different phenomena. For example, we may observe
regular systematic patterns, perhaps due to changes in route choices during the week in order
to avoid roads prone to congestion on weekdays. We may also encounter irregular fluctuations
in the traffic volume as a response to a variety of factors, from weather patterns to minor traffic
accidents.

To illustrate these points we introduce some observed traffic flow data from New York state. The
data were collected over sequences of consecutive (week)days in 2009 measured on road links
as displayed in Figure 1. The data were sourced from the New York State Department of Trans-
portation website, https://www.dot.ny.gov/divisions/engineering/technical-services/
highway-data-services.

(a) Link 10012, Bronx. (b) Link 110137, Albany. (c) Link 10027, Bronx.

Figure 1: Locations of road sections in New York. Reproduced courtesy of 2012 Google Map data.

The first set of counts were northbound traffic observed on Broadway Road in the Bronx, coded
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as link 10012, on weekdays in 2009. The second sequence of observations were vehicles travelling
north on Loudon Road in Albany, coded as link 110137, over a span of seven months from 22
June until 20 November, with flows observed on the weekend removed. The third collection
of vehicle flows come from cars heading north on the Major Deegan Expressway in the Bronx,
the road section coded as 10027. The data were gathered from 9 March until 26 June, again
with weekend data removed. All traffic flows were measured for hour-long periods, in particular
from 4-5 pm for the roads located in the Bronx and 10-11pm for the road in Albany.

Figures 2, 3 and 4, are the corresponding time series (and associated autocorrelation plots) for
the observed traffic flows. They demonstrate a variety of patterns of temporal dependence.
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Figure 2: Time series and associated autocorrelation plot for traffic counts northbound on
Broadway (route 9) in the Bronx, NY.

In Figure 2 the day-to-day variation in flows seems almost entirely haphazard, with a few
extreme events, particularly at time points 36 and 50. Aside from these outliers, we might
effectively be observing a sequence from a white noise series; that is, observations of entirely
independent and identically distributed random variables. While the autocorrelation plot indi-
cates that the data exhibits some mild serial dependence, this is weak enough to suggest that
the series might be modelled as white noise.

Let us now consider a different kind of characteristic pattern. In Figure 3 we see a clear
deviation from a white noise series. There is manifest periodicity in the time series plot, leading
to strong autocorrelation at lags of multiples of five. This indicates a marked day-of-the-week
effect. While the mean flow remains more or less constant, there is at least a hint of increased
variability towards the end of the observational period.

Thirdly and finally, in Figure 4 we see some still different characteristic features. There is clear
evidence of heteroscedasticity, with the variation being significantly larger in the second half
of the period than the first. (The variance ratio between these periods is 3.40, with a nominal
p-value of 0.0002 based on an F-test on 39 degrees of freedom.) In addition, the autocorrelations
show no significant lags, thus no periodicity as seen in Figure 3 is evident; thus a model that
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Figure 3: Time series and associated autocorrelation plot for traffic counts northbound on
Loudon Road (route 9) in Albany, NY.

included a covariate for the weekday effect would not suffice in this case. The implications of
this are that we are dealing with a variation in the magnitude of the flows over time that cannot
be adequately modelled as white noise. The opposite seems to be the case: the behaviour of
the link flows suggests that there is underlying effect that is causing the temporal variability.
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Figure 4: Time series and associated autocorrelation plot for traffic counts northbound on
Major Deegan Expressway (route 87) in the Bronx, NY.
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As we remarked above, conventional Wardrop equilibrium (Wardrop 1952) and stochastic user
equilibrium (Daganzo and Sheffi 1977) models are ill-suited in this kind of setting, because
deterministic models such as these do not account for any kind of variability. At best, these
types of models are restricted to finding a steady state of the mean flow patterns, they cannot
capture the variance in flows as well.

Traffic models that also account for ‘second-order’ properties are an appropriate alternative to
consider. As we consider the case that link flows were observed over the course of successive days,
we can apply day-to-day dynamic models which model the evolution over days of travel choices.
In particular, we implement day-to-day dynamic models as discussed by Cantarella and Cascetta
(1995). Day-to-day dynamic models differ from equilibrium models in that they analyse the
evolution over days of travel choices using a learning model based on the effect of previous
traffic conditions on the travellers, that is, day-to-day changes in the system are modelled
dependent on the time. The framework of these types of models is very flexible as it allows
for an effortless integration of different behavioural patterns and types of learning processes
(Watling and Hazelton 2003). In other words, day-to-day dynamic models can concentrate to
a great extent on drivers’ responses to external factors such as congestion or other changes in
the system.

Both deterministic and stochastic approaches to day-to-day dynamic modelling have been stud-
ied. Each can describe temporal variability in traffic flows, but for deterministic models this
variation takes the form of an entirely prescriptive response to known stimuli. Stochastic mod-
els can likewise incorporate responses to observed factors, although this is typically through
changes to a probability distribution describing the system. As a concrete example, both deter-
ministic and stochastic models can describe the changes to today’s traffic flow pattern due to
heavy congestion on some routes on the previous day, though the former model might account
for this through changes to the proportions of travellers on the various routes while the latter
will change the corresponding probabilities. However, stochastic models have in addition the
potential to represent system variation due to unobserved factors, an idea that we expand upon
later.

An important class of stochastic day-to-day dynamic models, which are able to take into account
the observed mean traffic volumes as well as day-to-day variation, was first introduced by
Cascetta (1989), although some of the foundational ideas can be traced back to Horowitz (1984).
These types of stochastic process assignment models represent the traffic flows via a Markov
process, where the current route flows are modelled as a function of previous traffic conditions.
That is, they are based on the Markovian assumption that knowledge of the preceding m states
effect traffic flows on a given day, independent of traffic conditions prior to the m days before
the current state.

However, as we shall discuss in the present paper, these type of stochastic process models
are limited in terms of the types of realistic changes they may reproduce in both the mean
and the variance over time. To some degree they still suffer from some of the limitations of
equilibrium analyses, in that while they permit variation they are still wedded to the concept of
‘stationarity’ which is defined as the mean, the variance as well as the covariance all remaining
constant over time. Clearly, there are a variety of ways in which this assumption may be
violated; for representing realistic phenomena, day-to-day dynamic, stochastic process models
of this kind are still too constrained to represent all types of non-stationary characteristics
possible.

In this paper, our goal is therefore to develop a new class of stochastic process model that
is also able to exhibit non-stationary behaviour, such as the kind observed in Figure 4. To
this end we aim to combine existing ideas from transportation network analysis (Cascetta-type
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Markov models) with developments in statistics in the representation of ‘doubly stochastic’
processes. In the latter, certain parameters of the model are set to be random variables, and by
incorporating such concepts with transportation system analysis we create a hybrid, stochastic,
day-to-day dynamic assignment process.

The additional level of stochastic variation in these models might be interpreted as arising from
unmeasured factors, like weather conditions or minor traffic accidents. Such factors can gener-
ate spatio-temporal correlations in the traffic flow pattern that will not be directly attributable
to any causative effect within our model. While we do not attempt to explicitly explain the
origins of these correlations, accounting for their existence is important. One reason for this is
that any statistical method for model calibration will perform best if we have a good under-
standing of the patterns of stochastic variation in the data. Also, if we are to use models for
transport planning purposes then it is critical to assess system performance not only under mean
conditions, but also under the varying flow patterns that may arise due to all factors, whether
explicitly modelled or not. That is to say, if we approach the problem of modelling transport
networks from a statistical standpoint, then there will always be some explanatory sources of
variation that are measured and some that are unmeasured. While the focus to date has been
on developing relatively complex day-to-day models for capturing the measured sources, the
modelling of the unmeasured sources has to date been relatively crude and simplistic, and this
has significant consequences for the statistical performance of the model. Our focus in the
present paper, therefore, is on improving the modelling of such unmeasured sources through
more sophisticated models of the assumed random error sources. We can predict (by analogy
with other statistical systems) that such modelling developments will, in turn, have potentially
significant consequences not only for model fit and the explanation of historical patterns, but
also for model forecasts and therefore policy decisions.

The structure of the paper is as follows. In section 2 we provide a review of Markovian day-
to-day traffic assignment models. In section 3 we present our proposed extension of these type
of models, and provide an illustrative example. We perform numerical experiments using this
model in section 4. The paper then concludes with general comments on our doubly stochastic
day-to-day models, and identifies paths for further research in this area.

2 Day-to-day Markov Traffic Models

We consider a transport network with L directed links and q origin-destination (OD) pairs. Let
nk be the number of routes corresponding to OD pair k, (k = 1, 2, ..., q), and define n =

∑q
k=1 nk.

Let W be the n× q path-movement incidence matrix of 0/1 elements, with wrk = 1 if route r
relates to OD pair k, and let A be the L× n routing matrix of 0/1 elements, where alr = 1 if
link l is part of route r.

We seek to model the evolution of traffic flows over the network over a sequence of time intervals
indexed by t = 1, 2, ..., T . These intervals might, for example, be morning peak hour over
successive days, and we shall use the terminology ‘day’ to refer to each interval. Travel demand
on each day is described by a q-vector µ of OD flows. These OD flows distribute themselves
across the available routes through the network, producing an n-vector y. The elements of
both µ and y are lexicographically ordered, and the vectors related by Wy = µ. We index the
route flows by time period to give y(t), but assume that µ is constant. This is not particularly
restrictive, because we can introduce a single dummy route for each OD pair denoting the option
of not travelling for each OD pair, thus allowing transport systems with fluctuating demand
from day-to-day within our modelling framework.
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Let x be the L-vector of link flows. For day t this is related to y(t) by

x(t) = Ay(t). (1)

These link flows generate travel costs, according to the equation

c(t) = c(x(t)). (2)

The corresponding route costs are then given by

k(t) = ATc(t). (3)

In modelling the day-to-day dynamics of the system, we assume that the route choices made
by travellers on day t depend on previously experienced travel costs. To this end we define
a learning process in terms of the disutility (i.e. generalized cost) of routes, d. We assume
that disutility and route choice processes depend only on properties of the network from the
past m time periods, where m is a finite constant. There is little practical loss in making such
assumptions, but the theoretical properties of our model become far more tractable because of
the resulting Markov structure.

Writing d(t) for the vector of mean route utilities on day t, our model is

d(t) = h(d(t− 1), c(t− 1), . . . ,d(t−m), c(t−m), ζ) (4)

for some function h parameterized by vector ζ. The evolution of the route flows is then modelled
by

y(t) ∼ f(.|d(t− 1),y(t− 1), . . . ,d(t−m),y(t−m),ψ) (5)

where f denotes some conditional probability distribution with parameter vector ψ. Note
that if we define the state vector s(t) by s(t) = (y(t),d(t),y(t − m + 1),d(t − m + 1), then
{s(t); t = 1, 2, ...} is a Markov process.

The class of models defined by equations (4) and (5) is quite broad, and incorporates the seminal
models of Cascetta (1989). The Markov process defined in this way will be aperiodic and ergodic
under rather general conditions. For example, this is assured if we assume that each traveller
assigns a non-zero probability to all routes servicing the relevant OD pair. When the process is
ergodic it has a unique stationary distribution, and assuming also aperiodicity (which will hold
for any practical traffic model) the marginal probability distribution of s(t) will converge in
time to this stationary distribution, regardless of the initial state of the system. This property
also implies that we may generate unbiased estimates of features of the stationary distribution
from a single pseudo-random realisation of the process. See Cantarella and Cascetta (1995) for
related comments, and Davis and Nihan (1993) for an analysis of such models in the asymptotic
case, as demands become large in tandem with the network capacity.

Of course, even when the marginal distribution of the system is stationary, the traffic flow
patterns will display a complex pattern of temporal dependence. Nonetheless, stationarity
dictates that the spatio-temporal correlation structure is constant. Since the link flows on any
given day are a deterministic function of the state vector s(t), it follows that these models will
be unable to reproduce the kind of temporal change in variance that was observed in our third
numerical example in the Introduction.

Illustrative example
A natural starting point for the examination of time-homogoneous models are a subclass of
Markovian models as described in Hazelton and Watling (2004). We denote by c(x) the d-vector
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of travelling costs for each of the links in the network. We suppose that the cost functions ci(·)
for each link i are quadratic, parametrised as ci(x) = a+(xi/b)

2 so that b is proportional to link
capacity. The traveller learning process is based on linear filters of past costs with exponentially
decreasing weights. That is, we assume in our route choice model that the measured disutilities
for day t (based upon the states of the transport system up to and including day t− 1) is given
by

d(t− 1) = s(λ)−1
m∑
j=1

λj−1k(t− j), (6)

where s(λ) =
∑m

j=1 λ
j−1 for 0 < λ < 1 and k(t− j) is the n-vector of route costs as defined in

Equation 3.

The parameter λ measures the degree to which traveller’s previous experiences impact on travel
decisions. A high value means that all past experiences are fairly evenly taken into account,
while a value of λ close to zero implies that traffic conditions in the past are hardly if at all
considered.

On any given day each traveller selects the route with smallest personal disutility. We implement
the route-choice mechanism via a standard random utility model, the logit model. In practice
one might work with an adaption that overcomes the overlapping routes problems for the logit
model (e.g. Cascetta et al. 1996), but for our present intents and purposes we prefer to use
the simplest version of this model. We define p

(
i|d(t − 1)

)
to be the probability of a traveller

choosing route i when travelling between a given OD pair, conditional on the n-vector of
measured disutilities as

p
(
i|d(t− 1)

)
=

e−θdi∑
r∼i e

−θdr (7)

where r ∼ i indicates that routes r and i serve the same OD pair and θ is a measure of the
degree to which travellers react to current conditions after changes in the system. We assume
that travellers operate independently conditional on the disutilities, so that the number of
trips on each of the routes follow a multinomial distribution. Specifically, if y{`} and p{`} are
respectively the vectors route flows and route choice probabilities for OD pair `, then y{`}
follows a Mn(µ`, p{`}) distribution conditional on the disutilities.

3 An Extended Class of Models

So far as we are aware, all day-to-day dynamic models that have appeared in the literature
to date are members of the models defined by equations (4) and (5). There is considerable
flexibility within these models for representing the processes by which travellers learn from
past travel experiences, and how these experiences influence future route choice. Nevertheless,
despite the apparent scope offered by these models, they are incapable of reproducing the kind
of non-stationary behaviour seen in Figures 3 and 4.

The issue of being unable to reproduce non-stationary processes is well known in the time
series and spatial-point process literature in Statistics. In those areas, a variety of models have
been developed to address this matter. These include Generalised Autoregressive Conditional
Heteroscedasticity (GARCH) models in financial time series modelling (Thavaneswaran et al.
2006, Bollerslev 1986), and Cox processes in spatial statistics (Møller and Waagepetersen 2007,
Brix and Diggle 2001). The essential idea behind these methods is to exchange some of the
fixed parameters in the models with random variables that are allowed to change over time (as
is the case for GARCH models) and/or space (as for Cox process models). Such models are
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often termed ‘doubly stochastic’ to reflect the randomness in the parameter vectors and the
random behaviour of the process conditional on those parameter vectors.

Motivated by such models, we propose generalising Cascetta-type traffic models through re-
placement of some elements of the parameter vectors ζ and ψ (from equations 4 and 5 respec-
tively) by random processes. This provides a means of replicating the kind of non-stationarity
experienced in some of our observed data examples, even when information on the underly-
ing cause is not known. In principle one can postulate explanations as to what variations in
the parameter vectors might represent. For example, autocorrelated temporal variation in the
parameters describing traveller learning and route choice might be interpreted as responses
to different weather conditions. Given a particular state of the system, perhaps travellers re-
act differently (as described by a different conditional probability distribution) depending on
whether it is raining or dry. Nonetheless, such a specific interpretation of the variation in model
parameters is not necessary, and indeed may not be helpful. It is sufficient to accept that the
properties of the system will differ according to a host of unmeasured factors.

There is unlimited scope in the manner in which the parameters ζ and ψ might vary. In
order to impose some structure, we suggest that these vectors be modelled as Gaussian random
processes. That is, at any spatial location z and time t the vectors are a realization of a joint
random process {(ζ(z, t)T,ψ(z, t)T)T}. This leads to a doubly stochastic model, analogous to
a Cox process, which can allow for patterns of spatio-temporal correlations in both the utilities
u and traffic flow vectors y.

Illustrative example continued
We present a specific modification of the Cascetta-type model described in the illustrative
example previously in order to incorporate variation in the temporal dependence structure. We
redefine the parameter θ, that is, the measure of sensitivity, in equation 7 as

log
(
θ(t)

)
= ω(t) + ν (8)

at time point t where ν is a constant. The values of θ are kept on a log scale in order to ensure
non-negativity. We can then describe the parameter ω as a first order autoregressive (AR(1))
process

ω(t) = φω(t− 1) + ε(t) (9)

where εt ∼ N (0, σ2). The marginal distribution of ω is then given by

ω(t) ∼ N
(

0,
σ2

1− φ2
)
. (10)

On the natural scale this implies that the mean of θ is given by

E(θ) = exp{ν} exp

{
1

2
var(ω)

}
= exp{ν} exp

{
σ2

2(1− φ2)

}
. (11)

The full model is now defined by equations (4), (5), (6) and (7) (which define the system
conditionally given any value of θ) and equations (8) - (10).

In this illustrative example, and indeed more generally, the random process for the parameters
is itself stationary. It follows immediately that the marginal process for the state vector s(t) is
also stationary. This might at first seem to contradict our desire to replicate the kind of non-
stationary behaviour observed in our real data examples. However, it is critical to recognize that
our doubly stochastic models are non-stationary conditional on any (non-trivial) realization of
the random process on the parameters. This means that our models can reproduce stochastic
trends and changes in volatility in a manner which is impossible when the parameter vectors
are fixed. We illustrate this through synthetic numerical examples in the next section.
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4 Empirical study of Modelling Non-stationarity

We investigate properties of traffic flows for the illustrative Markov assignment model that
was introduced in section 2 and extended in section 3. We make direct comparisons between:
(a) traffic flows simulated under the classic Cascetta-type Markov model with a fixed level of
sensitivity θ and (b) the characteristics of traffic flows that result from a modified version of
the same model, where the parameter θ is instead a random variable. For several variations
of the parameters in the model we examine the extent to which the models can reproduce the
general characteristics seen in the real traffic flows.

The results in this section are intended to illustrate the range of stochastic behaviour in the
models. We have made no attempt to model variation due to measured factors like day of
the week, for example. For real-world modelling it would be important to explicitly account
for such effects, but for illustrative purposes it is helpful to focus primarily on the patterns of
random variation.

Computation was doing using the software R (R Core Team 2013) running on a MacBook
laptop with 1GB memory and a 2GHz processor. Results on the simple network from section
4.1 required approximately 0.25 seconds of CPU time per simulation run. Each simulation for
the large network in section 4.2 took about 2.5 seconds of CPU time.

4.1 Temporal variability

We begin our analysis with a simple two-zone network with only one interzonal movement, in
which the zones are connected by two parallel non-overlapping routes. We ran simulations for a
range of combinations of three factors, first, the level of inertia of travellers, second, the degree
to which travellers learn from their experiences over time and thirdly the memory length (i.e. the
number of days taken into consideration by travellers when making route choices). In general,
we found that memory length was not very influential in terms of the resulting simulated link
flows, other than through the smoothing effect of averaging over a larger number of days. That
is, if experiences up to 20 days in the past were taken into account, then we found that noticeable
changes over time were only produced for relatively high levels of sensitivity.

Some particularly interesting cases are considered here, where the contrast between the more
stationary-looking flows for the fixed θ case and the more non-stationary appearance of the
flows for the random θ case is very obvious. In Figure 5 we see simulated link flows on one of
the two links, when the sensitivity to costs is relatively high (θ = 1) and the users take into
account experiences from the past two days with very little consideration of less recent events
(λ = 0.01). The flows show no signs of changes over time, the mean remains around 35 and the
variance appears constant. The autocorrelation plot in the second panel of Figure 5 shows no
strongly significant autocorrelations.

In Figure 6 we see flows from the modified day-to-day model where we now allow the parameter
θ to vary over time, according to equation (8). Here the parameters φ and σ governing the
random process {θ(t)} have been selected so that the mean value of θ (as given in equation
(11)) matches the fixed value θ = 1 considered above. We see a change in both the mean flows
over time as well as obvious heteroscedasticity. In particular the manner in which the link flows
display a change in variability is similar to what we see in Figure 4, albeit in a more extreme
fashion.

In the second panel of Figure 6 we can see a plot of the realized sequence {θ(t)} over time.

10



Days

0 20 40 60 80 100

0
10

20
30

40

λ = 0.01 , Fixed θ = 1

0 10 20 30 40 50

−
0.

4
0.

0
0.

4
0.

8

Figure 5: Simulated Time series and associated autocorrelation plot for traffic counts on two-
node network with memory length 2.
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Figure 6: Simulated Time series and associated autocorrelation plot for traffic counts on two-
node network with memory length 2.

For this particular instance of simulated θ values, we see that just after time point 60 the level
of sensitivity is below 2, and that shortly after it surpasses this threshold the behaviour of
the function of the link flows changes. For smaller values of sensitivity the corresponding link
flows shows smaller oscillations and a slightly lower mean, then later on as the simulated θ(t)
approaches higher values, the average link flows increase as well as the magnitude of changes
in the flow levels overall.

We now consider the case that the users take into account experiences from the past two days,
where the value of λ is now 0.8, that is, all previous experiences carry a noticeable weight in the
route choice process, while keeping the level of sensitivity to costs experienced high at θ = 1.
The flows look very similar to the flows we see in Figure 5 and again the autocorrelation plot
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displays no significant lags. Changes in the values of the parameter λ, as a measure of the
extent to which previous experiences are taken into account, do not take much effect in this
case.
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Figure 7: Simulated Time series and associated autocorrelation plot for traffic counts on two-
node network with memory length 2.

We now introduce a random process for θ, calibrated (using φ and σ) to have mean E(θ) = 1.
As before we can see in Figure 8 that by letting the parameter θ be a random process we
introduce heteroscedasticity of the type observed in the Bronx traffic flow data in Figure 4.
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Figure 8: Simulated Time series and associated autocorrelation plot for traffic counts on two-
node network with random θ.

Both these artificial examples demonstrate well to what extent the kinds of non-stationary
observed in real traffic data can potentially be reproduced using our doubly stochastic models.
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4.2 Temporal-spatial correlation structure

So far, we have focused on demonstrating the kind of changes in simulated traffic flow patterns
we see over time when allowing parameters in our model to be random rather than fixed. In
this section, the aim is to show that these kind of temporal changes occur in larger networks as
well, but more importantly, spatial correlation structures can also be shown to change when we
apply our extended models. Our study uses a 21 node network based on a section of the road
system in the English city of Leicester. An abstracted version of this network is depicted in
Figure 9. As before, our comparisons between fixed and random processes for θ are calibrated
so that the mean value of the latter matches the former.
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Figure 9: Test network taking from the English city of Leicester.

For brevity we present the flows on only a selected number of the road sections, specifically the
links 22, 31, 36, 38, 42 and 46. When contrasting the link flows in Figure 10, we can again see
the familiar feature of stationary flows in the fixed θ case, and changes in the pattern of the
oscillations in the flows over time when θ is a random variable.

This same phenomenon is something we observed for a variety of different values in key param-
eters, for example, adjusting the length of memory, m, to longer periods of time delivers similar
results. This demonstrates that this effect is a genuine one, in that the extended models, in a
similar manner to their counterpart Cox processes, can allow for a change over time in the link
flow patterns, in contrast to the standard models.

We now examine the potential spatio-temporal correlation patterns that may arise on a set of
interconnected links in the Leicester example. One reason this may be of interest is rooted
in the following: from a transport planning point of view if a section of road appears to be
having problems with the volumes of demand, a reasonable solution may be to widen the road
in response. This alteration of the traffic system typically has a broader effect. A transport
planner may well expect smoother flows on the road section in question to lead to better flow
patterns on other parts of the network in the vicinity, and what is more, might imagine that this
effect would persist under most, if not all, network conditions. An implicit assumption being
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Figure 10: Simulated Time series for traffic counts on Leicester network.

made in the latter stages of that argument is stationarity, whereby the spatial relationships
between link flows in the network are constant over time. However, if correlation patterns do
happen to vary temporally then travellers might find themselves in the situation that the effects
of the imagined road-widening scheme are more difficult to predict.
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To investigate this aspect we calculate the correlation in a similar fashion to a moving average.
That is, in Figures 11 and 12 the first value that is plotted is the correlation between the link
flows from days 1 to 100 and the link flows from days 2 to 101. The next value is the correlation
between the time period 2 to 101 and the time period 3 to 102, and so and so forth. This results
in a sequence of points that form a line, if there is no particular correlation structure. For fixed
θ, as in Figure 11, none of the link pairs exhibit correlation structures that change over time,
as theory predicts. However, when we allow θ to vary, as in Figure 12, some of the link flow
pairs do display a noticeable change in the correlation structure over time.
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Figure 11: Spatial correlations in eight-node network for fixed θ.

5 Discussion

Non-stationarity can be observed in day-to-day traffic flow data from real world transport
systems. However, existing day-to-day traffic assignment models such as those proposed by
Cascetta (1989) are by nature stationary, and so cannot faithfully represent such systems. In
this paper, we describe how such Markovian day-to-day dynamic traffic assignment models
can be extended in a straightforward manner by replacing a subset of the fixed parameters
in the Markov model with random processes. The resulting models are analogous to Cox
process models. They are conditionally non-stationary (given any realization of the parameter
processes) and hence can reproduce features such as heteroscedasticity in traffic flows. In
particular, our numerical examples were able to mimic some of the features of link flow variation
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Figure 12: Spatial correlations in eight-node network for random θ.

observed in Figures 3 and 4.

Our illustrative model and numerical examples focused on cases where model parameters were
random processes in time, but were constant across space. In part this is a response to the
nature of our motivating example. Moreover, focusing on models with just time variation in
the parameters simplified our exposition of doubly stochastic models. As an extension to our
proposed model, we may also consider adding in spatial random variation in model parameters,
and in such a case we need to decide how the value of a parameter in space will relate to
the route choice model. For example, suppose that we wish the logit parameter θ from our
illustrative example to vary across the network. Which specific value applies when computing
probabilities according to equation (7)? There are many possibilities, including a stochastic
integral of the random process across the spatial path. Rather more simply, we might define
the value of the random process only at the network nodes, and then allocate the value from
the appropriate origin node to each traveller. In that case a Gaussian spatio-temporal model
for the model parameters would be [

ζ
ψ

]
∼ N (0,Σ) (12)

where ζ and ψ now denote the values of the process at all required times and nodes. In other
words, the former vector is the concatenation of vectors {ζ(`, t)} where ζ(`, t) gives the values
at node ` and time point t. The covariance matrix Σ in equation (12) in principle allows for
huge flexibility in the form of spatio-temporal correlations. In practice it will be necessary to
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impose some highly parsimonious parameterization.

Finally, we note that our doubly stochastic models can be regarded as describing the effects
of unobserved covariates. However, cyclical variation due to day-of-the-week effects may be
concerned with factors that are observable. Such properties of the system can in principle be
handled by incorporating fixed covariates into the model, although we are not aware of any
work in this direction in the literature for dynamic day-to-day models. Thus an interesting
future direction would be to consider extended models incorporating not only the random
(unobserved) factors that we have considered, but also some fixed (observed) covariates where
that information is available.
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