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[1] Parameterizations of the sea spray aerosol source flux are
derived as functions of wave roughness Reynolds numbers,
RHa and RHw, for particles with radii between 0.176 and
6.61μm at 80% relative humidity. These source functions
account for up to twice the variance in the observations
than does wind speed alone. This is the first such direct
demonstration of the impact of wave state on the variability
of sea spray aerosol production. Global European Centre
for Medium-Range Weather Forecasts operational mode
fields are used to drive the parameterizations. The source flux
from the RH parameterizations varies from approximately
0.1 to 3 (RHa) and 5 (RHw) times that from a wind speed
parameterization, derived from the same measurements,
where the wave state is substantially underdeveloped or
overdeveloped, respectively, compared to the equilibrium
wave state at the local wind speed. Citation: Norris, S. J.,
I. M. Brooks, and D. J. Salisbury (2013), A wave roughness
Reynolds number parameterization of the sea spray source flux,
Geophys. Res. Lett., 40, doi:10.1002/grl.50795.

1. Introduction

[2] Sea spray aerosol (SSA) is a dominant contribution to
the global atmospheric aerosol loading [Hoppel et al., 2002;
Andreae and Rosenfeld, 2008]; it makes a significant contri-
bution to the scattering of solar radiation, having a cooling
influence on the Earth’s surface (the aerosol direct effect
[Intergovernmental Panel on Climate Change, 2007]) of
up to 6Wm�2 [Lewis and Schwartz, 2004]. Highly hygro-
scopic, SSAs act as efficient cloud condensation nuclei
[Andreae and Rosenfeld, 2008] and play an important role
in determining the microphysical properties of marine
clouds. As a sink for aerosol precursor gases, they act as a
control on boundary layer nucleation processes [Merikanto
et al., 2009]. Understanding the magnitude and variability
of SSA production is essential to constraining estimates of
preindustrial aerosol forcing of climate and estimating
future climate, to accurately interpreting satellite data, and
as a forcing term for global chemistry transport models
and aerosol models.
[3] SSA is produced at the ocean surface by the bursting of

bubbles generated primarily by breaking waves (radii of

roughly 0.01–10μm and 1–300μm from film and jet drops,
respectively) and the tearing of water droplets from wave
crests (R> 200μm) [Lewis and Schwartz, 2004]. Most
parameterizations of SSA production (sea spray source
functions) are specified either as simple functions of the mean
wind speed [e.g., Smith et al., 1993; Hoppel et al., 2002] or as
a production flux per unit area of whitecap scaled by the total
surface whitecap fraction [e.g., Monahan et al., 1986;
Mårtensson et al., 2003], which is in turn usually parameter-
ized as a function of wind speed, most commonly using
Monahan and O’Muircheartaigh [1980].
[4] In spite of decades of study, there remains an uncertainty

of at least an order of magnitude in sea spray source functions
[de Leeuw et al., 2011]. Wind speed alone cannot explain the
observed variability in either SSA flux [de Leeuw et al., 2011]
or whitecap fraction [Anguelova and Webster, 2006]. Water
temperature and salinity [Mårtensson et al., 2003; Zabori
et al., 2012] affect bubble properties via the viscosity and
surface tension of water and the salt concentration in the drop-
lets forming SSA. A larger source of variability is believed to
result from the wave state [de Leeuw et al., 2011]; however,
few studies of the SSA flux have made coincident, detailed
measurements of wave properties.
[5] A joint measure of wind and wave state may be de-

fined as a Reynolds number. Various formulations have
been used to characterize wave breaking [Toba and Koga,
1986], whitecap fraction [Zhao and Toba, 2001; Goddijn-
Murphy et al., 2011], and sea spray production [Zhao
et al., 2006; Shi et al., 2009; Liu et al., 2012], although these
last are all theoretical and do not provide evidence of a sea
state dependence of the SSA flux. Here we use a wave
Reynolds number RH introduced by Zhao and Toba [2001]:

RH ¼ u�H s

ν
; (1)

where u* is the friction velocity, Hs is the significant wave
height, and ν is a kinematic viscosity. Two variants were
proposed: RHa defined using the viscosity of air, νa, and
RHw using the viscosity of water νw. The latter was consid-
ered conceptually more robust for processes related to wave
breaking and has since been used by Woolf [2005] and
Goddijn-Murphy et al. [2011].

2. Measurements

[6] We use the direct eddy covariance SSA flux data set of
Norris et al. [2012] and calculate the Reynolds numbers, RHa

and RHw. All data were collected during cruise D317 of the
RRS Discovery in the northeast Atlantic, from 21 March to
12 April 2007, as part of the Sea Spray, Gas Flux, and
Whitecap (SEASAW) project, a UK contribution to the inter-
national Surface Ocean-Lower Atmosphere Study program
[Brooks et al., 2009a]. Eddy covariance estimates of the
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SSA flux were made with a collocated sonic anemometer
and Compact Lightweight Aerosol Spectrometer Probe
(CLASP) [Hill et al., 2008]. The Reynolds numbers were
calculated from in situ measurements. Hs was determined
from measurements of the one-dimensional wave spectra
by a MKIV shipborne wave recorder [Tucker and Pitt,
2001], while u* was measured via direct eddy covariance.
νa and νw are calculated frommeasurements of air temperature
and pressure using the Sutherland equation [Montgomery,
1947] and of water temperature and salinity [Sharqawy
et al., 2010], respectively. Details of all instrumentation are
given in Brooks et al. [2009b]. The turbulent flux calculations
are described inNorris et al. [2012] and Sproson et al. [2013].
Norris et al. [2012] also discuss the mean meteorological and
oceanographic conditions.

3. Results

[7] Sea spray source fluxes for individual CLASP size
channels, adjusted to 80% relative humidity, are bin
averaged by RHa and RHw and linear fits determined (see
supporting information). Poor statistics in the two lowest
RH bins results in unconstrained fits predicting a physically
unrealistic positive SSA flux at RH = 0 for both the smallest
and largest particles. Toba and Koga [1986] found a
threshold of RB = 1000 for the onset of wave breaking,
where RB ¼ u2�=νaωp is the breaking wave Reynolds num-
ber and ωp is the peak angular frequency of the wind
waves. Fitting measured RH to RB values, we find critical
values of RHa = 7100 ± 2800 and RHw = (7.2 ± 2.9) × 10

4;
both agree closely with the intercepts of RHa and RHw

at zero flux obtained from unconstrained fits across the
middle of the measured size range (see supporting infor-
mation). Below these threshold values, we do not expect
wave breaking to occur, and thus, the SSA flux should
be zero; we thus force linear fits of the flux to RH through
zero at these thresholds. The gradient, α, and intercept,
β, of the linear fits are parameterized as functions of

R80—the particle radius at 80% humidity—to define a
SSA source function in terms of the Reynolds numbers:

dF

dR80
¼ αRH þ β: (2)

[8] For RHa, we find

log10 αð Þ ¼ �1:802� 10�3R4
80 þ 0:0215R3

80 � 0:0236R2
80

�0:9386R80 þ 0:844

β ¼ �44030e�1:91R80 ;

(3)

and for RHw

log10 αð Þ ¼ �1:56� 10�3R4
80 þ 0:0179R3

80 � 5:8� 10�3R2
80

�0:969R80 � 0:139

β ¼ �46380e�1:96R80 :

(4)

[9] No assumptions were made about the functional forms;
these were chosen purely on the grounds of the best fit to the
data. The R2 values for the fits against both RHa and RHw are
shown in Figure 1 along with those for the fits against the
10m wind speed, U10, from Norris et al. [2012]. The
Reynolds numbers explain much more of the observed vari-
ability in the source flux than does U10 alone over most of
the measured size range—by 20–60% between 1 and 4μm,
and almost a factor of 2 for RHw at 5μm; however, R2
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Figure 1. The R2 values for the fits of the observed source
flux to U10 (black), both RHa (red triangle) and RHw (blue
inverted triangle) with fits forced through RHa = 7100 and
RHw = 7.2 × 10

4, and unconstrained (pink and pale blue).
For those channels affected by poor counting statistics in
the two lowest Reynolds number bins, R2 is also shown after
removing those points (plus sign).
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Figure 2. TheRHw-dependent source function from (4) com-
pared with a number of recent functions at U10 = 10m s�1.
Parameterization (4) is plotted for the mean observed value
of RHw for 9.5<U10< 10.5m s�1. Three different sources
of uncertainty are shown: the pick shaded region indicates
the range of fluxes resulting from the range of observed RHw

(4.5 × 105<RHw< 9.5 × 105); the red dashed lines indicate
the 95% confidence intervals in the best fit to α and β, and
the red dash-dotted line indicates the uncertainty associated
with the 95% confidence intervals on the fits of the raw flux
estimates to RHw. The pale green area indicates the uncertainty
in Liu et al. [2012] resulting from the observed range of RB

values within the wind speed range. The pale blue area is the
published uncertainty in the Lewis and Schwartz [2004]
parameterization. Thin black dashed lines indicate the uncer-
tainty in the Norris et al. [2012] function.
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decreases substantially for the smallest and largest size chan-
nels where the small number of data points available results
in a large uncertainty. RHw does slightly better than RHa,
increasingly so as particle size increases. Their formulations
differ only in the viscosity used; these have very narrow
ranges (1.36–1.42 × 10�5m2 s�1 for νa, 1.32–1.45 × 10�6m2

s�1 for νw) compared to those of u* (0.11–0.80m s�1) and
Hs (1.91–5.08m) within the SEASAW data set. This results
from narrow temperature ranges for air (4.7–12.0°C) and
water (8.8–12.1°C) (see supporting information). If the
points with poor counting statistics are excluded from the
analysis, the R2 values increase substantially (Figure 1),
though they still drop off rapidly for R80> 5μm.
[10] The new parameterization (4) is compared with

several existing functions in Figure 2 (the alternative param-
eterization (3) (not shown) gives near-identical results).
Because most of these functions depend on wind speed
only, we evaluate (4) at the mean RHw observed over the
specified wind speed range during SEASAW and show an
uncertainty range corresponding to the range of RHw. We
include the source function of Liu et al. [2012] formulated
in terms of RB to combine the whitecap function of Zhao

and Toba [2001] and sea spray source function of Monahan
[1986]. Again, this function is evaluated for mean and limiting
values of RB within the wind speed bin.
[11] In order to evaluate the potential impact of accounting

for wave state on the SSA source flux, we calculate the
flux from both the U10-dependent function of Norris et al.
[2012] and (3) and (4) using the European Centre for
Medium-Range Weather Forecasts (ECMWF) operational
mode global fields for 0000 UTC 1 January 2011. U10 and
Hs are taken directly from the model, while u* is calculated
from U10 and the wave model’s sea state-dependent drag
coefficient [Janssen, 2000]. Salinity is taken from the 2009
World Ocean Atlas [Antonov et al., 2010]. The ratio between
the source fluxes from (3) and (4) and Norris et al. [2012] is
shown in Figure 3 for R80 = 0.5μm. Also shown are fields of
U10, the Norris et al. [2012] source flux, RHa, RHw, Hs, and
the ratio Hs/Hfd where Hfd is the value of Hs for waves in
equilibrium with the local wind, calculated from the WAM
model wind-wave relation [Wave Model Development and
Implementation Group, 1988]; Hs/Hfd gives a measure of
the degree of wave development. In order to avoid any bias
that might result from extrapolating the source functions

Figure 3. Global distributions of (a) wind speed, U10; (b) SSA flux from Norris et al. [2012]; (c) significant wave height,Hs;
(d) Hs/Hfd; (e) RHa; (f) RHw; (g) ratio of sea spray source flux dF/dR80 from the RHa (3) and U10 [Norris et al., 2012] param-
eterizations at R80 = 0.5μm; and (h) same as Figure 3g but for RHw. Example regions where the Reynolds number function is
significantly higher/lower than the U10 function are indicated by purple/brown boxes.
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beyond the range of conditions from which they were
derived, we have excluded grid points with winds outside
the observed range of 4<U10< 18m s�1.
[12] There are some substantial differences between the

parameterizations; the RHa parameterization ranges from
less than 0.1 of the U10 source function to about 3 times
larger; the RHw function peaks at 5 times larger. A compar-
ison of the spatial distribution of the differences to those of
the forcing parameters is revealing. Consider first the RHa

function (Figure 3g). The regions where its ratio with the
U10 function is largest coincide not with the highest winds
or Reynolds numbers in storm systems, but around the
margins of these systems. These are regions where the
wavefield is significantly better developed than the equilib-
rium wavefield for the local wind (Hs/Hfd> 1); two such
regions are indicated by purple boxes. In regions where
the wave state is underdeveloped compared to the equilib-
rium state—notably in the regions of highest wind speed
within storm systems—the RHa parameterization falls below
the U10 parameterization; examples are indicated by the
brown boxes. The RHw parameterization follows a similar
spatial pattern but predicts somewhat higher fluxes over
the tropical and subtropical oceans. This is a consequence
of the stronger temperature dependence of water viscosity
compared to that of air. The implications of this and the lim-
itations it imposes on the interpretation of our results are
discussed below.

4. Conclusions

[13] New parameterizations of the sea spray source flux
(0.176<R80< 6.61μm) have been derived as functions of
wave Reynolds numbers, RHa and RHw. They account for
up to twice the variance in the measured fluxes than does
wind speed alone. The variance explained decreases with
particle size for all three parameterizations; at the smallest
sizes, U10 and RH account for similar variance, and that
explained by U10 then falls more rapidly with particle size
than that for RHa and RHw. The size dependence of R2 is
consistent with Norris et al. [2013] who found that SSA
production per unit area whitecap was wind speed depen-
dent for R80< 2 μm, but showed no clear relationship at
larger sizes. We speculate that this behavior is related to
changes in bubble populations with increasing wind and
wave breaking—Norris et al. [2013] found that concentra-
tions of small bubbles increased more than those of large
bubbles with increasing wind speed—and the sizes of aero-
sol particles generated by different-sized bubbles. Here, jet
drops will dominate production for R80> 1 μm and film
drops for R80< 1 μm.
[14] A comparison of the ratio of the new parameteriza-

tions to the wind speed-dependent function derived by
Norris et al. [2012] from the same data set shows differ-
ences of a factor of 0.1 to 3 (RHa) and 5 (RHw). Fluxes higher
than those of the U10 function are found around the margins
of storm systems where propagation of waves away from
the regions of highest winds results in wave states that are
overdeveloped compared to the equilibrium state for the
local wind. Fluxes lower than those from the U10 function
are found where the wave state is underdeveloped. We
emphasize that both the U10 and RH-dependent source
functions are derived from the same in situ measurements;
differences between them arise almost entirely from the

inclusion of information on wave state via the Reynolds
number. Superficially, the results appear contrary to those of
Norris et al. [2012] that the flux was higher in undeveloped
seas for a given wind speed. In fact, there is no direct contra-
diction. Norris et al. [2012] characterized wave development
by the mean wave slope; this depends only on Hs and Tz, the
zero-crossing period of the waves, and says nothing about
the relationship between the observed waves and those
expected under equilibrium with the local wind.
[15] The RHw function predicts larger fluxes than RHa over

much of the ocean—a result of the stronger temperature
dependence of viscosity for water than for air. The observa-
tions used to derive the source functions span a limited range
of temperatures. This leaves open the possibility that viscos-
ity-dependent properties of wave breaking or bubbles might
affect the SSA flux in a manner not accounted for by these
source functions. Measurements under a much wider range
of conditions are required to address this issue. The data set
is also not large enough to assess any separate impact of wind
waves and swell, nor of relative wind and wave directions,
both of which may complicate the wind-wave-flux relation-
ship [e.g., Goddijn-Murphy et al., 2011]. Thus, the source
functions proposed cannot be considered universal but are a
significant step toward this goal and an improvement on sim-
ple wind speed-dependent functions.
[16] At any given time, the wave state over the majority of

the world’s oceans is out of equilibrium with the local wind
—the majority being overdeveloped and dominated by swell;
just 8.5% is found to be underdeveloped in the ECMWF fields
by the Wave Model Development and Implementation defini-
tion. Simple wind speed-dependent SSA source functions will
tend to misrepresent the spatial variability of SSA production.
This has implications for modeling of new particle formation
and regional aerosol budgets, marine atmospheric boundary
layer chemistry, and the spatial variability of cloud condensa-
tion nuclei concentrations over the oceans. The new parame-
terizations are readily implemented in models and should
lead to better representation of the spatial and temporal vari-
ability of sea spray fluxes.

[17] Acknowledgments. This work was funded by the UK Natural
Environment Research Council grants NE/C001842/1 as part of UK
SOLAS, NE/G00353X/1, and NE/G000107/1.We thank the Captain and crew
of the RRS Discovery and the staff of National Marine Facilities Sea Systems
for their assistance in preparing for and during the cruise, ECMWF for the
global model reanalysis fields, and David Woolf and an anonymous reviewer
for their constructive comments on the manuscript.
[18] The Editor thanks David Woolf and an anonymous reviewer for

their assistance in evaluating this paper.

References
Andreae, M. O., and D. Rosenfeld (2008), Aerosol-cloud-precipitation inter-
actions, Part 1. The nature and sources of cloud-active aerosols, Earth-Sci.
Rev., 89, 13–41, doi:10.1016/j.earscirev.2008.03.001.

Anguelova, M. D., and F. Webster (2006), Whitecap coverage from satellite
measurements: A first step toward modeling the variability of oceanic
whitecaps, J. Geophys. Res., 111, C03017, doi:10.1029/2005JC003158.

Antonov, J. I., D. Seidov, T. P. Boyer, R. A. Locarnini, A. V. Mishonov,
H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson
(2010), in World Ocean Atlas 2009, Volume 2: Salinity, edited by S.
Levitus, 184 pp., NOAA Atlas NESDIS 69, U.S. Government Printing
Office, Washington, D.C.

Brooks, I. M., et al. (2009a), Physical exchanges at the air-sea interface:
Field measurements from UK-SOLAS, Bull. Am. Meteorol. Soc., 90,
629–644, doi:10.1175/2008BAMS2578.1.

Brooks, I. M., et al. (2009b), UK-SOLAS field measurements of air-sea
exchange: Instrumentation, Bull. Am. Meteorol. Soc., 90, (electronic sup-
plement), 9–16, doi:10.1175/2008BAMS2578.2.

NORRIS ET AL.: REYNOLDS NUMBER FUNCTION OF SEA SPRAY

4



de Leeuw, G., E. L. Andreas, M. D. Anguelova, C. W. Fairall, E. R. Lewis,
C. O’Dowd,M. Schulz, and S. E. Schwartz (2011), Production flux of sea-
spray aerosol, Rev. Geophys., 49, RG2001, doi:10.1029/2010RG000349.

Goddijn-Murphy, L., D. K. Woolf, and A. H. Callaghan (2011),
Parameterizations and algorithms for oceanic whitecap coverage, J. Phys.
Oceanogr., 41, 742–756, doi:10.1175/2010JPO4533.1.

Hill, M. K., B. J. Brooks, S. J. Norris, M. H. Smith, I. M. Brooks,
G. de Leeuw, and J. J. N. Lingard (2008), A Compact Lightweight
Aerosol Spectrometer Probe (CLASP), J. Atmos. Oceanic Technol., 25,
1996–2006, doi:10.1175/2008JTECHA1051.1.

Hoppel, W. A., G. M. Frick, and J. W. Fitzgerald (2002), The surface source
function for sea-salt aerosol and aerosol dry deposition to the ocean sur-
face, J. Geophys. Res., 107(D19), 4382, doi:10.1029/2001JD002014.

Intergovernmental Panel on Climate Change (2007), Climate Change
2007: The Physical Science Basis: Working Group I Contribution to
the Fourth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by S. Solomon et al., 996 pp., Cambridge
Univ. Press, New York.

Janssen, P. A. E. M. (2000), ECMWF wave modeling and satellite altimeter
wave data, in Satellites, Oceanography and Society, edited by D. Halpern,
pp. 35–56, Elsevier, Amsterdam.

Lewis, E. R., and S. E. Schwartz (2004), Sea Salt Aerosol Production:
Mechanisms, Methods, Measurements, and Models—A Critical Review,
Geophys. Monogr. Ser., vol. 152, 413 pp., AGU, Washington, D. C.

Liu, B., C. L. Guan, L. A. Xie, and D. L. Zhao (2012), An investigation of the
effects of wave state and sea spray on an idealized typhoon using an air–sea
coupled modelling system, Adv. Atmos. Sci., 29, 391–406, doi:10.1007/
s00376-011-1059-7.

Mårtensson, E. M., E. D. Nilsson, G. de Leeuw, L. H. Cohen, and
H. C. Hansson (2003), Laboratory simulations and parameterization of the
primary marine aerosol production, J. Geophys. Res., 108(D9), 4297,
doi:10.1029/2002JD002263.

Merikanto, J., D. V. Spracklen, G. W. Mann, S. J. Pickering, and
K. S. Carslaw (2009), Impact of nucleation on global CCN, Atmos.
Chem. Phys., 9, 8601–8616, doi:10.5194/acp-9-8601-2009.

Monahan, E. C. (1986), The ocean as a source for atmospheric particles, in
The Role of Air-Sea Exchange in Geochemical Cycling, Buat-Menard,
edited by D. Reidel, 129–163 pp., Publishing Company, Dordrecht.

Monahan, E., and I. O’Muircheartaigh (1980), Optimal power-law descrip-
tion of oceanic whitecap coverage dependence on wind speed, J. Phys.
Oceanogr., 10, 2094–2099.

Monahan, E. C., D. E. Spiel, and K. L. Davidson (1986), A model of marine
aerosol generation via whitecaps and wave disruption, in Oceanic

Whitecaps, edited by E. C. Monahan and G. Mac Niocaill, pp. 167–174,
D. Reidel Publishing Company, Dordrecht.

Montgomery, R. B. (1947), Viscosity and thermal conductivity of air and
diffusivity of water vapor in air, J. Meteorol., 4, 193–196.

Norris, S. J., I. M. Brooks, M. K. Hill, B. J. Brooks, M. H. Smith, and
D. A. J. Sproson (2012), Eddy covariance measurements of the sea spray
aerosol flux over the open ocean, J. Geophys. Res., 117, D07210,
doi:10.1029/2011JD016549.

Norris, S. J., I. M. Brooks, B. I. Moat, M. J. Yelland, G. de Leeuw,
R. W. Pascal, and B. J. Brooks (2013), Field measurements of aerosol pro-
duction from whitecaps in the open ocean, Ocean Sci., 9, 133–145,
doi:10.5194/os-9-133-2013.

Sharqawy, M. H., J. H. Lienhard, and S. M. Zubair (2010), Thermophysical
properties of seawater: A review of existing correlations and data,Desalin.
Water Treat., 16, 354–380, doi:10.5004/dwt.2010.1079.

Shi, J., D. Zhao, X. Li, and Z. Zhong (2009), New wave-dependent formulae
for sea spray flux at air-sea interface, J. Hydrodyn., 21, 573–581.

Smith, M. H., P. M. Park, and I. E. Consterdine (1993), Marine aerosol con-
centrations and estimated fluxes over the ocean, Q. J. R. Meteorol. Soc.,
119, 809–824, doi:10.1002/qj.49711951211.

Sproson, D. A. J., I. M. Brooks, and S. J. Norris (2013), The effect of hygroscop-
icity on sea spray aerosol fluxes: A comparison of high-rate and bulk correc-
tion methods, Atmos. Meas. Tech., 6, 323–335, doi:10.5194/amt-6-323-2013.

Toba, Y., and M. Koga (1986), A parameter describing overall conditions of
wave breaking, whitecapping, sea-spray production and wind stress, in
Oceanic Whitecaps, edited by E. C. Monahan and G. Mac Niocaill, pp.
37–47, Springer, New York.

Tucker, M. J., and E. G. Pitt (2001), Waves in Ocean Engineering, Ocean
Eng. Book Ser., vol. 5, 521 pp., Elsevier, New York.

Wave Model Development and Implementation Group (1988), The WAM
model: A third generation ocean wave prediction model, J. Phys.
Oceanogr., 18, 1775–1810.

Woolf, D. K. (2005), Parametrization of gas transfer velocities and sea-state-
dependent wave breaking, Tellus, 57A, 87–94.

Zábori, J., R. Krejci, A. M. L. Ekman, E. M. Mårtensson, J. Ström,
G. de Leeuw, and E. D. Nilsson (2012), Wintertime Arctic Ocean sea
water properties and primary marine aerosol concentrations, Atmos.
Chem. Chem. Phys., 12, 0405–10421, doi:10.5194/acp-12-10405-2012.

Zhao, D., and Y. Toba (2001), Dependence of whitecap coverage on wind
and wind-wave properties, J. Oceanogr., 57, 603–616.

Zhao, D., Y. Toba, K. Sugioka, and S. Komori (2006), New sea spray
generation function for spume droplets, J. Geophys. Res., 111, C02007,
doi:10.1029/2005JC002960.

NORRIS ET AL.: REYNOLDS NUMBER FUNCTION OF SEA SPRAY

5


	published_version_article.pdf
	Norris_2013_GRL_50795.pdf

