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Making use of respondent reported processing information to

understand attribute importance: a latent variable scaling approach

Stephane Hess∗ David A. Hensher†

May 23, 2012

Abstract

In recent years we have seen an explosion of research seeking to understand the role that rules and
heuristics might play in improving the predictive capability of discrete choice models, as well as delivering
willingness to pay estimates for speci�c attributes that may (and often do) di�er signi�cantly from esti-
mates based on a model speci�cation that assumes all attributes are relevant. This paper adds to that
literature in one important way - it explicitly recognises the endogeneity issues raised by typical attribute
non-attendance treatments and conditions attribute parameters on underlying unobserved attribute im-
portance ratings. We develop a hybrid model system involving attribute processing and outcome choice
models in which latent variables are introduced as explanatory variables in both parts of the model,
explaining the answers to attribute processing questions and explaining heterogeneity in marginal sensi-
tivities in the choice model. The resulting empirical model explains how lower latent attribute importance
leads to a higher probability of indicating that an attribute was ignored or that it was ranked as less
important, as well as increasing the probability of a reduced value for the associated marginal utility
coe�cient in the choice model. The model does so by treating the answers to information processing
questions as dependent rather than explanatory variables, hence avoiding potential risk of endogeneity
bias and measurement error.

Keywords: information processing; attribute ignoring; non-attendance; attribute importance; attribute
relevance; stated choice

1 Introduction

There is a growing recognition that when faced with a typical stated choice (SC) scenario where each
alternative is described by a number of attributes, di�erent respondents will process the information
in di�erent ways. The main emphasis has been on the notion that individual respondents may make
their decisions only on the basis of a subset of the attributes describing the alternatives, a phenomenon
variably described as attribute ignoring or attribute non-attendance. The origins of this research stream
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are in the work of Hensher et al. (2005), who posed the very simple question �what implications on WTP
would there be if we recognised that some attributes are deemed not relevant by a respondent in the
way that they processed the alternatives on o�er?". This paper began the interest in discrete choice
analysis in recognising that attribute non-attendance may be a very real heuristic impacting on the way
that individuals process information in real markets for many reasons, be it cognitive burden and/or
simply a recognition that speci�c attributes (and their levels) are not of su�cient relevance to be sources
of in�uence on choosing. Another possible reason is the lack of su�cient incentives in the scenarios
presented to respondents in the context of hypothetical surveys - i.e., a given individual's sensitivity to
a speci�c attribute may be so low that with the combinations presented, it cannot possibly have an
in�uence on the choice.

Since 2005 we have seen an explosion of research papers, especially in transportation and environmen-
tal science, seeking to understand the role that rules and heuristics might play in improving the predictive
capability of choice models, as well as delivering WTP estimates for speci�c attributes that may (and
often do) di�er signi�cantly from estimates based on a model speci�cation that assumes all attributes
are relevant. While the origins of this stream of work can be found in transport, applications now range
across numerous di�erent �elds (see e.g. Cameron and DeShazo, 2011; Alemu et al., 2011; Hoyos et al.,
2011; Balcombe et al., 2011; Hole, 2011b; Scarpa et al., 2011; Carlsson et al., 2010). Hensher (2010)
summarises the main contributions up to 2009.

Within the contributions to date, some focus on the role of supplementary questions on how attributes
are processed (e.g Hensher, 2006; Puckett and Hensher, 2008) while other studies focus on how attribute
processing can be inferred from the data through advanced model speci�cations (e.g. Scarpa et al., 2009;
Hess and Hensher, 2010). Although there has been a particular focus on attribute non-attendance, the
range of potential attribute processing strategies within compensatory and semi-compensatory attribute
choice settings are numerous, and will direct the research agenda for many years. There is a growing
view that the consideration of alternative behavioural paradigms on how respondents process attributes
in a choice making context may well add greater value to our understanding of decision making than the
advances made in sophisticated econometric choice models; however the combination of both may well
deliver the best outcome. It is in this area that the contribution made in the present paper falls.

As already alluded to above, there are two separate strands of research in the �eld. In the �rst, analysts
condition their models on respondent stated attribute processing information, while, in the second,
analysts attempt to infer processing strategies from the data, generally by making use of probabilistic
methods. The motivation for steering clear of respondent reported processing strategies in the latter
body of work has two components. Firstly, given the likely correlation between respondent reported
processing strategies and other unobserved components, it should be recognised that conditioning our
model speci�cation on such information may lead to endogeneity issues which could in turn lead to
biased parameter estimates. Secondly, it has been shown by a number of authors (e.g. Hess and Rose,
2007; Hess and Hensher, 2010) that there is no one-to-one correspondence between stated processing
strategies and actual (i.e. revealed) processing strategies. Indeed, the results for example in Hess and
Hensher (2010) show that respondents who indicate that they ignored a given attribute often still show
a non-zero sensitivity to that attribute, albeit one that is (potentially substantially) lower than that for
the remainder of the population. A possible interpretation of these results is thus that respondents who
indicate that they did not attend to a given attribute simply assigned it lower importance, and that the
probability of indicating that they ignored a given attribute increases as the perceived importance of that
attribute is reduced.

The above discussion suggests that respondent reported data on processing strategies may still contain
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valuable information, but that such data should not be used deterministically as an error free measure of
attribute non-attendance, given the risk of endogeneity bias as well as the possible di�erences with actual
processing strategies. Rather, one should recognise that such data are simply a function of respondent-
speci�c perceived attribute importance. The present paper puts forward a modelling framework in
which this information is treated in precisely this manner. In particular, we formulate a structure that
jointly models the response to the stated choice component and the response to the attribute processing
questions. Crucially, the latter are treated as dependent variables rather than as explanatory variables
as has been the case in work thus far. The link between the two model components is made by a
number of latent variables, relating to the unobserved respondent-speci�c importance measure for each
attribute. These latent variables are used as explanatory variables in both parts of the model, explaining
the answers to attribute processing questions and explaining heterogeneity in marginal sensitivities in the
choice model.

The approach used here has similar aims to the work of Hensher (2008) and Hole (2011a) in that it
aims to jointly model process and outcome, but we do this via the use of latent variables. As such, the
model �ts into a growing body of research on hybrid choice models (cf. Ben-Akiva et al., 2002; Bolduc
et al., 2005). While a typical choice model explains only the choices observed in the data, a hybrid
model contains additional sets of explanatory variables, for example answers to attitudinal questions. At
the heart of such hybrid models are one or more latent constructs that contribute both to the utility
function in the choice model component as well as the measurement models used to explain the remaining
dependent variables, e.g. answers to attitudinal questions. In the most common application of hybrid
models, the latent variables relate to underlying unobserved attitudes, while, in our case, they relate to
the underlying importance of the di�erent attributes.

Our results show that the resulting model is able to explain how lower latent attribute importance leads
to a higher probability of indicating that an attribute was ignored or that it was ranked as less important,
as well as increasing the probability of a reduced value for the associated marginal utility coe�cient in the
choice model. Crucially, the model treats the answers to information processing questions as dependent
rather than explanatory variables, that way preventing risks of endogeneity bias as well as avoiding the
use of answers to information processing questions as error free explanatory variables, which could have
exposed us to measurement error. We compare the results from our model to those from a simple
MMNL model and a MMNL model conditioning on respondent reported attribute non-attendance. We
�nd that the hybrid model produces the most intuitively correct willingness-to-pay patterns, where the
model making use of non-attendance information as explanatory variables produces the least realistic
results, reinforcing earlier concerns.

The remainder of this paper is organised as follows. We �rst outline the model structure in Section
2. This is followed by the presentation of the empirical analysis in Section 3. Finally, we present the
conclusions of the research.

2 Methodology

In a traditional random utility model, we have that the utility of alternative i for respondent n in choice
scenario t is given by:

Uint = Vint + εint (1)
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where Vint is the deterministic component of utility and εint is the random component of utility. With
J alternatives (j = 1, . . . , J), the probability of alternative i being chosen is given by:

Pint (β) = P (Vint + εint > Vjnt + εjnt, ∀j 6= i) (2)

The deterministic component of the utility is given by a function of observed attributes x and estimated
parameters β, i.e. Vint (β) = f (xint, β), where typically, a linear in parameters speci�cation is adopted.

In the widely used Mixed Multinomial Logit (MMNL) model, we accommodate random (i.e. unex-
plained) variations across respondents in β, and with a type I extreme value distribution for the remaining
error term ε, we now have:

Pint (Ω) =

∫
β

eVint(β)∑J
j=1 e

Vjnt(β)
h (β | Ω) dβ =

∫
β
Pint (β)h (β | Ω) dβ (3)

where β ∼ h (β | Ω), with Ω giving a vector of parameters to be estimated, for example the mean and
standard deviation. This model collapses back to a standard Multinomial Logit (MNL) structure (i.e.
Pint (β)) if no random heterogeneity is retrieved. We will typically also work with repeated choice data,
and under an assumption of intra-respondent homogeneity, the likelihood of the actual observed sequence
of choices for respondent n is then given by:

Ln (Ω) =

∫
β

[
T∏
t=1

Pi∗nt (β)

]
h (β | Ω) dβ, (4)

where i∗nt refers to the alternative chosen by respondent n in choice situation t.
Let us now assume that as part of the survey, the analyst collects not just information on the

choices made by the respondent, i.e. i∗nt, ∀n, t, but in addition captures answers to questions relating
to information processing strategies. In particular, with K di�erent attributes (and hence K di�erent
associated β parameters), it has become coming practice to collect data on respondent reported attribute
non-attendance (or ignoring) for each of these attributes, say NAnk, k = 1, . . . ,K, where NAnk is equal
to 1 if respondent n states that he/she did not attend to attribute xk in making his/her choices. Let us
further de�ne Ank = 1− NAnk ∀k.

In the most simplistic modelling approach, these additional measures would then be used as explana-
tory variables in our model speci�cation, where βk would be replaced by Ankβk. This means that the
parameter βk is set to zero for any respondent who indicated that attribute xk was ignored. In other
work, it is recognised that stated attribute non-attendance may simply equate to lower sensitivity, and
rather than imposing a zero coe�cient value for such respondents, separate coe�cients are estimated,
meaning that βk is replaced by NAnkβk,na + Aβk,a. Here, βk,a is used for respondents who stated that
they attended to attribute k, while βk,na is used for the remaining respondents. While this second ap-
proach departs from the assumption of absolute correctness of the stated non-attendance data, possible
issues with endogeneity still arise. Indeed, there is likely to be correlation between the respondent re-
ported processing strategies and other factors not accounted for in the deterministic part of utility, hence
potentially leading to correlation between Vint and εint.

In the present paper, in line with but expanding on Hensher (2008) and Hole (2011a), we move
away from approaches using answers to information processing questions as explanatory variables, and
instead treat them as dependent variables which are a function of the true underlying, and unobserved,
processing strategies. In particular, we focus here on the notion of attribute importance.
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We �rst hypothesise that for every attribute k, each respondent has an underlying rating of attribute
importance. This is somewhat di�erent from a marginal sensitivity as it does not relate to the actual
value of the attribute in question. This attribute importance rating is unobserved, and is thus given by
a latent variable αnk for respondent n, with:

αnk = γkzn + ηnk, (5)

such that it is a function of characteristics of the respondent (zn), along with a random disturbance ηnk
which we assume to follow a standard Normal distribution across respondents and across the K di�erent
attributes. The vector γk explains the e�ect of zn on αnk.

In our model, we now hypothesise that the answers to the attribute non-attendance questions can be
modelled as a function of these latent variables. In particular, we use a binary logit speci�cation, where,
conditional on a given value for the latent variable αnk we would have that the probability of the actually
observed value for NAnk is modelled as:

LNAnk (κk, ζk | αnk) =
NAnke

κk+ζkαnk + Ank

1 + eκk+ζkαnk
, (6)

where both κk and ζk need to be estimated, with the former relating to the mean value of NAnk in
the sample population, and the latter giving the impact of the latent variable αnk on the probability of
stated non-attendance. Let us group together the various latent variables in αn = 〈αn1, . . . , αnk〉, with
the same de�nition for κ and ζ. With K di�erent indicators, we have that:

LNAn (κ, ζ | αn) =
K∏
k=1

NAnke
κk+ζkαnk + Ank

1 + eκk+ζkαnk
, (7)

It is worth mentioning that this is but one approach to modelling the response to the non-attendance
questions and that other speci�cations would be possible. For example, a threshold speci�cation (cf.
Cantillo et al., 2006) could be used which would make the response to the non-attendance questions
a function not just of the latent importance variable but also of the actual levels of the attributes in
questions.

In addition to using the latent variables to explain the answers to the non-attendance questions,
we also employ them as shrinkage factors inside the choice model component of the hybrid model. In
particular, we now replace βk by e

λkαnkβk, where we estimate λ = 〈λ1, . . . , λK〉. Clearly, other (e.g. non-
linear) functional forms would be possible too, and this remains an important area for future work. The
motivation for using a shrinkage factor rather than for example a speci�cation such as δαnk≥θkβk, where θk
would be an estimated threshold, is that we want to move away from a simple complete attendance/non-
attendance approach and instead allow for a continuous measure of importance. Similarly, we use two
separate components αnk and βk to permit for an absence of a strict relationship between attribute
importance and marginal sensitivities, thus also accommodating any unrelated random heterogeneity in
the βk term.

Conditional on given values of αn and β, and assuming a linear in attribute speci�cation, we can
then write:

Pint (β, λ | αn) =
e
∑K
k=1 e

(λkαnk)βkxk,int∑J
j=1 e

∑K
k=1 e

(λkαnk)βkxk,jnt
, (8)
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where xk,int is the k
th component in xint. Here, a positive estimate for λk means that as the importance

rating αnk increases in value, so does the marginal sensitivity to attribute xk.
Equation 7 is dependent on a given value of αn while Equation 8 is dependent on given values for β

and αn. However, both are random components, meaning that integration is required. This is carried out
at the level of the combined likelihood for respondent n, which relates to the stated choice component
as well as the answers to the non-attendance questions. In particular, we have that:

Ln (Ω, λ, κ, ζ, γ) =

∫
β

∫
αn

[
T∏
t=1

Pi∗nt (β, λ | αn)

]
LNAn (κ, ζ | αn)h (β | Ω) g (αn | γ, zn) dβdαn, (9)

where αn follows a K-dimensional Normal distribution with an identity matrix used for the covariance
matrix, and with the mean for αnk being given by γzn. The maximisation of the log-likelihood for this
model, given by

∑N
n=1 ln (Ln (Ω, λ, κ, ζ, γ)) entails the estimation of:

Ω: the vector of parameters of the multivariate distribution of β

λ: the vector of parameters explaining the scaling of marginal utilities as a result of the latent variables

κ: the vector of constants in the probabilities for the observed responses to non-attendance questions

ζ: the vector of parameters explaining the response to non-attendance questions as a result of the latent
variables

γ the vector of parameters linking the latent variables to socio-demographic characteristics of the re-
spondents

An important point needs to be made here. In the choice model component, the �ve λ parameters
essentially play the role of attribute speci�c scale parameters. As recently discussed by Hess and Rose
(2012), disentangling random scale heterogeneity from random heterogeneity in individual coe�cients in
discrete choice models is not possible. This would be even more true in the case of attribute speci�c
scale parameters. Indeed, any increases in magnitude for the marginal utility for attribute k could be
accommodated in either the random distribution of βk, or the eλkαn scaling term. However, a key
distinction arises in the present work. The latent variable component which is interacted with λk in the
utility function is also used inside the additional component modelling the response to the attribute non-
attendance questions. For this reason, the two components λ and β can both be identi�ed, remembering
also that the variance of the random component in αnk is normalised to 1.

The above model speci�cation is applicable to any dataset collecting information on attribute at-
tendance from respondents. However, the focus on attribute importance is somewhat broader, and
where applicable, additional respondent provided information can be employed. As an example, numer-
ous surveys (such as the one used in Section 3) also collect information from respondents on attribute
rankings. Let the mutually exclusive rankings for the K attributes be given by Rk, k = 1, . . . ,K, where
1 ≤ Rk ≤ K, ∀k. We then make use of a rank exploded MNL model. In particular, let us de�ne:

ϕnk = ςk + τkαnk, ∀k, (10)

where, for normalisation, we set ς1 = 0. We then write:

υnr =
K∑
k=1

δ(Rk,r)ϕnk, r = 1, . . . ,K, (11)
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where δ(Rk,r) is equal to 1 if Rk = r, i.e. if attribute k has ranking r, and 0 otherwise. With ς and τ
grouping together the individual elements ςk and τk ∀k respectively, the probability for the response to
the ranking question is then given by:

LRn (ς, τ, αn) =

K−1∏
r=1

eυnr∑K
s=r e

υns
(12)

and Equation 9 can be rewritten as:

Ln (Ω, λ, κ, ζ, γ, ς, τ) =

∫
β

∫
αn

[
T∏
t=1

Pint (β, λ | αn)

]
LNAn (κ, ζ | αn)LRn (ς, τ | αn)h (β | Ω) g (αn | γ, zn) dβdαn,

(13)

meaning that in comparison with Equation 9, we now also need to estimate the two vectors ς and τ ,
remembering that ς1 = 0.

3 Empirical analysis

3.1 Data

The data used in this study are drawn from a study conducted in Australia in 2004, in the context of car
driving non-commuters making choices from a range of level of service packages de�ned in terms of travel
times and costs, including a toll where applicable. The choice scenarios presented respondents with 16
choice sets, each giving a choice between their current (reference) route and two alternative (unlabelled)
routes with varying trip attributes (based around the reference trip). A statistically e�cient design that
is pivoted around the knowledge base of travellers is used to establish the attribute packages in each
choice scenario. The trip attributes associated with each route are free �ow time (FFT), slowed down
time (SDT) caused by congestion, trip time variability (VAR), running cost (RC) and toll cost (TOLL).
An example of a choice scenario (from a practice game) is shown in Figure 1. For the present analysis, we
made use of a sample of 3, 792 observations from 237 respondents travelling for non-commute reasons.

After completion of the 16 choice tasks, each respondent was presented with a screen capturing
information on attribute processing, as shown in Figure 2. In particular, each respondent was asked to
indicate whether they had ignored any of the �ve attributes in making their choices, and whether the
two time components and/or the two cost components had been treated separately or jointly. Finally,
respondents were also asked to rank the �ve attributes in order of importance.

3.2 Model speci�cation

Three di�erent models were estimated on the data, two MMNL models and the hybrid model shown
in Equation 13. All three models were coded in Ox 6.2 (Doornik, 2001), using 500 MLHS draws per
respondent and per random term in simulation based estimation (cf. Hess et al., 2006). For the hybrid
model, simultaneous estimation of all model components was used.

In the �rst MMNL model (MMNL1), constants were included for the �rst two alternatives (ASC1 and
ASC2). All �ve marginal utility coe�cients were speci�ed to vary randomly across respondents, where
a correlated Lognormal distribution was used. Speci�cally, with ξk, k = 1, . . . , 5 giving �ve standard
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Figure 1: An example of a stated choice screen

Figure 2: CAPI questions on attribute relevance
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Normal variates that are distributed independently and identically across respondents, draws for the �ve
marginal utility coe�cients are given by:

βFFT = −eµln(−βFFT)+s11ξ1

βSDT = −eµln(−βSDT)+s21ξ1+s22ξ2

βVAR = −eµln(−βVAR)+s31ξ1+s32ξ2+s33ξ3

βRC = −eµln(−βRC)+s41ξ1+s42ξ2+s43ξ3+s44ξ4

βTOLL = −eµln(−βTOLL)+s51ξ1+s52ξ2+s53ξ3+s54ξ4+s55ξ5 , (14)

where skl (with l ≤ k ≤ 5) relate to the Cholesky terms of the underlying Normal distribution, while e.g.
µln(−βFFT) gives the mean for the underlying Normal distribution for the free �ow time coe�cient.

In the second MMNL model (MMNL2), we allow for two di�erent values for each coe�cient, depend-
ing on whether a respondent indicated that he/she attended to that attribute or not. For a respondent
who indicated that he/she attended only to a subset of the attributes, the utility function will make
use of coe�cients from the �rst group (attending) for those attributes that were said to have been
attended to, and coe�cients from the second group (non-attending) for the remainder. This model thus
uses the respondent reported processing strategies as error-free explanatory variables, and also puts us
at risk of biased results due to correlation between these indicators and other unexplained e�ects. The
model is primarily included for illustrative purposes given its past use in the literature, and despite the
issues discussed above. No attempts were made to additionally incorporate deterministic e�ects linked
to the respondent reported attribute rankings. The second MMNL model makes use of 20 additional
parameters, using two versions of the marginal utility coe�cients (along with the full Cholesky matrix),
one for the attendance group and one of the non-attendance group.

In the hybrid model, we make use of the non-attendance data as well as the ranking data from Figure
2, with likelihood contributions given in Equation 7 and 12. Attempts to include socio-demographic
interactions in the latent variable speci�cation in Equation 5 were unsuccessful, but remain an important
area for future work. In comparison with the �rst MMNL model, the hybrid model makes use of 24
additional parameters, �ve of them in the choice model (the λ terms), with the remaining 19 being
used in the measurement model. This latter model is appropriately normalised and this is the most
parsimonious suitable speci�cation, such that there is no risk of over�tting.

The �ve λ parameters quantify the e�ect of the latent variables inside the choice model, as shown in
Equation 8. With α following a standard Normal distribution, we can see that the β parameters in the
hybrid model thus still follow a Lognormal distribution, just as in the base model. In particular, we have
that:

βn,FFT = −eλFFTαn,FFTeµln(−βFFT)+s11ξ1

βn,SDT = −eλSDTαn,SDTeµln(−βSDT)+s21ξ1+s22ξ2

βn,VAR = −eλVARαn,VAReµln(−βVAR)+s31ξ1+s32ξ2+s33ξ3

βn,RC = −eλRCαn,RCeµln(−βRC)+s41ξ1+s42ξ2+s43ξ3+s44ξ4

βn,TOLL = −eλTOLLαn,TOLLeµln(−βTOLL)+s51ξ1+s52ξ2+s53ξ3+s54ξ4+s55ξ5 . (15)

The remaining sets of parameters (κ, ζ, ς and τ) follow the approach set out in Equations 7 and 10 to
12, with ςFFT normalised to zero.
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Table 1: Estimation results (part 1)

MMNL1 MMNL2 Hybrid model
Respondents 237 237 237
Observations 3,792 3792 3,792

Null LL -4,165.94 -4,165.94 -6,121.95
Final LL -2,306.90 -2,281.62 -3,808.70
par. 22 42 46

attending non-attending

est. t-rat. est. t-rat. est. t-rat. est. t-rat.

ASC1 1.1939 10.47 1.1753 10.34 1.1753 10.34 1.1562 10.30
ASC2 0.1071 1.61 0.0799 1.21 0.0799 1.21 0.1007 1.53

µln(−βFFT) -2.3881 -19.82 -2.5192 -16.94 -2.1882 -8.85 -2.3737 -23.34

µln(−βSDT) -2.0783 -26.69 -2.0343 -28.51 -2.7289 -7.12 -2.0419 -27.28

µln(−βVAR) -3.4978 -18.28 -3.3951 -16.34 -3.7511 -9.26 -3.4360 -20.82

µln(−βRC) -0.6335 -6.34 -0.5953 -5.61 -1.1950 -5.06 -0.6601 -7.13

µln(−βTOLL) -0.5741 -7.32 -0.4747 -6.62 -1.9965 -4.50 -0.6663 -9.34

s11 1.1773 13.43 1.3851 12.85 0.2809 0.95 1.0704 11.12
s21 0.6130 7.48 0.5267 5.23 -0.8413 -2.67 0.5092 7.10
s22 -0.5899 -8.01 -0.4812 -4.75 -1.0661 -3.61 -0.6473 -8.85
s31 -0.1688 -1.31 0.1120 1.26 0.0867 0.62 -0.3601 -4.02
s32 -0.2436 -1.68 0.8916 5.91 0.6905 3.95 -0.1405 -1.65
s33 1.5180 8.62 1.3825 9.25 1.5512 5.30 1.6391 12.51
s41 0.1400 1.40 0.1710 1.65 0.0943 0.44 0.3639 3.25
s42 -0.0258 -0.27 -0.2215 -1.98 -0.0515 -0.21 -0.1421 -1.39
s43 0.0638 0.68 0.1446 1.61 -0.4289 -2.93 0.2540 2.69
s44 0.8698 9.82 0.7869 9.46 0.0206 0.07 0.6770 10.83
s51 0.1597 1.73 0.1910 2.15 0.0635 0.22 0.2185 3.54
s52 0.2119 1.77 0.0760 1.07 -0.5536 -1.76 0.1305 1.99
s53 0.0322 0.33 -0.0198 -0.24 -0.4902 -1.51 0.3148 5.73
s54 0.8771 10.95 0.6891 10.93 0.3294 0.95 0.5198 10.14
s55 0.2622 2.36 0.4003 4.05 0.2818 1.06 -0.0298 -0.45

λFFT - - - 0.3153 2.40
λSDT - - - 0.0921 1.83
λVAR - - - 0.2105 3.29
λRC - - - 0.3915 4.93

λTOLL - - - 0.7683 12.70

3.3 Results

The �rst part of the estimation results are summarised in Table 1. They relate to model statistics and
the estimates of the discrete choice component of the three models. We �rst note that MMNL2 obtains
an improvement in log-likelihood by 25.28 units over MMNL1, which is highly signi�cant at the cost of
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Table 2: Estimation results (part 2)

est. t-rat.

κFFT -3.5149 -5.11
κSDT -2.5658 -6.00
κVAR -1.6016 -6.10
κRC -6.5624 -1.71

κTOLL -3.4950 -4.40

ζFFT -2.0912 -3.29
ζSDT -1.2243 -2.37
ζVAR 1.2999 3.58
ζRC -10.4300 -1.63

ζTOLL -3.1436 -3.44

ςFFT 0 -
ςSDT -0.6680 -3.83
ςVAR -1.2485 -6.50
ςRC -1.2585 -6.43

ςTOLL -0.8698 -4.34

τFFT 1.5316 6.40
τSDT 0.9282 4.82
τVAR -1.2635 -6.12
τRC 1.4905 6.77

τTOLL 1.7129 7.25

20 additional parameters. The �t of the hybrid model cannot be compared to that of the MMNL models
given the latter are estimated on the stated choice data alone, while the hybrid structure also models the
responses to the non-attendance questions and the attribute ranking questions. This is re�ected in the
greater null log-likelihood (LL) for the hybrid model.

Looking at the actual estimates, we see that the values for the two alternative speci�c constants
indicate some inertia towards the reference attendance, along with some reading left-to-right e�ects.
The �ve mean parameters for the underlying Normal distributions are all statistically signi�cant across
all three models. In MMNL2, the estimates for the underlying mean parameters are more negative in
the non-attendance set (except for free �ow time), which translates into coe�cients with a median that
is closer to zero (given the exponential), in line with the notion that these respondents have less strong
sensitivities. For the Cholesky terms, the majority of estimates are also statistically signi�cant.

The �nal set of estimates shown in Table 1 relate to the λ parameters, which have the role of a
scaling parameter on the marginal utilities. Here, we see that for all �ve attributes, increases in the
associated latent variable lead to increases in sensitivity for the concerned attribute. This is line with
the interpretation of the �ve latent variables as underlying importance ratings for the attributes. As
discussed in Section 2, the joint use of randomly distributed eλkαnk and βk components would equate
to an overspeci�cation were it not for the use of αnk, ∀k, in the remaining model components. In the
present context, this can be most readily understood by noting again that the distribution of eλkαnkβk is
Lognormal, just as was the case for the distribution of βk in the MMNL model (see also Hess and Rose,
2012).
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We next turn to the two additional model components that allow the use of the eλkαnk term, namely
the model for the response to the non-attendance questions, and the model for the response to the
ranking question. The estimation results for the additional components for these components in the
hybrid model are shown in Table 2.

We �rst observe negative estimates for all κ parameters, where these re�ect the fact that the stated
non-attendance rates were lower than 50% for each of the �ve attributes. The ς terms for the ranking
component play a similar role, where, with ςFFT normalised to zero, the remaining negative estimates
re�ect the overall highest ranking for the free �ow time attribute, ahead of slowed down time and tolls.

Looking at the remaining parameters, a negative estimate for ζk would mean that as αnk increases,
the probability of respondent n indicating that he/she ignored attribute k is reduced. Similarly, a positive
value for τk would mean that as αnk increases, the probability of respondent n ranking attribute k more
highly is increased.

Notwithstanding the reduced signi�cance for ζRC, we observe the expected sign for the ζ and τ
parameters for free �ow time, slowed down time, running costs, and tolls. Each time, an increase in
the associated latent variable is associated with a reduced probability of stated non-attendance for that
attribute, and an increased probability of higher ranking for the attribute (out of the set of 5 attributes).
At the same time, the estimates for the λ parameters in the choice model component show that such
increases in the latent variables also lead to heightened sensitivity to the associated attributes in the
utility functions. This thus indicates consistent results across the three model components for these four
attributes and justi�es the interpretation of the latent variable as an underlying attribute importance
rating.

However, a di�erent picture emerges for trip time variability. Here, the estimate for λVAR in the choice
model is once again positive, indicating that increases in the latent variable lead to increased marginal
disutilities for the trip time variability attribute. However, the estimate for ζVAR is positive, while the
estimate for τVAR is negative. This thus indicates that increases in the latent variable αn,VAR, which lead
to increases in the marginal disutility for trip time variability, also equate to a higher probability of stated
non-attendance for this attribute, and increased probability of a lower ranking for the attribute.

These results for trip time variability thus highlight a lack of consistency between the behaviour in
the stated choice components and the respondent provided information on attribute non-attendance and
attribute ranking. Hess and Hensher (2010) had already observed a lack of correspondence between
stated and inferred ignoring strategies for the variability attribute, which could help explain this. It also
further highlights the usefulness of the modelling framework set out in this paper as it allows for such
discrepancies to be identi�ed, without relying on deterministic approaches treating respondent provided
information as error free measures of attribute non-attendance and attribute rankings.

As a �nal step, we calculate trade-o�s between coe�cients, with results summarised in Table 3.
In particular, we calculate the monetary valuations for the three travel time components, using either
running costs or tolls as the cost component. We also look at the distribution of the relative sensitivity
to running costs and tolls. Finally, we show the willingness to pay distributions obtained by using a
weighted average of the ratios against running costs and tolls, based on the relative distribution of the
running cost and toll levels for the actual chosen alternative across all observations (labelled as VFFT,
VSDT, and VVAR). In the MMNL model, the βk parameters all follow Lognormal distributions with
the same applying to the eλkαnkβk product in the hybrid model. As a result, all trade-o�s similarly
follow Lognormal distributions, where the calculation of the mean and standard deviation took account
of the correlation between individual distributions. Finally, Table 3 also shows the implied coe�cient of
variation (cv.). The results in Table 3 relate to sample population level distributions, taking into account
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Table 3: Implied trade-o�s and monetary valuations

MMNL1 MMNL2 Hybrid model
mean sd cv. mean sd cv. mean sd cv.

FFT vs RC. (AUD/hr) 26.01 59.76 2.30 29.19 74.48 2.55 20.66 33.63 1.63
SDT vs RC. (AUD/hr) 27.13 44.41 1.64 26.36 36.12 1.37 24.36 30.95 1.27
VAR vs RC. (AUD/hr) 15.44 67.96 4.40 25.70 164.78 6.41 17.60 80.96 4.60

FFT vs toll. (AUD/hr) 25.54 61.59 2.41 30.44 89.13 2.93 26.80 60.32 2.25
SDT vs toll. (AUD/hr) 31.00 65.06 2.10 31.32 60.75 1.94 34.74 71.63 2.06
VAR vs toll. (AUD/hr) 17.31 91.27 5.27 26.76 193.78 7.24 17.44 78.93 4.53

RC vs toll. 1.00 0.37 0.37 1.27 1.21 0.95 1.55 1.83 1.18

VFFT (AUD/hr) 25.87 60.29 2.33 29.06 74.44 2.56 22.45 41.43 1.85
VSDT (AUD/hr) 28.26 50.44 1.78 27.13 39.30 1.45 27.39 42.84 1.56
VVAR (AUD/hr) 15.99 74.77 4.68 25.87 168.34 6.51 17.55 80.37 4.58

the distributions of α and β, as well as the distribution of stated non-attendance in MMNL2.
Overall, the di�erences between MMNL1 and the hybrid model are relatively modest. However, we

observe larger (and arguably more realistic) di�erences between the monetary valuations of free �ow time
and slowed down time in the hybrid model than was the case in MMNL1. It is also notable that for the
majority of trade-o�s, we see reduced heterogeneity in the hybrid model, with the main exception being
the distribution of the relative sensitivity to running costs and tolls. This reduced and more realistic
level of heterogeneity is arguably a re�ection of a greater ability by this model to accommodate the
heterogeneity across respondents by linking the values to underlying attribute importance ratings, where
this is not possible in MMNL1 which does not make use of the additional information. Further interesting
observations can be reached by comparing MMNL1 and MMNL2. Here, we arguably observe more realistic
results in MMNL1, noting for example the wrong ordering between FFT and SDT in MMNL2, as well as
an excessive level of heterogeneity in the valuation of travel time variability. It could be argued that these
�ndings point to underlying �aws in a model that deterministically conditions on respondent reported
processing strategies.

4 Conclusions

There is now a large body of research looking at ways of accounting for possible heterogeneity across
respondents in the way in which individual attributes are processed in a decision making context. Recent
work has focussed on attempting to infer such processing strategies from the data rather than relying
on respondent provided information, although the latter is still widespread too, especially outside the
transport literature. The two main arguments against using respondent provided information on process-
ing strategies are the possible endogeneity bias, and concerns about the empirical correctness of such
respondent provided information. Indeed, repeated empirical evidence has suggested that respondents
who indicate that they ignored a certain attribute still show a non-zero sensitivity to that attribute, albeit
one that is lower than for the remaining respondents.

In the present paper, we have put forward a modelling approach that allows analysts to still make
use of respondent reported information on processing strategies, while avoiding the risks arising with
traditional methods. The model is based on the notion that for each attribute, a respondent has an
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underlying unobserved importance rating which in�uences the marginal utilities in the choice model as
well as the answers to direct questions about processing strategies. This means that the answers to such
questions are treated correctly as dependent variables rather than explanatory variables.

Our empirical application has shown that the proposed model performs well on a typical stated choice
dataset. In particular, we have shown how there is a high level of consistency between the answers to
processing questions concerning four of the �ve attributes, and the marginal utilities for these attributes
in the choice model. Crucially, with the presence of a random component in the latent variable, the
model does not assume a one-to-one relationship and thus allows for di�erences between actual and
stated processing strategies. Furthermore, we use a coe�cient scaling approach rather than setting
the coe�cient to zero at a certain threshold for the latent variable. Our analysis has also revealed
some modest impacts on implied willingness to pay patterns, with a more realistic di�erence between
the valuations for free �ow time and slowed down time, and lower overall heterogeneity. Finally, it
is worth mentioning again that, unlike approaches using respondent reported processing strategies as
explanatory variables, our method does not expose an analyst to the same risk of endogeneity bias. After
estimation, the model can also be applied without the additional measurement model components, i.e.
not making use of the data on processing strategies, which is clearly not possible in the deterministic
model. A comparison with a model conditioning on stated processing strategies seems to indicate that
our proposed structure produces more realistic results.

An interesting observation in our example relates to the �fth attribute, namely trip time variability.
Here, we see that increases in the latent variable lead to heightened marginal disutilities in the choice
model, but higher probability of stated non-attendance and lower attribute ranking. This thus shows a
misalignment between the stated processing strategies for that attribute and the actual behaviour in the
data, an observation also supported by earlier discussions in Hess and Hensher (2010). We attribute this
evidence to the form of the trip time variability attribute. More recent studies have moved away from
using a plus/minus travel time variability attribute, and instead use an attribute de�ned by a number of
travel times and occurrence probabilities over a prede�ned number of repeated trips for the exact same
trip. Thus although there is merit in including the travel time variability attribute in the present analysis
since it was included in the survey, we are inclined to put little emphasis on the substantive empirical
�nding. This does not impact on the main contribution of this paper.

While promising, the results from this paper relate to a single dataset, and future studies should
con�rm the applicability of the model to other datasets. Further work is also required to establish the
impact of socio-demographics on the latent attribute importance ratings. Other functional forms for the
measurement model could also be explored, where it would also be of interest to look at the role that
the actual values of the attributes have on the responses to the processing questions. Finally, as alluded
to in the introduction, numerous other dimensions of interest beyond attribute non-attendance exist in
the �eld of research into processing strategies, and latent variable models such as the one put forward in
this paper are potentially of great use in such areas too.
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