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Abstract 

 

The multinomial probit model has long been used in transport applications; as the basis for mode- and route-

choice in computing network flows, and in other choice contexts when estimating preference parameters. It 

is well known that computation of the probit choice probabilities presents a significant computational 

burden, since they are based on multivariate normal integrals. Various methods exist for computing these 

choice probabilities, though standard Monte Carlo is most commonly used. In this paper we compare two 

analytical approximation methods (Mendell-Elston and Solow-Joe) with three Monte Carlo approaches for 

computing probit choice probabilities. We systematically investigate a wide range of parameter settings and 

report on the accuracy and computational efficiency of each method. The findings suggest that the accuracy 

and efficiency of the optimal Mendell-Elston analytic approximation method offers great potential for wider 

use. 

 

Keywords 

 

Multinomial Probit, Multivariate Normal Integral, Analytical Approximation, Choice Probabilities 

 

1. Introduction 

 

The random utility paradigm models choice by identifying the chosen alternative as the one with the highest 

utility. With the recognition that only part of this utility can be modelled deterministically, a key assumption 

made in estimation as well as application of such models concerns the distribution used to represent the 

remaining random part of utility. This assumption has major implications in terms of the ability to represent 

core phenomena such as unexplained taste heterogeneity across respondents and across choices for the same 

respondent, correlation across choices for the same respondent, and heteroskedasticity across respondents 

and/or alternatives. Crucially, it also has major implications in terms of the computational cost of both 

model estimation and application. The choice probabilities are given by multivariate integrals over the 

distribution of the error terms, and these multivariate integrals only have a closed form solution for certain 

choices of distribution, such the family of GEV models (McFadden, 1978a, and also see overview in Train, 

2009). 

 

While the standard closed form GEV models are appealing due to their low computational cost in estimation 

and application, there are limits to the degree of complexity that can be conveniently represented by making 

use only of (generalised) extreme value distributions for the error term. This justifies moving away from 

such assumptions in certain contexts. The case where the error terms have a joint multivariate normal 

(MVN) distribution is referred to as the (multinomial) probit model (dating back to Thurstone, 1927). 

Network modellers in particular use the probit specification across a host of application areas, for example 

for modelling demand (Zito et al 2010), parking (Teng et al. 2008), accidents (Rifaat & Chin 2007), route 

and mode choice (Connors et al. 2007, Sumalee et al. 2009). Similarly, the choice modelling community is 

well aware of the theoretical appeal of the probit structure, allowing them to address the various core 

behavioural phenomena highlighted above. Nevertheless, in the particular context of choice modelling, 

interest in the probit model waned with the increasing use mixed logit (see e.g. Train, 2009, Dalal & Klein, 

1988, McFadden & Train, 2000), which has a number of advantages in terms of distributional assumptions 

and ease of estimation. However, the error structure of the probit model remains appealing, and interest in 

the error structure of the probit model has been reinvigorated by Bhat’s recent work (Bhat, 2010; Bhat and 

Sidharthan, 2010; Bhat et al., 2010) that highlights the benefit of adopting the probit choice model within a 

composite marginal likelihood (CML) framework for the estimation of choice preferences based on survey 

data
1
. 

 

Notwithstanding identification issues arising from the number of parameters that may need to be estimated 

(Dansie, 1985; Bunch, 1991; Keane, 1992), the key constraint in using the probit model remains the cost of 

                                            
1
 The CML approach works by replacing the complex multivariate integrals inherent to man likelihood functions by a 

combination of separate univariate or bivariate integrals. In the work by Bhat, this is applied to the case of probit 
structures, given the inherent suitability of normal distributions to a CML context. 
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computing the choice probabilities that do not have a closed form expression. This is an issue for both 

prediction and model estimation, where there is a need to evaluate the choice probabilities efficiently and 

accurately. Numerical integration methods have been developed to accurately compute MVN integrals (see 

Drezner and Wesolowsky, 1990; Genz, 1992, 2004; Drezner, 1994; Genz and Bretz, 1999, 2002); indeed 

methods based on these approaches are implemented in commercial software (e.g. MATLAB) offering off-

the-shelf accuracy of at least      for each choice probability in choice sets having up to 25 alternatives. 

However, the execution time for these methods increases very rapidly with both the problem dimension and 

the accuracy demanded from them. For practical applications that require calculation of very many choice 

probabilities, these methods are not fast enough. 

 

The standard approach seen in most applications is to evaluate probit choice probabilities via simple 

frequency simulation (Manski and Lerman, 1981): the utilities of the alternatives are drawn from their 

distribution, the alternative with the highest utility is chosen. This is repeated a number of times, and the 

choice probability of each alternative is approximated by its choice frequency. This approach faces several 

difficulties: capturing low probability alternatives; the results depend on the seed used for the random 

number generator (i.e. ‘noise’ is present); and the frequencies are not continuous. The last issue was tackled 

by McFadden (1989) who processed the simulated frequencies via a logit function. Possibly the most 

sophisticated simulation-based approach is the GHK probability simulator (see Börsch-Supan and 

Hajivassiliou, 1993). This approach rewrites the MVN integral as a product of marginal conditional 

probabilities, and evaluates these marginal probabilities in turn by Monte-Carlo simulation. As it is a 

probability simulator, GHK avoids the problems of estimating low probabilities, and the probabilities 

generated are continuous in the parameters. There remains the issue of noise common to all simulation 

approaches. 

 

In this paper we investigate an alternative family of approaches for computing the probit choice probability 

MVN integrals, that of analytic approximation. Here the MVN integral of interest is transformed into an 

approximating integral that can be evaluated more easily and without simulation. Several analytic 

approximations have been proposed in the literature including the approximations of Clark (1961), Mendell 

& Elston (1974), and Langdon’s (1984a, 1984b) separated split procedure; all of which were compared by 

Kamakura (1989). A method proposed by Solow (1990) was extended by Joe (1995), who compared this 

approach with those of Clark (1961), Mendell & Elston (1974) and Drezner (1990). Within the particular 

context of algorithms for solving probit stochastic user equilibrium, Rosa (2003) compared the above 

mentioned approximations. Both Kamakura and Rosa recommended the Mendell & Elston (ME) approach 

as providing the best compromise between speed and accuracy. In contrast, Joe (1995) found the Solow-Joe 

(SJ) method to perform best. These contradictory conclusions leave the analyst without a clear 

recommendation on the most appropriate approach to adopt. Additionally, tests reported to date have tended 

to be rather restrictive in both the range of parameter values considered and the methods compared, 

hampering the ability to reach general conclusions. The contribution made in this paper is to conduct a 

systematic empirical comparison between key methods. In light of the conclusions from those comparisons 

listed above, we restrict attention in this paper to the two preferred analytic approximation methods: ME and 

SJ, and compare their performance with Monte Carlo methods. Our empirical results offer clear evidence 

that the ME approach outperforms the SJ approach across a wide range of settings. Additionally, ME is 

significantly faster than using even the best Monte Carlo approach for choice problems with up to 15 

alternatives while attaining comparable accuracy; trade-offs between computation time and accuracy as the 

problem dimension increases are illustrated and discussed. 

 

The remainder of this paper is organised as follows. The next section presents multinomial probit 

methodology and discusses the specific analytical approximation techniques used in the work. This is 

followed by the empirical work in Section 3. Finally, Section 4 presents the conclusions from our work. 
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2. Methodology 

 

Consider the issue of calculating the MVN integral necessary to determine choice probabilities for a probit 

model. The choice probability for a given alternative j from a choice set containing K elements [  
       ] is given by 

      [                 ] (1)  

where the vector of random utilities [  ]    is multivariate normal distributed with mean V and covariance 

 .  

      (   )  (2)  
where utility comprises the deterministic utility given by V, and, without loss of generality, a zero-mean 

random vector   

           where      (   ) (3)  

Thus 

      [                    ] (4)  

and the differences           are also normally distributed. Define 

  
  [   ]  here     {

          
         
           

                         (5)  

The  
 
 matrix needed to give the differences for computing    is generated from a KxK zero matrix by 

putting –1 on the diagonal, setting the j-th row to 1s and deleting the j-th column. The     vector of 

differences     
    have zero mean and covariance  

     
    

. Then with         we can write 

the j-th choice probability  

       [     ]   ∭
 

√(  )   |  | 

  
 
     

 
 

     

   [ 
 

 
  (  )

  
 ]             (6)  

where the upper limits are given by the   . For simplicity of notation, we will now begin to drop the index j. 

Finally we transform to standard (multivariate) normal by setting all variances to unity; writing the diagonal 

matrix 

   diag

[
 
 
 

 

√    
 

   
 

√        
 

]
 
 
 

  (7)  

then defining 

         (8)  

The covariance matrix for Z is        , which then has ones along its diagonal. With        the 

choice probability we wish to compute is now 

       ( ) (9)  

with    the standard multivariate normal CDF with covariances given by  , i.e. 

     ∭
 

√(  )   |  | 

        

     

   [ 
 

 
    

   ]              (10)  

Calculating the choice probability for each alternative is hence equivalent to the evaluation of the CDF for 

the     dimensional standard multivariate normal with mean 0, unit variances and covariance    

(comprising correlations    ). All lower limits of integration are    and the upper limits are finite but may 

take positive or negative values. 

 

The choice probability for each of the K alternatives requires one evaluation of the CDF for the     

dimensional standard multivariate normal. We therefore restrict attention to the case of an n-dimensional 

random variable      (   ) with unit variances and dimension  , (for ease of notation set      ). 

We wish to compute the probability 

     [                   ] (11)  
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This probability can be evaluated by Monte Carlo simulation. We draw many values of   [       ] 
from its distribution, and count the proportion of these samples that satisfy (11). This gives an estimate of 

the true probability, which will improve as the number of draws increases. 

 

Mendell and Elston (1974) employ a result of Aitken (1935) to extend the bivariate results of Pearson (1903) 

to the multivariate case. Rewriting the MVN integral (11) in terms of conditional probabilities: 

 

 
    [     ]    [     |     ]    [     |            }]    

    [     |                  }] 
(12)  

     [     ]  ∏  [     |                  }]

 

   

 (13)  

The ME approach is to approximate each univariate conditional distribution (that are not normal) with a 

normal distribution matching the mean and variance. Kamakura (1989) gives a clear account of the ME 

approximation for the evaluation of probit choice probabilities
2
. 

 

Joe (1995) presents several closely related methods, extending the work of Solow (1990) to the more general 

problem of computing probabilities for “rectangular areas” i.e. 

   (                            ) where         (14)  
We consider only the case of evaluating orthant probabilities, having infinite lower limits. For such cases, 

the simplest SJ approach is to write  

     [           ]  ∏  [     |                        }]

 

   

 (15)  

The conditional probabilities in the product are then approximated using indicator functions and the 

following result 

 If [
  
  

]     ([
  

  
]  [

      

      
])  then   (  |     )           

  (     ). (16)  

Extended versions of this approach were also proposed, founded on the evaluation of an exact trivariate or 

quadrivariate probability, in place of the bivariate used in (15), with remaining terms similarly collected as a 

product of conditional probabilities. These extended versions were tested as part of our investigations. 

Clearly they offer more accuracy, though they are very much slower than the bivariate version due to the 

multiple evaluations of three or four dimensional integrals for  hich an ‘exact’ method is used. 

 

In both ME and SJ approaches, the order of conditional terms may influence the result. For ME, Kamakura 

(1989) suggests ordering the terms within the calculation of each choice probability according to their 

covariances. Joe suggests that (for both ME and SJ approaches) an average is taken over many permutations 

of the variate order. Since the number of available permutations is    ⁄ , Joe suggests 100-10000 should be 

sufficient for high dimensional problems. Averaging over multiple re-orderings increases the computation 

time in proportion to the number of repetitions comprising the average. 

 

Comparisons of analytic approximation methods have appeared in published articles, although Joe (1995) 

appears to be the only comparison including both ME and SJ. The tests in Joe (1995) considered problems 

of dimension 5 and 9, with constant positive correlation of 0.1 and then 0.4, computing the specific choice 

probabilities 

     [                   ] with              (17)  

For the cases                    . Therefore, all the tests comparing ME and SJ comprise a total of just 

20 individual choice probabilities. The results indicate SJ is more accurate than ME. Computation time is 

not explicitly compared, though ME is noted to be faster. 

 

The above discussion has shown that the existing comparison between the two methods is not 

comprehensive enough to allow us to reach general conclusions. Additionally, the question of optimal 

reordering remains. This paper addresses these two issues. In particular, we present a wide range of 

                                            
2
 Note that the ME algorithm in Kamakura (1989) has a slight error in equation 15a. 
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numerical tests to investigate the accuracy and efficiency of both ME and SJ methods. We also investigate 

the impact of reordering the terms in (13) and (15).  

 

To give a more complete picture, we also present the same computations made using three Monte Carlo 

methods. First using a simple frequency based (FB) approach, second using the GHK method (implemented 

as described in Bolduc 1999), and finally using Genz’s quasi Monte Carlo approach (GZ) for which 

MATLAB code is readily available on Genz’s  ebsite
3
. 

 

3. Empirical work 

 

At this stage, it is worth justifying our focus on the accuracy of the computation of probabilities alone, rather 

than quantities that depend on these parameters. Choice models have two primary uses, namely the 

estimation of parameters that are used to explain the choices observed in data, and the forecasting of choices 

in hypothetical or future scenarios. Clearly, forecasts themselves are just functions of probabilities (e.g. the 

forecast share for a given mode is obtained by weighted summation across individuals), and as such, the 

importance lies in the accurate calculation of the underlying probabilities. Similarly, parameter estimates are 

obtained through maximisation of the likelihood function, and any error in the computation of probabilities 

that the likelihood function is based on may translate into error in these estimates. This has been illustrated 

extensively for the case of maximum simulated likelihood in the context of using quasi-Monte Carlo 

methods (Bhat, 2001, Train, 2000, Hess et al., 2006), and is also reflected in the theoretical properties of 

maximum simulated likelihood estimates (Lee, 1992, 1995).  

 

3.1. Test Methodology 
 

In the tests presented here we consider MVN-distributed utilities whose differences will then be transformed 

into standard MVN variates (as outlined in Section 2), to calculate the choice probability for each 

alternative. Each test therefore comprises the calculation of choice probabilities for MVN-distributed 

utilities      (   ). The choice probabilities themselves, and the accuracy of each approximation 

method, will depend on the mean and the variance-covariance matrix. Specifically, it may be that some 

approximation methods do better or worse when faced with correlations, or large differences in the variances 

or in the means of the alternatives.  

 

In the tests below we generate many MVN distributions; each requires a mean vector,  , and a covariance 

matrix,  . We need to consider how to generate these means and covariances in order to systematically 

investigate the space of all possible MVN distributions, with the aim of uncovering the accuracy (or lack 

thereof) of the methods being tested. 

 

With a fixed covariance matrix, we illustrate the impact of generating the mean,  , from different ranges. 

Figure 1 shows three bivariate utility distributions (A, B, C). Sampling each component of the mean from 

 ([    ]), as marked by the dashed square, would result in distributions such as A. The distribution 

straddles the diagonal       and hence both alternatives have significant (non-zero) choice probabilities. 

With the same covariance matrix, randomly sampling the components of the mean from a larger range such 

as  ([      ]) often results in a distribution located like B, where the choice probabilities will be 0/1 even 

to the maximum accuracy we might hope to attain. Such cases do not rely on highly accurate estimation of 

that part of the PDF above or below the diagonal. Correlations between alternatives are also influential, and 

may raise or lower the chance of selecting the alternative with lower mean utility. The strong positive 

correlation between alternatives in distribution C increases the probability of choosing alternative 1, in 

comparison with having independent alternatives. 

 

In our tests, we sample the mean for the MVN distribution from  ([    ] ), where the number of 

alternatives is  . Initial tests indicated that the accuracy of the ME and SJ approximation methods may 

depend on the (relative) size of the off-diagonal terms in the covariance matrix. With this in mind, we test 

                                            
3
 http://www.math.wsu.edu/faculty/genz/software/software.html  

http://www.math.wsu.edu/faculty/genz/software/software.html
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covariance matrices   
 
}  of the form          where   is the identity matrix and    } are randomly 

generated correlation matrices (built using eigenvalues randomly drawn from a uniform distribution). The 

scalar   therefore parameterises the relative magnitude of the variances compared with the (off-diagonal) 

correlations. Increasing   increases the magnitude of the diagonal terms, without changing the off-

diagonal/correlation terms. 

 

 
Figure 1: Range for sampling the mean utility 

 

 

    Distributions plotted 

 

 

     ([       ] [
    
    

])  

 

     ([       ] [
    
    

])  

 

     ([       ] [
      
      

])  

We test values of   and   labelled  {          } and            }. Increasing   leads to the 

occurrence of more near 0/1 probabilities as described above. Increasing   amplifies the diagonal terms, 

which dominate the covariance matrix i.e. larger   corresponds to effectively smaller correlations. The tests 

are built from several components 

 

I. The number of alternatives (for each choice) determines the problem dimension  . 

II. Given   we generate a set of     correlation matrices            }. 
III. Given   , we draw   mean vectors    from the uniform distribution  ([      ]

 ). 

IV. Given   , we compute the choice probabilities for       (         ) by each method, for each 

of the pairs              . 

V. For each method, we compute the error in each individual choice probability (there are    ). 

 

Hence for each problem dimension  , at each setting of   and    we compute the choice probabilities for   

MVN distributions. With N alternatives, the choice probabilities for a given       (         ) is an 

N-vector:    
  from “exact” computation (using MATLAB’s mvncdf function),    

  from the SJ 

approximation,    
  via ME and the three Monte Carlo methods    

 ,     
 and    

 .  

 

The ‘exact’ choice probabilities were computed to an accuracy of 1E-4 in MATLAB. These values are used 

to calculate errors in the choice probabilities computed by other methods, for example the ME errors are 

   
     

     
 . Errors below 1E-4 cannot therefore be regarded as precise. 

 

3.2. Role of Internal Averaging 

 

The first set of tests consider the improvement gained by averaging over multiple reordering of the variates 

(as suggested by Joe 1995). These re-orderings are random permutations of the variates in (13) and (15). We 
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also establish a number of draws for each Monte Carlo method that offers reasonable comparison with the 

analytical approximation methods. 

 

We generated a set of 25 choice situations:       (         ),         . Each    drawn from  

 ([        ] ), each    drawn from  ([   ]) and    } generated as described above. For these 25 choice 

problems, the choice probabilities were computed using each method and mean absolute error across all    

situations calculated. This was repeated for numbers of choice alternatives           . Figure 2 and 

Figure 3 show the dependency of errors in the choice probabilities on the number of re-orderings included in 

the average. 

 

For both SJ and ME methods, various non-random orderings were also tested (prompted by Langdon 

1984b); specifically, the terms in (11) were ordered by increasing or decreasing    } before writing 

expressions (13) and (15). For the ME method, the order of decreasing    } was found to be effective. ME 

using this single optimal order of terms is labelled ‘MEO’. For the SJ method  decreasing    } made a slight 

improvement, but averaging over multiple random orderings was much more effective than any single 

ordering. For both ME and SJ, [1,10,20,100,200] random re-orderings were tested. 

 

 
 

Figure 2: ME error with internal averaging. 

Asterisks indicate MEO error (for N=5,7,9,15). 

 
 

Figure 3: SJ error with internal averaging. 

Many more tests were performed that confirm the trends shown here: internal averaging significantly 

improves the accuracy of SJ, much less so for ME. ME outperforms SJ (note y-scale in Figures 2 & 3) in 

fact the ME method with no averaging (any random single internal ordering of terms) is often more accurate 

than the SJ method with all permutations included (note y-axis scales in the Figures). MEO with the single 

optimal ordering of terms (lines without markers in Figure 2) significantly outperforms unordered ME. 

 

   

Figure 4: Errors in Monte Carlo methods with number of draws 
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Similar tests were run to determine appropriate numbers of draws for the three Monte Carlo based methods 

(Figure 4). For the GZ method the tests examined [50, 200, 500, 1000, 5000] draws. For GHK [500, 5000, 

10000, 25000, 50000] draws were tested and for the FB approach [1000, 5000, 25000, 50000, 100000] 

draws were considered. 

 

Based on these findings, the tests that follow in the next section consider only the single optimal ordering of 

terms for ME, labelled MEO. For SJ we report tests using 10 internal re-orderings, labelled SJ10; averaging 

over 10 random re-orderings improves accuracy appreciably. No more re-orderings were included as 

execution time increases with each additional reordering. For the Monte Carlo methods, the simple 

frequency based MC is run using 50,000 draws (labelled FB50k), GHK with 10,000 draws (labelled 

GHK10k), and the quasi-MC method of Genz is run with 500 draws (labelled GZ500). These selections are 

a compromise between accuracy and computation time and were chosen to give the best comparison with 

MEO in the tests below. 

 
3.3. Comparison of Computation Speed With Precision 

 

We now test the trade off between execution speed and accuracy across a wide range of settings. Considered 

in turn are             . For each problem dimension N, we consider    17 settings of the utility range 

  , and   19 values for the (relative) magnitude of variance   : 

                                                                                      } 
                                                                                                    } 

At each setting (     ) we draw   values for the deterministic utility    (      )
  and generate   

covariance matrices (having diagonal elements     ); the   choice probabilities are then computed for 

these   MVN distributions via each method. We use     , hence for each problem dimension,  , we 

compute choice probabilities for          8075 MVN distributions. Tests extending beyond these 

parameter ranges did not reveal any substantial new insights. 

 

Table 1: Summary of Execution Times and Errors. The data for each problem dimension [5,7,9,15 

alternatives] come from 8075 choice situations, ranging over different specifications of mean and 

covariance (see Section 3.1) 

nAlt 
 

MEO GZ 500 GHK 10k FB 50k SJ10 ML 

5 

Time per choice (s) 0.0014 0.0303 0.0871 0.0226 0.0292 0.6580 

Time per choice (x MEO) 1 22 63 16 21 477 

Errors > 1E-4 69% 38% 47% 92% 86% 0% 

Errors > 0.001 0.9% 0.0% 2.3% 48.8% 39.3% 0% 

        

7 

Time per choice (s) 0.0029 0.0703 0.1974 0.0316 0.0846 2.2461 

Time per choice (x MEO) 1 25 69 11 30 788 

Errors > 1E-4 55% 51% 47% 90% 91% 0% 

Errors > 0.001 0.8% 0.1% 2.4% 42.6% 55.8% 0% 

        

9 

Time per choice (s) 0.0048 0.1265 0.3487 0.0367 0.1811 4.3376 

Time per choice (x MEO) 1 26 73 8 38 906 

Errors > 1E-4 50% 56% 46% 88% 92% 0% 

Errors > 0.001 0.8% 0.8% 2.5% 37.9% 62.3% 0% 

        

15 

Time per choice (s) 0.014 0.42 1.24 0.064 0.878 22.224 

Time per choice (x MEO) 1 30 88 5 63 1584 

Errors > 1E-4 61% 62% 42% 84% 92% 0% 

Errors > 0.001 0.3% 3.6% 1.8% 28.3% 68.0% 0% 

 

We present a summary of results in Table 1. The average time for evaluating one choice with   alternatives 

is recorded in seconds, and also in multiples of the time taken for the MEO computation. The proportion of 

errors > 1E-4 (the error used for computing ‘exact’ values) and > 1E-3 is recorded. 
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MEO with optimal ordering is always the quickest method, and is more than 20 times faster than any of the 

methods that give comparable accuracy. FB50k improves in its speed relative to MEO, though is still four 

times slower at      and five times less precise. 

 

The execution time of every method increases with problem dimension. The execution time of methods ML, 

SJ10, GHK10k not only increase, but also worsen significantly in comparison with MEO. The relative speed 

of GZ500 also gets slightly worse compared to MEO as the problem dimension increases. Not surprisingly 

the execution time of FB scales best with   and its accuracy does not degrade appreciably, though it is one 

of the least accurate methods throughout (with this number of draws).  

 

The most accurate methods are MEO, GHK10k and GZ500, though the latter is consistently 20x-30x slower. 

For    , GZ500 offers the highest level of accuracy, with more than half of all points having errors within 

the range of the ‘exact’ ML method. For    , the MEO and GZ500 methods are comparable in accuracy, 

and at     & 15 we see that MEO has eclipsed the accuracy of GZ500. MEO is more than 25 times faster 

in both cases. GHK10k also competes well in terms of accuracy, especially at higher dimensions, but is 60-

80 times slower than MEO. Perhaps GZ with more draws could compete in terms of accuracy and speed 

with GHK. 

 

From the same data, we plot the cumulative distributions of absolute errors in the        individual 

choice probabilities in Figures 2-5 for            respectively. The lines showing the distribution of 

errors for MEO, GZ500 and GHK10k are close together with more than half the errors below 2E-3, while 

the absolute errors for SJ10 and FB50k are substantially larger. Note the errors for MEO are greater than 

GZ500 and GHK10k for    , these methods are almost equivalent for       while for      

GHK10k appears more accurate (though 88 times slower than MEO). 

 

 
Figure 5: Choices with 5 alternatives 

 
Figure 6: Choices with 7 alternatives 
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Figure 7: Choices with 9 alternatives 

 
Figure 8: Choices with 15 alternatives 

Next we examine whether or not the errors are dependent on the values of   and  . Recall that the mean is 

sampled from  ([    ] ) with larger   increasing the occurrence of 0/1 probabilities, while   controls 

dominance of the diagonal terms in the covariance matrix. At each setting (     ) we compute the mean 

absolute error across the      individual choice probabilities. For    , contours of these mean absolute 

errors are plotted in Figure 4. The tests with 5, 9 and 15 alternatives reveal a similar pattern in the errors for 

each method. 

 

Figure 9: Mean absolute error for choices with 7 alternatives at different settings for the mean and 

covariance of the underlying MVN pdf. 

The upper limit of the displayed errors is taken from the maximum of the mean absolute errors from all 

methods, excluding SJ10. The large white area in SJ10 therefore denotes errors greater than 0.0014. SJ10 is 

the least accurate method across a wide range of settings, though does well along the   axis where the mean 

of the underlying MVN pdf is constrained to be near zero. MEO is accurate throughout the range of different 
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choice situations tested, doing less well only in a region near to the origin, where       so that 

correlations dominate the covariance matrix. In this specific region, GZ500 and GHK10k perform better; 

this was similarly the case for         . Methods GZ500 and GHK10k in particular display a distinct 

overall trend in errors, which was noticeable across all problem dimensions tested. This indicates values of 

  and   where one of these methods might be preferred over the other, though computation time also should 

be considered. Plots (not displayed here) of the maximum error for any individual choice probability, reveal 

similar patterns of performance to those shown in Figure 9. 

 

It is worth noting a potential weakness of the SJ method that arises from the need to invert a matrix relating 

to the covariance. Computing the probabilities via SJ (using the algorithm described in Joe 1995) can lead to 

ill conditioning of this matrix and hence inaccurate results. This can lead to inaccurate results from SJ. It 

may be possible to design a different algorithmic implementation of the SJ approach to guard against this 

problem, but this is outside the scope of this paper. 

 

3.4. Distribution of Error with Individual Probability Value 

 

We now investigate whether there are systematic errors with probability value, with a view to determining, 

for example, if small probabilities are always under or over-estimated. The errors in every individual choice 

probability from the tests above are plotted in turn in the figures below. There are        points on each 

such plot. 

 

The distribution of errors may not be clear due to the concentration of the plotted points, hence refer to 

Figures 2-5. All sets of axes have the same scale to aid comparison. Similar plots of the errors for 7 and 15 

alternatives do not reveal any substantial new insights. 

 

 

Figure 10: Error with choice probability value for choice situations with 5 alternatives 

Some errors in SJ10 extend beyond the area plotted in Figures 10 & 11, increasing the y-axis to include 

these points would not allow the detail in the MEO, GZ500 and GHK10k errors to be examined. Our results 

show the smaller errors for MEO and GZ500. All Monte Carlo methods show a symmetric distribution of 

errors, this is not the case for MEO, and even more markedly for SJ10. 
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Figure 11: Error with choice probability value for choice situations with 9 alternatives 

3.5. Computing Derivatives 

 

As Daganzo (1979, p72) explains (attributed to McFadden, 1978b), the (off diagonal) partial derivatives of 

the choice probabilities can be expressed exactly as the choice probability from a probit model with one 

fewer alternative, i.e.: 

    (   )

   
  (

| (  )|

  | |
)

 
 

   (
 

 
 (  ))   ( (  )  (  )) (18)  

where        if    ,      if     and  (  )  (  )  (  ) are simple transformations of   and   with 

the j
th

 rows and columns removed. The diagonal terms         can then be computed immediately from the 

off-diagonal derivatives. Hence fast and accurate calculation of the derivatives is equivalent to fast and 

accurate calculation of the choice probabilities as presented above. 

 

For the estimation of choice models, the derivatives of the log-likelihood function are of interest, therefore 

requiring first derivatives of the choice probabilities with respect to the preference parameters. These are 

easily constructed from the above result. Similarly, in traffic networks, sensitivity analysis of the 

equilibrium flows can be an important tool and this relies on the Jacobian of the choice probabilities exactly 

as written above (see for example Connors et al., 2007). 

 

For completeness, we also briefly present results showing the accuracy of using numerical differences to 

approximate these partial derivatives, when the choice probabilities being differenced have been calculated 

using MEO, SJ or via Monte Carlo. As before, we consider 100 distributions       (         ); 

effectively a subsample of the scenarios investigated in the tests above (sections 3.3 and 3.4). The matrices 

   } are randomly generated correlation matrices as before, with   drawn from  ([      ]). The mean 

utilities   are drawn from  ([      ] ). For each  , we construct the difference matrix as follows (shown 

here for     to conserve space): 

    
 

 
[

  ( )    (  )   ( )    (  )   ( )    (  )

  ( )    (  )   ( )    (  )   ( )    (  )

  ( )    (  )   ( )    (  )   ( )    (  )
] (19)  
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where        [             ]  with a one in the i
th

 place. This approximate Jacobian is calculated 

using choice probabilities according to each of the above methods. 

 

As noted earlier, errors in the ‘exact’ method may influence the results  hen differencing small 

probabilities. To account for this, we record how many choice probabilities are sufficiently small that they 

are within the computational error 1E-4 of the ‘exact’ method. The errors computed are mean absolute error 

and max absolute error averaged over all tested choice situations (100 for each of 5, 7 and 9 alternatives). 

The results shown in Table 2 depend on the value of   used to compute the differences. All tests show that 

SJ is the least accurate method. FB50k and MEO are similarly accurate for        , while MEO offers 

improved accuracy at        and      . Meanwhile, methods GZ500 and GHK10k are very much more 

accurate in computing these derivatives than all other methods tested, although it should be noted that any 

speed penalty is increased by   times in computing these numerical differences. For 5,7 and 9 alternatives 

this implies GZ500 will be 110,175 and 234 times slower than MEO while GHK10k will be 315,483 and 

657 times slower. 

 

Table 2: Approximating derivatives by numerical differencing: mean absolute error over 100 

computations with interval  . 

nAlt 5 7 9 

       40% 50% 62% 

MEO 

  [              ] 
 [0.0319 0.0032 0.0003] [0.0240 0.0024 2.9E-4] [0.0263 0.0026 3.0E-4] 

SJ10 

  [              ] 
[1.1519 0.1168 0.0119] [1.5407 0.1556 0.0154] [1.8384 0.1823 0.0182] 

FB50k 

  [              ] 
[0.0369 0.0066 0.0019] [0.0283 0.0050 0.0013] [0.0287 0.0043 0.0011] 

GZ500 

  [              ] 
[3.1E-4 3.1E-5 3.1E-6] [2.7E-4 2.7E-5 2.5E-6] [2.7E-4 2.7E-5 2.7E-6] 

GHK10k 

  [              ] 
[3.1E-4 3.1E-5 3.2E-6] [2.7E-4 2.7E-5 2.7E-6] [2.7E-4 2.7E-5 3.1E-6] 

 

 

4. Conclusion 

 

In this paper we have compared two analytical approximations and three Monte Carlo methods for 

computing the probit choice probabilities in terms of accuracy and computational efficiency. The first of 

these is the “Solo -Joe” (SJ) approach, implemented using the algorithm proposed in Joe (1995). The other 

is the “Mendell-Elston” (ME) approach, as described in Kamakura (1989). While it is not possible to be 

exhaustive, the results presented here give what we believe to be the most thorough and in-depth comparison 

of these analytical approximation methods to date in the context of multinomial probit choice. The results 

should be of interest to both network modellers and choice modellers, not least given the renewed interest in 

probit among the latter, where recent CML developments have adopted the SJ approach. 

 

We investigated the ordering of terms in both SJ and ME methods. For ME there appears to be an optimal 

ordering of conditional terms (as described) that significantly improves accuracy, and this makes redundant 

the process of averaging across multiple random orderings. For the case of SJ we did not find an optimal 

ordering of terms that substantially increased the accuracy of this method. Averaging across random 

orderings was found to be the most effective way to attain the maximum accuracy available with the SJ 

approach, with the most important increase in accuracy coming from the inclusion of just 10 re-orderings. 

 

The optimally ordered ME approach substantially outperforms the SJ approach across a wide range of 

settings. ME is substantially more accurate and faster than using a standard frequency based Monte Carlo 

(FB50k) approach. More sophisticated Monte Carlo approaches can offer equal or greater accuracy than 

ME, but at higher computational cost especially as the problem dimension increases.  
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Especially in model estimation, chosen alternatives with very small probabilities can have a disproportionate 

impact, making accurate calculation of such probabilities essential. The results from Section 3.4 show the 

spread of errors across the computed choice probabilities. We note that ME is more accurate in computing 

small probabilities than SJ or MC, and is comparable with GZ and GHK doing worse for         and as 

well or better for         . 

 

It is important to acknowledge that there are many parameter dimensions to test in assessing whether one 

approximation method is more accurate than another. The tests reported here are an illustrative selection of 

all tests performed in this research. Each analytic approximation method suffers from the disadvantage that 

the analyst cannot demand arbitrary accuracy, whereas in principle this is possible via MC, GZ and GHK. 

Moreover, we cannot offer bounds for the errors of these methods. Finally, for problems with a very small 

number of alternatives, exact evaluation of choice probabilities is computationally feasible using established 

methods of numerical integration. For higher dimensional problems, ME is an accurate and efficient method 

for computing choice probabilities. 

 

With the strength of the results presented here, it seems that the wider use of the “Mendell-Elston” method 

in probit work, and implementation within a composite marginal likelihood estimator are thus promising 

areas for new developments. While the primary motivation for this paper is to help with the estimation and 

application of discrete choice models, there may also be applications in other areas where the computation 

of multivariate normal integrals is needed. 
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