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Abstract

For a locally compact group G, the measure convolution algebra M(G) carries a natural coprod-
uct. In previous work, we showed that the canonical predual C0(G) of M(G) is the unique predual
which makes both the product and the coproduct on M(G) weak∗-continuous. Given a discrete semi-
group S, the convolution algebra ℓ1(S) also carries a coproduct. In this paper we examine preduals
for ℓ1(S) making both the product and the coproduct weak∗-continuous. Under certain conditions
on S, we show that ℓ1(S) has a unique such predual. Such S include the free semigroup on finitely
many generators. In general, however, this need not be the case even for quite simple semigroups
and we construct uncountably many such preduals on ℓ1(S) when S is either Z+ × Z or (N, ·).
2000 Mathematics Subject Classification: 43A20, 22A20.

1 Introduction

A dual Banach algebra is a Banach algebra A which is the dual of a Banach space A∗,
such that the product on A is separately weak∗-continuous. The motivating example is
a von Neumann algebra, where the predual is isometrically unique. This need not be
true for Banach algebras: consider ℓ1 with the zero product. In [6], we considered the
measure algebra of a locally compact group, M(G), which is a dual Banach algebra with
respect to the predual C0(G). We can define a natural coproduct on M(G), dualising the
multiplication on C0(G). In [6, Theorem 3.6], we showed that C0(G) is the unique predual
making both the product and the coproduct onM(G) weak∗-continuous. The proof makes
use of results which are only true for group algebras. In this paper we consider preduals
of ℓ1-semigroup algebras which make both the product and coproduct weak∗-continuous.
Such preduals are termed Hopf algebra preduals. Perhaps surprisingly, we show that quite
simple semigroups, such as Z+ × Z, give rise to algebras with uncountably many Hopf
algebra preduals.

Given a predual A∗ of A, we can naturally identify A∗ with a closed subspace of
A∗. Then the product on A becomes separately weak∗-continuous if and only if A∗ is a
submodule of A∗, for the usual action of A on its dual. It is easy to see that isomorphic
preduals will induce the same subspace of A∗. Henceforth, by a predual A∗ of a Banach
algebra A, we shall mean a closed submodule of A∗ which is a Banach space predual.

We shall consider convolution algebras ℓ1(S) for a (countable) semigroup S. We write
(δs)s∈S for the standard unit vector basis of ℓ1(S), so each a ∈ ℓ1(S) can be uniquely
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expressed as a norm-convergent sum

a =
∑

s∈S

asδs where ‖a‖ =
∑

s∈S

|as|.

The coproduct on ℓ1(S) is the map Γ : ℓ1(S) → ℓ1(S × S) defined by

Γ(δs) = δ(s,s) (s ∈ G).

Let E ⊆ ℓ∞(S) = ℓ1(S)∗ be a predual for ℓ1(S). Then it is easy to see (compare with [6,
Lemma 3.3]) that Γ is weak∗-continuous if and only if E is a subalgebra of ℓ∞(S). As in
[6], we shall term such a predual a Hopf algebra predual of ℓ1(S).

In the next section, we show that the study of Hopf algebra preduals of ℓ1(S) is
equivalent to the study of certain semigroup topologies on S. For certain cancellative
semigroups S, including a finite direct sum of copies of Z+ and the free semigroup on
finitely many generators, we show that ℓ1(S) has a unique Hopf algebra predual. In
Section 3, we exhibit semigroups admitting uncountably many Hopf algebra preduals.
These semigroups are quite simple in nature, including Z+ × Z and (N, ·). Since this
last semigroup is isomorphic to the direct sum of countably many copies of Z+, it is not
possible to extend the uniqueness result for Hopf algebra preduals of finite direct sums
of Z+ to infinite direct sums. In Section 4, we exhibit a semigroup S for which ℓ1(S)
admits no Hopf algebra preduals and we end in Section 5 by showing that ℓ1(N,max) has
a unique predual in full generality.

Finally, some words about notation. For a Banach space E, we write E∗ for its dual,
and use the dual-pairing notation 〈µ, x〉 = µ(x) for µ ∈ E∗ and x ∈ E.

Acknowledgments. The second named author is supported by a Killam Postdoctoral
Fellowship and a Honorary PIMS PDF. He also wishes to thank Professor Anthony To-
Ming Lau for his kind support and encouragement during this research.

2 General theory

Let us recall the following, which is [6, Lemma 3.4].

Lemma 2.1. Let K be a locally compact Hausdorff space, let L be a compact Haus-
dorff space, and let A be a closed subalgebra of C0(K) such that A∗∗ is Banach algebra
isomorphic to C(L). Then A is a C∗-subalgebra of C0(K).

A semigroup K which carries a topology is said to be semitopological when the product
is separately continuous.

Proposition 2.2. Let S be a discrete semigroup, and let E ⊆ ℓ∞(S) be a Hopf algebra
predual for ℓ1(S). Then E is a C∗-subalgebra of ℓ∞(S). Let K be the character space
of E. Then K is canonically bijective to S, and we use this bijection to turn K into a
semigroup. Then:
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1. K is a semitopological semigroup;

2. for each s ∈ K and L ⊆ K compact, the sets {t ∈ K : st ∈ L} and {t ∈ K : ts ∈ L}
are compact.

This structure on K completely determines E.

Proof. Arguing as in the proof of [6, Corollary 3.5], E∗∗ is Banach algebra isomorphic to
ℓ∞(S). It then follows immediately from Lemma 2.1 that E is a C∗-subalgebra of ℓ∞(S).
Let K be the character space, and let G : E → C0(K) be the Gelfand transform. Then
following the proof of [6, Theorem 3.6], we get a natural bijection θ : S → K such that

f(k) = 〈G−1(f), δθ−1(k)〉 (f ∈ C0(K), k ∈ K).

It also follows that K is semitopological.
The second condition follows as the left and right translations by elements of K will

take C0(K) to C0(K). Let L ⊆ K be compact, and let s ∈ K. For each r 6∈ L, we can
find fr ∈ C0(K) with fr(t) = 1 for t ∈ L, and fr(r) = 0. Then let g = fr · δs, so that

g(t) = 〈δt, g〉 = 〈δt, fr · δs〉 = 〈δst, fr〉 = fr(st) (t ∈ K).

Then as E = C0(K) is an ℓ1(S)-submodule, we have that g ∈ C0(K), so the set Lr =
{t ∈ K : |fr(st)| ≥ 1} is compact. As fr(r) = 0, we see that t ∈ Lr implies that st 6= r.
Similarly, if st ∈ L, then certainly t ∈ Lr. So we conclude that

⋂

r 6∈L

Lr = {t ∈ K : st ∈ L}

is a compact set, as required. Similarly, {t ∈ K : ts ∈ L} is compact.
Finally, suppose that F ⊆ ℓ∞(S) is another predual, inducing a semitopological semi-

group L by a bijection φ : S → L. Suppose that K = L in the sense that φθ−1 : K → L
is a bi-continuous homomorphism. Let x ∈ E, so that

〈x, δs〉 = G(x)(θ(s)) (s ∈ S).

Let f = G(x) ∈ C0(K), and let g ∈ C0(L) be defined by

g(l) = f
(

θφ−1(l)
)

(l ∈ L).

Let H : F → C0(L) be the Gelfand transform, and let y = H−1(g) ∈ F . Then

〈y, δs〉 = H(y)(φ(s)) = g(φ(s)) = f(θ(s)) = 〈x, δs〉,

so that x = y. As x ∈ E was arbitrary, we conclude that E ⊆ F , and by symmetry, that
actually E = F , as required.

Lemma 2.3. Let S be a countable semigroup, and let σ be a locally compact, semitopo-
logical topology on S satisfying condition (2) above. Then C0(S, σ) is a predual for ℓ1(S).
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Proof. As S is countable, it follows that C0(S, σ)∗ = M(S, σ) = ℓ1(S). Let f ∈ C0(S, σ),
so that

〈δs · f, δt〉 = f(ts) (s, t ∈ S),

so δs · f ∈ C0(S, σ) if and only if fs : t 7→ f(ts) is in C0(S, σ). As S is semitopological, fs

is continuous. For ǫ > 0, we see that

X = {s ∈ S : |f(s)| ≥ ǫ}

is compact, so that
{t ∈ S : |fs(t)| ≥ ǫ} = {t ∈ S : ts ∈ X},

is compact, by condition (2). So fs ∈ C0(S, σ). Similarly, f · δs ∈ C0(S, σ) for s ∈ S, so
C0(S, σ) is a submodule of ℓ∞(S).

It hence follows that studying Hopf algebra preduals of ℓ1(S) is completely equivalent
to studying locally compact semitopological topologies on S which satisfy condition (2),
a task we shall concern ourselves with in much of the rest of this paper.

Corollary 2.4. Let S be a countable semigroup. Then a locally compact topology σ on
S makes C0(S, σ) into a predual for ℓ1(S) if and only if:

1. (S, σ) is a semitopological semigroup;

2. is s ∈ S and (tn) ⊆ S is a sequence such that either (tns) or (stn) has a convergent
subsequence, then (tn) has a convergent subsequence.

Proof. As S is countable, (S, σ) is metrisable. Hence the second condition is easily seen
to be equivalent to the second condition in the result above.

We say that a semigroup S is weakly cancellative when the left and right translation
maps are all finite-to-one maps; S is cancellative when these maps are all injective. A
simple calculation (see, for example, [4, Theorem 4.6]) shows that S is weakly cancellative
if and only if c0(S) is a predual for ℓ1(S).

However, even when S is not weakly-cancellative, ℓ1(S) might still have a predual:
for example, the one-point compactification of N, denoted by N∞, carries an obvious
semigroup structure for which c, the space of convergence sequences, forms a predual
for ℓ1(N∞). This fits into our framework, as c = C0(N∞, σ) where σ is the one-point
compactification topology on N∞.

Proposition 2.5. Let E ⊆ ℓ∞(N∞) be a Hopf algebra predual for ℓ1(N∞). Then E = c.

Proof. Let (N∞, σ) be the character space of E, so σ satisfies the conditions of Corol-
lary 2.4. To show that E = c, we need to show that σ is the one-point compactification
topology. That is, we need to show that ∞ is the only limit point of σ.

Towards a contradiction, suppose that (tn) is a sequence in N, converging to t < ∞.
By moving to a subsequence, we may suppose that (tn) is an increasing sequence, and
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that tn > t for all n. Then (tn) = (tn − t+ t) converges, so by the corollary, (tn − t) have
a convergent subsequence, say (sn). Let s = limn sn, so that as σ is semitopological,

s+ t = lim
n
sn + t = lim

n
(tn − t) + t = lim

n
tn = t.

However, this contradicts s ∈ N = {1, 2, 3, · · · }.

2.1 Cancellation properties

We shall now consider cancellative semigroups S, so that c0(S) is a Hopf algebra predual
for ℓ1(S).

Lemma 2.6. Let S be a countable cancellative semigroup. Then a locally compact topol-
ogy σ on S makes C0(S, σ) into a predual for ℓ1(S) if and only if:

1. (S, σ) is a semitopological semigroup;

2. is s ∈ K and (tn) ⊆ S is a sequence such that either (tns) or (stn) converges, then
(tn) converges.

Proof. We need only check that this new second condition is implied by the second con-
dition in Corollary 2.4. So let s ∈ S and let (tn) ⊆ S be a sequence such that (tns)
is convergent. Hence (tn) has a convergent subsequence, converging to t0 ∈ S say. As
(S, σ) is a semitopological semigroup, (tns) converges to t0s. Suppose that (tn) does not
converge to t0, so we can find a subsequence which is always distant from t0. By applying
the second condition from the preceding lemma again, we find a different limit point, say
t1, for some further subsequence. Again, we hence have that (tns) converges to t1s. So
t0s = t1s, and as S is cancellative, t0 = t1, a contradiction. Hence (tn) converges, as
required.

We make the following temporary definition.

Definition 2.7. Let S be a semigroup. We say that S is finitely left divisible if for each
s ∈ S, the set {t ∈ S : ∃ r ∈ S, tr = s} is finite.

Theorem 2.8. Let S be a finitely left divisible, cancellative, finitely generated semigroup.
Let E ⊆ ℓ∞(S) be a Hopf algebra predual for ℓ1(S). Then E = c0(S).

Proof. By the previous results, we need to show that if σ is a locally compact topology
on S satisfying the conditions of Lemma 2.6, then σ is the discrete topology. Towards
a contradiction, suppose that σ is not the discrete topology. Hence we can find a non-
isolated point t0 ∈ S. Let (tn) be some sequence in S \ {t0} which converges to t0.

Let C be a finite set which generates S. For each t ∈ S, define the length of t to be l(t),
the smallest n such that t = c1 · · · cn for (ci) ⊆ C. As {tn} is infinite, we see that {l(tn)}
is unbounded. By moving to a subsequence, we may suppose that l(t1) < l(t2) < · · · .
Write tn = cn,1cn,2 · · · cn,l(tn) where cn,i ∈ C for all n and i. By moving to a subsequence,
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we may suppose that cn,1 = c1 for all n. By moving to a further subsequence, we may
suppose that cn,2 = c2 for all n. We can continue, and then by a diagonal argument, we
may suppose that cn,k = ck for all n and all k ≤ n.

For each m, for n ≥ m, we have that tn = c1c2 · · · cnrn for some rn ∈ S. Let un,k =
ckck+1 · · · cnrn. As tn → t0, we see that limn c1c2 · · · ck−1un,k = t0, and so the corollary
implies that (un,k)

∞
n=1 converges, to vk say. Hence t0 = c1c2 · · · ck−1vk, for all k.

As S is finitely left divisible, we see that the set {c1c2 · · · ck : k ≥ 1} is a finite set in
S. In particular, we can find j < k with

c1c2 · · · cj = c1c2 · · · ck.

We have that tk = c1c2 · · · ckck,k+1 · · · ck,l(tk), where l(tk) is minimal. However, we now
also see that tk = c1c2 · · · cjck,k+1 · · · ck,l(tk), which is a shorter expression, contradicting
the minimality of l(tk). This contradiction shows that t0 is indeed an isolated point, as
required.

Corollary 2.9. Let k ≥ 1, and let S = Zk
+, or S = Sk, the free semigroup on k generators.

Then c0(S) is the unique Hopf algebra predual of ℓ1(S).

See Section 3 below for counter-examples showing that we cannot remove the “finitely
left divisible” or “finitely generated” conditions from the above theorem.

2.2 Rees semigroups of matrix type

Rees matrix semigroups appear naturally in the study of when ℓ1-semigroup algebras are
amenable: see [4, Chapter 10] for further details. In general, they are a way of generating
semigroups from other (semi)groups.

Let S be a semigroup with 0, let I and J be index sets, let P be an J × I matrix
of entries from S, called the sandwich matrix. Then the Rees semigroup M(S; I, J ;P )
is the collection of all I × J matrices with entries from S, where exactly one entry is
non-zero. Then we can define a product on M(S; I, J ;P ) by

A · B = APB (A,B ∈ M(S; I, J ;P )).

Of course, we cannot multiply matrices with entries in S, as we have no concept of
addition. However, a moment’s though reveals that in all calculations, at most one entry
will be non-zero, so there is no ambiguity in what we mean by “matrix multiplication”
in this setting.

An alternative description is the following. Let (ǫi,j)i∈I,j∈J be the matrix units, so each
element of M(S; I, J ;P ) can be written, formally, as sǫi,j for some s ∈ S. Then

sǫi,j · tǫk,l = sPj,ktǫi,l (s, t ∈ S, i, k ∈ I, j, l ∈ J).

Lemma 2.10. For a group G, we have that M(G; I, J ;P ) is weakly-cancellative if and
only if I and J are finite.

6



Proof. If J is infinite, then for s ∈ G, i ∈ I and j ∈ J , fixed, notice that

sǫi,j · tǫk,l = sPj,ktǫi,l = sPj,aP
−1
j,a Pj,ktǫi,l = sǫi,j · P

−1
j,a Pj,ktǫa,l,

for any t ∈ G, k, a ∈ I and l ∈ J . So the map given by multiplication on the left by
sǫi,j is an infinite-to-one map. Hence M(G; I, J ;P ) weakly-cancellative implies that J is
finite; similarly I must be finite.

Proposition 2.11. Let G be a countable group, let I and J be finite, and let S =
M(G; I, J ;P ). Then c0(S) is the unique C∗-predual for ℓ1(S).

Proof. Let σ be a locally compact Hausdorff topology on S, making (S, σ) a semitopo-
logical semigroup. As (S, σ) is a countable Baire space, there exists s0 = g0ǫi0,j0 ∈ S with
{s0} open. Then, for g ∈ G, i ∈ I and j ∈ J , notice that

{(h, k, l) ∈ G× I × J : hǫk,l · gǫi,j = s0} = {(h, i0, l) : l ∈ J, hPl,ig = g0}

= {(g0g
−1P−1

l,i , i0, l) : l ∈ J}

if j = j0, or the empty set otherwise. Hence, for all g ∈ G and i ∈ I, the set

Ug,i = {gP−1
l,i ǫi0,l : l ∈ J}

is open. Similarly, we can check that

Vg,j = {P−1
j,k gǫk,j0 : k ∈ I}

is open, for all g ∈ G and j ∈ J .
Notice now that for g, h ∈ G, I ∈ I and j ∈ J ,

Ug,i ∩ Vh,j =

{

{

gP−1
j0,iǫi0,j0

}

: gP−1
j0,i = P−1

j,i0
h

∅ : otherwise.

So we have that {gǫi0,j0} is open, for any g ∈ G.
Let X be the collection of open singletons in (S, σ). Then we have just proved that if

g0ǫi0,j0 ∈ X for some g0, then gǫi0,j0 ∈ X for all g ∈ G. Also, X must be dense in (S, σ),
for otherwise, the complement of the closure of X would be a non-empty open subset
of a locally compact space, and hence locally compact itself. Repeating the Baire space
argument would then yield an open singleton not in X, a contradiction.

Towards a contradiction, suppose that X is not all of S. Then there exists s0 =
g0ǫi0,j0 6∈ X and a sequence (gnǫin,jn

) in X converging to s0. By moving to a subsequence,
we may suppose that in = i and jn = j for all n, so that

gnǫi,j → s0.

We then see that for g, h ∈ G, k, p ∈ I and l, q ∈ J ,

gPl,ignPj,phǫk,q = gǫk,l · gnǫi,j · hǫp,q → gǫk,l · g0ǫi0,j0 · hǫp,q = gPl,i0g0Pj0,phǫk,q.
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Pick (k, q) ∈ I × J and f ∈ G such that fǫk,q ∈ X. By the above, we see that

g−1
0 P−1

l,i0
Pl,ignPj,pP

−1
j0,pfǫk,q → g−1

0 P−1
l,i0
Pl,i0g0Pj0,pP

−1
j0,pfǫk,q = fǫk,q.

As {fǫk,q} is open, we must have that

Pl,ignPj,p = Pl,i0g0Pj0,p (n ∈ N).

However, this would imply that the

P−1
l,i Pl,i0g0Pj0,pPj,pǫi,j → s0 = g0ǫi0,j0,

which is a contradiction, as P−1
l,i Pl,i0g0Pj0,pPj,pǫi,j ∈ X, yet s0 6∈ X.

3 Semigroup algebras with many preduals

In this section, we shall show that if S = (N, ·), the semigroup of natural numbers with
multiplication product, or if S = (Z+ × Z,+), then ℓ1(S) admits a continuum of Hopf
algebra preduals. Notice that both semigroups are cancellative, and the former is finitely
(left) divisible but not finitely generated, whereas the latter is finitely generated but not
finitely (left) divisible. We begin with a elementary technical observation.

Lemma 3.1. Let a, α ∈ N, and define

Xa,α = {0} ∪
{

k
∑

i=1

2−mi : 1 ≤ k ≤ a, α ≤ m1 < . . . < mk

}

⊆ [0, 1],

equipped with the subspace topology. Let α ≤ m1 < m2 < · · · < mk for some 1 ≤ k ≤ a,
and let x0 =

∑k

i=1 2−mi. For β > mk, let

Y =
{

k+l
∑

i=1

2−mi : 0 ≤ l ≤ a− k, β ≤ mk+1 < · · · < mk+l

}

.

Then Y is open in Xa,α.

Proof. We claim that (x0−2−mk−a, x0]∩Xa,α = {x0}. Given x1 ∈ Xa,α with x0−2−mk−a <
x1 ≤ x0, write

x1 =

l
∑

i=1

2−ni

for some 1 ≤ l ≤ a and α ≤ n1 < · · · < nl. Certainly n1 ≥ m1, as otherwise x1 > x0. If
n1 > m1, then

x1 ≤ 2−n1 + 2−n1−1 + · · ·+ 2−n1−a+1 = 21−n1
(

1 − 2−a
)

< 2−m1(1 − 2−a) ≤ x0 − 2−mk−a,
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contrary to hypothesis. Thus n1 = m1. If k = 1, then l = 1 as x1 ≤ x0. Otherwise, we
must have n2 ≥ m2. Again if n2 > m2, then

x1 ≤ 2−n1 + 2−n2 + 2−n2−1 + · · ·+ 2−n2−a+2 ≤ 2−m1 + 2−m2
(

1 − 21−a
)

≤ x0 − 2−mk−a,

gives a contradiction. Therefore n2 = m2. Proceeding in this way shows that l = k and
n1 = m1, · · · , nk = mk, establishing the claim.

A similar argument shows that any x1 ∈ Xa,α with x0 ≤ x1 < x0 + 2−mk−a can be
written in the form

x1 =

k
∑

i=1

2−mi +

l
∑

i=k+1

2−mi

for some k ≤ l ≤ a and mk < mk+1 < · · · < ml. If in addition x1 < x0 + 2−β, then
mk+1 ≥ β so x1 ∈ Y . Thus (x0 − 2−mk−a, x0 + min(2−mk−a, 2−β))∩Xa,α = Y and so Y is
open in Xa,α.

Let S be a subsemigroup of a commutative group (G,+), and let S1 = Z+ × S. Let
(wn)∞n=1 be a sequence in S with the property that for each s, t ∈ S, s − t ∈ G can be
written in at most one way as

s− t =

k
∑

i=1

wmi
−

l
∑

j=1

wnj
(*)

where k, l ∈ Z+ and {m1, . . . , mk, n1, . . . , nl} is a collection of distinct natural numbers.
As usual the empty sum takes the value 0 ∈ G so the condition (*) shows that if k, l ≥ 1
and

k
∑

i=1

wmi
=

l
∑

j=1

wni

for some sets (of distinct natural numbers) {m1, . . . , mk} and {n1, . . . , nl}, then k = l
and {m1, . . . , mk} = {n1, . . . , nl}. For (a, s) ∈ S1, and α ∈ N, define

Ua,s,α =

{

(

a− k, s+

k
∑

i=1

wmi

)

: 0 ≤ k ≤ a, α ≤ m1 < · · · < mk

}

.

Lemma 3.2. With the notation and conditions as above, the collection {Ua,s,α} forms a
base for a topology σ on S1 making (S1, σ) a locally compact semitopological semigroup.

Proof. We first show that {Ua,s,α : (a, s) ∈ S1, α ∈ N} is a base for a topology σ on

S1. To this end, note that if (b, t) ∈ Ua,s,α \ {(a, s)}, say (b, t) = (a − k, s +
∑k

i=1wmi
),

then Ub,t,β ⊂ Ua,s,α whenever β ≥ mk + 1. Now for (a, s), (b, t) ∈ S1 and α, β ∈ N, take
(c, u) ∈ Ua,s,α∩Ub,t,β. Then there exists γ1, γ2 such that Uc,u,γ1

⊆ Ua,s,α and Uc,u,γ2
⊆ Ub,t,β .

Then
Uc,u,max(γ1,γ2) ⊆ Uc,u,γ1

∩ Uc,u,γ2
⊆ Ua,s,α ∩ Ub,t,β,
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so the Ua,s,α do form a base for a topology.
Next we show that σ is a Hausdorff topology. Take (a, s) 6= (b, t) ∈ S1 and suppose

first that s = t so that a 6= b. If there exists α and β with Ua,s,α ∩Ub,t,β 6= ∅, then we can
find k, l with a− k = b− l, and sequences (mi) and (nj) with

s+
k

∑

i=1

ωmi
= s+

l
∑

j=1

ωnj
.

Condition (*) enables us to conclude that k = l, so that a = b, a contradiction. In
particular Ua,s,1 and Ub,s,1 are disjoint neighbourhoods of (a, s) and (b, s) respectively.
Now suppose that t− s 6= 0. If t− s can be written as

t− s =
k̃

∑

i=1

wm̃i
−

l̃
∑

j=1

wñj
, (1)

where k̃ + l̃ ≥ 1 and where m̃i and ñj are all distinct natural numbers, then set

α = β = max{m̃1, . . . , m̃k̃, ñ1, . . . , ñl̃} + 1.

Otherwise, set α = β = 1. Assume toward a contradiction that Ua,s,α ∩ Ub,t,β 6= ∅. So we
can find k, l with a− k = b− l, and (mi) and (nj) with

s+

k
∑

i=1

wmi
= t+

l
∑

j=1

wnj
that is, t− s =

k
∑

i=1

wmi
−

l
∑

j=1

wnj
.

The uniqueness of the expression (1) implies that

{m̃1, . . . , m̃k̃, ñ1, . . . , ñl̃} ⊂ {m1, . . . , mk, n1, . . . , nl}.

This contradicts either α ≤ m1 < . . . < mk or β ≤ n1 < . . . < nl. In conclusion σ is a
Hausdorff topology.

Our next objective is to show that σ is locally compact. For a ∈ Z+ and α ∈ N define

Xa,α = {0} ∪
{

k
∑

i=1

2−mi : 1 ≤ k ≤ a, α ≤ m1 < . . . < mk

}

⊆ [0, 1],

so that Xa,α is compact. Fix (a, s, α) and define a map

ψ : Ua,s,α → Xa,α, (a, s) 7→ 0,
(

a− k, s+

k
∑

i=1

wmi

)

7→
k

∑

i=1

2−mi .

Condition (*) implies that ψ is well-defined; it is then obvious that ψ is a bijection. We
claim that ψ is actually a homeomorphism. As Ua,s,α is Hausdorff and Xa,α is compact,
it is enough to show that ψ−1 is continuous, or equivalently, that ψ is open.

10



To show this, as sets of the form Ub,t,β form a basis for σ, it is enough to show that for
each (b, t) ∈ Ua,s,α and β with Ub,t,β ⊆ Ua,s,α, we have that ψ(Ub,t,β) is open in Xa,α. For

(b, t) ∈ Ua,s,α \ {(a, s)}, say (b, t) = (a − k, s +
∑k

i=1wmi
) we have Ub,t,β ⊆ Ua,s,α if and

only if β > mk. Then

ψ(Ub,t,β) =
{

k+l
∑

i=1

2−mi : 0 ≤ l ≤ a− k, β ≤ mk+1 < . . . < mk+l

}

,

which is open in Xa,α by Lemma 3.1. Similarly ψ(Ua,s,β) is open in Xa,α for all β ≥ α,
and so σ is locally compact.

Finally we show that σ makes the semigroup operation separately continuous. Let
(b, t) ∈ S. We claim that the map

Mb,t : (x, u) 7→ (x+ b, u+ t), S1 → S1,

is σ-continuous. Indeed, let (a, s) ∈ S1 and let α ∈ N. Then (x, u) ∈ M−1
b,t (Ua+b,s+t,α) if

and only if

x+ b = a+ b− k , and u+ t = s+ t+
k

∑

i=1

wmi
;

where 0 ≤ k ≤ a + b, and α ≤ m1 < . . . < mk. This happens if and only if

x = a− k , and u = s+

k
∑

i=1

wmi
;

where 0 ≤ k ≤ a, and α ≤ m1 < . . . < mk. So M−1
b,t (Ua+b,s+t,α) = Ua,s,α. Since (a, s) ∈ S1

and α ∈ N are arbitrary, we deduce that Mb,t is continuous.

We continue with the notation introduced prior to Lemma 3.2. We say (**) holds if for
each t ∈ S, there exists an αt ∈ N such that whenever s ∈ S, n ≥ αt, and s− t+wn ∈ S,
then s− t ∈ S.

Lemma 3.3. With the notation above, if both (*) and (**) hold, then the topology σ
satisfies the property that a sequence (xn, un) in S1 converges whenever (xn + a, un + s)
converges, for some (a, s) ∈ S1.

Proof. Let (a, s) ∈ S1 and let (xn, un) ⊆ S1 be such that (xn + a, un + s) converges to
some (b, t) ∈ S1. For each α ≥ αs ∈ N, there exist nα such that whenever n ≥ nα we
have that (xn + a, un + s) ∈ Ub,t,α. That is, there exists 0 ≤ l ≤ b and α ≤ n1 < · · · < nl

with

xn + a = b− l, un + s = t+
l

∑

j=1

wnj
.

11



So b− l ≥ a. Also, as nl ≥ α ≥ αs, and t− s +
∑l−1

i=1wni
+ wnl

= un ∈ S, (**) shows

that t− s+
∑l−1

i=1wni
∈ S. By induction, t− s ∈ S. Thus

xn = b− a− l, un = t− s+
l

∑

j=1

wnj
,

where 0 ≤ l ≤ b − a and α ≤ n1 < . . . < nl; that is, (xn, un) ∈ Ub−a,t−s,α. We conclude
that (xn, un) converges to (b− a, t− s), as required.

Remark 3.4. When (wn) satisfies the conditions (*) and (**), so too does any subsequence
of (wn). For a subsequence (wmi

), denote by σ(mi) the topology on S1 constructed from
(wmi

). We see that (0, wmi
) → (1, 0) with respect to σ(mi). If (wnj

) is another subsequence
such that {mi}△{nj} is infinite, then it is easy to see that (0, wnj

) 6→ (1, 0) with respect
to σ(mi). Thus the topologies σ(nj ) and σ(mi) differ. We can then deduce that there exists
a continuum of different topologies σ on S1 satisfying the conclusions of the previous two
lemmas.

Corollary 2.9 above shows that ℓ1(Z2
+) has a unique Hopf algebra predual. We shall

now show that Z2
+ admits a continuum of distinct non-discrete locally compact topologies:

of course, none can satisfy the 2nd condition of Corollary 2.4 or Lemma 2.6. We need
the following easy fact.

Proposition 3.5. Let (mi : 1 ≤ i ≤ k) and (nj : 1 ≤ j ≤ l) be sequences in N such that
each k ∈ N occurs at most twice in each sequence. Suppose that

k
∑

i=1

22mi =

l
∑

j=1

22nj

.

Then k = l, and (mi) and (nj) are rearrangements of each other.

Theorem 3.6. There exist a continuum of locally compact topologies on (Z2
+,+) making

it a semitopological semigroup.

Proof. Set G = Z and S = Z+, and let wn = 22n

for n ∈ N. The previous proposition
shows that this sequence satisfies (*) so Lemma 3.2 and Remark 3.4 apply.

Theorem 3.7. There exist a continuum of Hopf algebra preduals for ℓ1(Z+ × Z).

Proof. Now we set G = S = Z, and have (wn) as above. As S = G, the condition (**) is
obviously satisfied. The result then follows from Lemma 2.6.

Theorem 3.8. There exist a continuum of Hopf algebra preduals for ℓ1(N, ·).

Proof. Let G be the multiplicative group of positive rational numbers, and let S be the
sub-semigroup consisting of odd natural numbers. We see that Z+ × S ∼= (N, ·) by the
isomorphism (k, n) 7→ 2kn. Finally, let (wn) be any increasing sequence of odd prime
numbers. We see that (wn) satisfies the conditions (*) and (**). The result again follows
from Lemma 2.6.
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4 Semigroup algebras with no Hopf algebra preduals

Recall that a semigroup S is said to be an inverse semigroup if, for each s ∈ S, there
exists a unique s−1 ∈ S such that ss−1s = s and s−1ss−1 = s−1. In this section, we shall
exhibit an inverse semigroup S which admits no semitopological structure giving rise to
a Hopf algebra predual for ℓ1(S).

Let S be the collection of maps f : N0 → N0 such that there exists a finite (and
possibly empty) set F ⊂ N such that f maps F injectively into N and f(n) = 0 for
n 6∈ F . We call F the injective domain of f . Under composition of functions S is a
countable inverse semigroup.

Lemma 4.1. Let σ be any locally compact Hausdorff topology on S making S into a
semitopological semigroup. Then there exists f ∈ S, with injective domain F ⊂ N such
that, for any finite set F ′ ⊂ N disjoint from F , the set

O(f, F ′) = {h ∈ S : h(n) = f(n) (n ∈ F ), h(n) = 0 (n ∈ F ′)}.

is open.

Proof. As S is countable, and (S, σ) is a Baire space, there exists f ∈ S with {f} open.
As (S, σ) is semitopological, for each g ∈ S, the set {h ∈ S : hg = f} is open.

Fix F ′ ⊂ N finite and disjoint from F . Define g ∈ S with injective domain G so that
g(n) = n for n ∈ F and g(N ∩ (G \ F )) = F ′. Then h ∈ S has hg = f if and only if
h(n) = f(n) for n ∈ F and h(n) = 0 for n ∈ F ′, that is, if and only if h ∈ O(f, F ′).

Theorem 4.2. There is no locally compact Hausdorff topology σ on S such that C0(S, σ)
is a predual for ℓ1(S).

Proof. Suppose towards a contradiction that C0(S, σ) is a predual for ℓ1(S). By the
previous lemma, there exists f ∈ S with injective domain F such that O(f, F ′) is open
for any finite F ′ ⊂ N which is disjoint from F . Fix such F ′ and fix n0 ∈ F ′. For each n,
define fn : N0 → N0 by

fn(k) =











f(k) : k ∈ F,

n : k = n0,

0 : otherwise.

Then fn ∈ S for sufficiently large n. Let p ∈ S be the function p(k) = k for k ∈ F , and
p(k) = 0 otherwise.

Suppose, towards a contradiction, that (fn) does not converge to f . Then there exists
an open set U ∈ σ with f ∈ U , and a sequence n1 < n2 < · · · with fni

6∈ U for all i.
Now, fnp = f for all n, so fni

p → f . By Corollary 2.4, there exists a subsequence of
(fni

) which converges to g, say. As σ is Hausdorff, g 6= f . However, as fni
p = f for all i,

it follows that gp = f . That is g(k) = f(k) for all k ∈ F . As g 6= f there exists k0 6∈ F
with g(k0) 6= 0.

Let h1 ∈ S be the function h1(k0) = k0 and h1(k) = 0 otherwise, and let h2 ∈ S be
the function h2(g(k0)) = g(k0) and h2(k) = 0 otherwise. By construction h2gh1 6= 0, yet

13



h2fni
h1 = 0 unless k0 = n0 and ni = g(n0). In particular h2fni

h1 = 0 for sufficiently large
i. Thus

0 6= h2gh1 = lim
i
h2fni

h1 = 0,

a contradiction, as required.
Therefore fn → f . However, f ∈ O(f, F ′), yet fn 6∈ O(f, F ′) for all n, giving the

required contradiction to finish the proof.

5 A unique algebraic predual

We end with an example of an infinite semigroup S for which c0(S) is the unique Banach
algebra predual on ℓ1(S). Other examples of Banach algebras for which the predual is
uniquely determined include von Neumann algebras (Sakai’s classical result shows that
von Neumann algebras have a unique isometric predual. The extension to the non-
isometric case can be found in [6]) and B(E) for a reflexive Banach space E with the
approximation property, [5, Theorem 4.4].

We first need a little machinery. Let A be a Banach algebra. We turn A∗ into an
A-bimodule in the usual way,

〈a · µ, b〉 = 〈µ, ba〉, 〈µ · a, b〉 = 〈µ, ab〉 (a, b ∈ A, µ ∈ A∗).

Define bilinear maps from A∗∗ ×A∗ and A∗ ×A∗∗ to A∗ by

〈Φ · µ, a〉 = 〈Φ, µ · a〉, 〈µ · Φ, a〉 = 〈Φ, a · µ〉 (a ∈ A, µ ∈ A∗,Φ ∈ A∗∗).

Finally, define bilinear maps 2,3 : A∗∗ ×A∗∗ → A∗∗ by

〈Φ2Ψ, µ〉 = 〈Φ,Ψ · µ〉, 〈Φ3Ψ, µ〉 = 〈Ψ, µ · Φ〉 (Φ,Ψ ∈ A∗∗, µ ∈ A∗).

These are the Arens products; they are contractive Banach algebra products on A∗∗.
For further details, see [3, Section 2.6] or [7, Section 1.4]. When A is commutative,
Φ2Ψ = Ψ3Φ for Φ,Ψ ∈ A∗∗.

Define WAP(A∗) ⊆ A∗ to be those functionals µ ∈ A∗ such that

〈Φ2Ψ, µ〉 = 〈Φ3Ψ, µ〉 (Φ,Ψ ∈ A∗∗).

Then WAP(A∗) is an A-submodule of A∗. It is a simple calculation (see [5, Section 2]
or [8, Section 4]) that if A is a dual Banach algebra with predual A∗ ⊆ A∗, then A∗ ⊆
WAP(A∗).

Now let S = (N,max). Consider the character space of ℓ∞(S), which as S is discrete,
is equal to the space of ultrafilters on S, written βS. For ω ∈ βS, let δω ∈ ℓ∞(S)∗ be the
character induced by ω, so that

〈δω, f〉 = lim
s→ω

f(s) (f ∈ ℓ∞(S)).
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So for S = (N,max), let ω, υ ∈ βS be non-principal, so that for f ∈ ℓ∞(S), we have that

〈δω2δυ, f〉 = lim
s→ω

lim
t→υ

f(max(s, t)) = lim
t→υ

f(t) = 〈δυ, f〉.

Hence, if f ∈ WAP(ℓ∞(S)) ⊆ ℓ∞(S), then

〈δυ, f〉 = 〈δω2δυ, f〉 = 〈δυ2δω, f〉 = 〈δω, f〉.

It follows easily that
WAP(ℓ∞(N,max)) = c0(N) ⊕ C1.

Lemma 5.1. Let A∗ be a Banach space, let A = A∗
∗, and let F ⊆ A∗ be a closed subspace

such that A∗ ⊆ F and F/A∗ is one-dimensional. Let E ⊆ F be a spacial predual for A.
Then

E⊥ :=
{

M ∈ F ∗ : 〈M,µ〉 = 0 (µ ∈ E)
}

is also one-dimensional.

Proof. We can find µ0 ∈ A∗ \ A∗ with F being the span of A∗ and µ0. Pick M0 ∈ A∗∗

with 〈M0, µ0〉 = 1 and 〈M0, µ〉 = 0 for all µ ∈ A∗. By restriction, we shall regard M0 as a
member of F ∗. If E⊥ = {0} then E = F , which is a contradiction, as F strictly contains
A∗ and so cannot be a predual for A. So, towards a contradiction, suppose that we can
find linearly independent vectors M1,M2 ∈ E⊥.

For i = 1, 2, if we restrict Mi to A∗ ⊆ F , then we induce a member of A∗
∗ = A, say

ai ∈ A, which satisfies 〈Mi, µ〉 = 〈µ, ai〉 for µ ∈ A∗. Then Mi − ai annihilates A∗, so as
F is the linear span of A∗ and µ0, we can find αi ∈ C with Mi − ai = αiM0. We hence
have that

0 = 〈Mi, µ〉 = 〈µ, ai〉 + αi〈M0, µ〉 (µ ∈ E, i = 1, 2).

If α1 = 0, then for each µ ∈ E, we have that 〈µ, a1〉 = 0. As E is a predual for A, this
means that a1 = 0, so that M1 = 0, a contradiction. Similarly, α2 6= 0.

We hence see that

〈µ, α−1
1 a1〉 = −〈M0, µ〉 = 〈µ, α−1

2 a2〉 (µ ∈ E).

As E is a predual, this shows that α−1
1 a1 = α−2

1 a2. Thus

M1 = a1 + α1M0 = α1

(

α−1
1 a1 +M0

)

= α1

(

α−1
2 a2 +M0

)

= α1α
−1
2

(

a2 + α2M0

)

= α1α
−1
2 M2,

a contradiction, as required.

Theorem 5.2. Let S = (N,max), and let E ⊆ ℓ∞(S) be a predual for ℓ1(S). Then
E = c0(S).

Proof. We have that
E ⊆ WAP(ℓ∞(S)) = c0(N) ⊕ C1.
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We identify the dual of c0(N) ⊕ C1 with ℓ1(N) ⊕ C1. By the previous lemma, E⊥ is one
dimensional, so there exists a ∈ ℓ1(N) and α ∈ C, not both zero, such that

E⊥ = {Φ ∈ WAP(ℓ∞(S))∗ : 〈Φ, µ〉 = 0 (µ ∈ E)} = C(a+ α1).

It hence follows that

E =
{

(x, β) ∈ c0 ⊕ C1 : 〈a, x〉 = −αβ
}

.

Then E = c0 if and only if a = 0.
So, towards a contradiction, suppose that a 6= 0. Pick (x, β) ∈ E. As 1 ∈ ℓ∞(S) is

clearly invariant for the ℓ1(S) module action, we see that (δs · x, β) ∈ E for s ∈ S, and so

〈a, x〉 = −αβ = 〈a, δs · x〉 = 〈δs · a, x〉 (s ∈ S).

Let a =
∑

n∈N
anδn, so for s ∈ N,

δs · a =
∑

n

anδmax(s,n) =
(

s
∑

n=1

an

)

δs +

∞
∑

n=s+1

anδn.

Let x =
∑

n xnδn, so we see that
∞

∑

n=1

anxn = 〈a, x〉 = 〈δs · a, x〉 =
s

∑

n=1

anxs +
∞

∑

n=s+1

anxn (s ∈ N).

That is,
s

∑

n=1

anxn = xs

s
∑

n=1

an (s ∈ N).

Letting s → ∞, we conclude that 〈a, x〉 =
∑

n anxn = 0. As (x, β) ∈ E, we see that
〈a, x〉 = −αβ, so either α = 0, or β = 0. If (x, β) ∈ E implies that β = 0, then E ⊆ c0,
which as E is a predual means that E = c0 as required.

Otherwise, we have that α = 0, so that (x, β) ∈ E if and only if 〈a, x〉 = 0. If
〈1, a〉 = 0, then for (x, β) ∈ E, 〈x+ β1, a〉 = 0, so a annihilates E. As E is a predual,
a = 0, contradiction. So

∑

n an 6= 0. As E is an ℓ1(S)-module, we have that 〈a, x〉 = 0
implies that 〈δs · a, x〉 = 0. If a = as0

δs0
for some s0 ∈ S, then 〈x, a〉 = 0 if and only

if 〈x, δs0
〉 = 0, which clearly does not imply that 〈x, δs · δs0

〉 is zero for all s. Otherwise,
choose s0 < s1 minimal with as0

6= 0 and as1
6= 0. Let s be greater than s0 and s1 chosen

such that
∑s

n=1 an 6= 0, which is possible, as
∑

n an 6= 0. Let x = as0
δs1

− as1
δs0

+ δs, so
that 〈x, a〉 = 0, but

〈x, δs · a〉 =

s
∑

n=1

an 6= 0.

This final contradiction completes the proof.

The underlying fact which allows this proof to work is that for S = (N,max), we have
that WAP(ℓ∞(S)) is very small. In [2], Chou shows that when G is an infinite discrete
group, then WAP(ℓ∞(G))/c0(G) contains an isometric copy of ℓ∞. So there is no hope
of a generalisation of the above proof to group algebras.
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