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Abstract

Given locally compact quantum groups G1 and G2, we show that if the convolution al-
gebras L1(G1) and L1(G2) are isometrically isomorphic as algebras, then G1 is isomorphic
either to G2 or the commutant G

′
2. Furthermore, given an isometric algebra isomorphism

θ : L1(G2) → L1(G1), the adjoint is a ∗-isomorphism between L∞(G1) and either L∞(G2) or
its commutant, composed with a twist given by a member of the intrinsic group of L∞(G2).
This extends known results for Kac algebras (although our proofs are somewhat different)
which in turn generalised classical results of Wendel and Walter. We show that the same re-
sult holds for isometric algebra homomorphisms between quantum measure algebras (either
reduced or universal). We make some remarks about the intrinsic groups of the enveloping
von Neumann algebras of C∗-algebraic quantum groups.

MSC classification: 16T20, 20G42, 22D99, 46L89, 81R50 (Primary); 46L07, 46L10, 46L51
(Secondary).

Keywords: Locally compact quantum group, isometric isomorphism, intrinsic group.

1 Introduction

Locally compact quantum groups generalise Kac algebras, and form an abstract generalisation of
Pontryagin duality. For a locally compact quantum group G, we shall write L∞(G) for the von
Neumann algebraic quantum group, and C0(G) for the (reduced) C∗-algebraic quantum group. As
one can move between these algebras, we tend to view them as representing the same object G.
Let L1(G) be the “quantum convolution algebra”, which is the predual of L∞(G), made into a
Banach algebra by using the coproduct. We can alternatively identify L1(G) as a certain closed
ideal in C0(G)∗. Notice that even in the classical case, where G is even an abelian locally compact
group, the algebra L1(G) does not determine G, as if G is finite, then L1(G) is isomorphic to C(Ĝ),
the continuous functions on the dual group Ĝ, and so L1(G) is isomorphic to L1(H) if and only if
Ĝ and Ĥ are of the same cardinality.

However, Wendel’s theorem [25] shows that if we take the norm into account, then L1(G) com-
pletely determines G. To be precise, if θ : L1(G2) → L1(G1) is an isometric algebra isomorphism,
then there is a character χ on G1, a positive constant c > 0, and a continuous group homomor-
phism α : G1 → G2 such that θ(f)(s) = cχ(s)f(α(s)) almost everywhere for s ∈ G1. The constant
c simply reflects the fact that the Haar measure is only unique up to a constant. This was gener-
alised to Fourier algebras by Walter, [24]: here notice that A(G) and A(Gop) are also isometrically
isomorphic, where Gop is the opposite group to G, and indeed Walter’s theorem shows (amongst
other things) that A(G1) and A(G2) are isometrically isomorphic if and only if G1 is isomorphic
to either G2 or Gop

2 .
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The Kac algebra case was shown by De Cannière, Enock and Schwartz in [5] (see also [6]). The
proof in the Kac algebra case uses that the antipode is bounded, which is no longer true in the
locally compact quantum group case. We instead use a characterisation of the unitary antipode
through the Haar weight (see [14, Proposition 5.20] and Section 3.1 below). The intuitive idea
is to show that an isometric algebra isomorphism must intertwine the unitary antipode, although
our actual argument is slightly indirect.

Our principle result is that when θ : L1(G2) → L1(G1) is an isometric algebra isomorphism,
then there is u, a member of the intrinsic group of L∞(G2), such that x 7→ θ∗(x)u is either a
∗-isomorphism, or an anti-∗-isomorphism, from L∞(G1) to L

∞(G2). We briefly study the intrinsic
group, and prove that it coincides with the collection of characters of L1(G2), as we expect from
Wendel’s Theorem. An anti-∗-isomorphism to L∞(G2) can be converted to a ∗-isomorphism to
the commutant L∞(G2)

′ by composing with x 7→ Jx∗J ; the possibility of an anti-∗-isomorphism
occurring can of course already be seen in Walter’s Theorem. In particular, if L1(G1) and L

1(G2)
are isometrically isomorphic, then G1 is isomorphic to either G2 or G′

2. We can easily remove
the possibility of G′

2 occurring by restricting to completely isometric (or even just completely
contractive) isomorphisms between L1(G1) and L

1(G2), see Section 3.3.
Having established the result for L1 algebras, we can prove similar results for quantum measure

algebras– for example, for isometric algebra isomorphisms between the dual spaces C0(G2)
∗ and

C0(G1)
∗. Indeed, we work with some generality, and look at C∗-bialgebras (A,∆) which admit a

surjection π : A→ C0(G) which intertwines the coproduct, and such that π∗ identifies L1(G) as an
ideal in A∗. This includes the reduced and universal C∗-algebraic quantum groups associated with
G. As in the Kac algebra case, we use order properties of A∗∗ to determine L1(G) inside A∗. Our
characterisation of such isometric isomorphisms involves the intrinsic group of A∗∗, but we show
that this is always canonically isomorphic to the intrinsic group of L∞(G). We finish to showing
how, in some sense, the picture becomes clearer by embedding everything into L∞(Ĝ), and here
the interaction between multipliers and the antipode becomes important (compare with [3]).

1.1 Acknowledgements

The second named author would like to acknowledge the financial support of the Marsden Fund
(the Royal Society of New Zealand).

2 Locally compact quantum groups

We give a quick overview of the theory of locally compact quantum groups. For readable intro-
ductions, see [12] or [21]. Our main reference is [14], which is a self-contained account of the
C∗-algebraic approach to locally compact quantum groups. We shall however mainly work with
von Neumann algebras, for which see [13]. However, this paper is not self-contained, and should be
read in conjunction with [14]. Indeed, in a number of places, we shall reference [14], where really
we need the obvious von Neumann algebraic version of the required result. See also [16] and [23]
for the C∗-algebraic and von Neumann algebraic approaches, respectively.

A Hopf-von Neumann algebra is a pair (M,∆) where M is a von Neumann algebra and ∆ :
M → M⊗M is a unital norm ∗-homomorphism which is coassociative: (ι ⊗ ∆)∆ = (∆ ⊗ ι)∆.
Then ∆ induces a Banach algebra product on the predual M∗. We shall write the product in M∗

by juxtaposition, so

〈x, ωω′〉 = 〈∆(x), ω ⊗ ω′〉 (x ∈M,ω, ω′ ∈ M∗).
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Similarly, the module actions of M on M∗ will be denoted by juxtaposition.
Recall the notion of a normal semi-finite faithful weight ϕ on M (see [20, Chapter VII] for

example). We let

nϕ = {x ∈M : ϕ(x∗x) <∞}, mϕ = lin{x∗y : x, y ∈ nϕ}, m
+
ϕ = {x ∈M+ : ϕ(x) <∞}.

Then mϕ is a hereditary ∗-subalgebra of M , nϕ is a left ideal, and m
+
ϕ is indeed M+ ∩ mϕ. We

can perform the GNS construction for ϕ, which leads to a Hilbert space H , a dense range map
Λ : nϕ → H and a unital normal ∗-representation π : M → B(H) with π(x)Λ(y) = Λ(xy). In
future, we shall tend to suppress π. Then Λ(nϕ ∩ n

∗
ϕ) is full left Hilbert algebra, and this contains

a maximal Tomita algebra (see [20, Section 2, Chapter VI]); denote by Tϕ ⊆ nϕ ∩ n
∗
ϕ the inverse

image under Λ of this maximal Tomita algebra. Tomita-Takesaki theory gives us the modular
conjugation J and the modular automorphism group (σt). Then Tϕ is a ∗-algebra, dense in M for
the σ-weak topology, all of whose elements are analytic for (σt).

A von Neumann algebraic quantum group is a Hopf-von Neumann algebra (M,∆) together
with faithful normal semifinite weights ϕ, ψ which are left and right invariant, respectively. This
means that

ϕ
(

(ω ⊗ ι)∆(x)
)

= ϕ(x)〈1, ω〉, ψ
(

(ι⊗ ω)∆(y)
)

= ψ(y)〈1, ω〉 (ω ∈M+
∗ , x ∈ m

+
ϕ , y ∈ m

+
ψ ).

Using these weights, we can construct an antipode S, which will in general be unbounded. Then
S has a decomposition S = Rτ−i/2, where R is the unitary antipode, and (τt) is the scaling group.
The unitary antipode R is a normal anti-∗-automorphism of M , and ∆R = σ(R ⊗ R)∆, where
σ : M⊗M → M⊗M is the tensor swap map. As R is normal, it drops to an isometric linear
map R∗ : M∗ → M∗, which is anti-multiplicative. As usual, we make the canonical choice that
ϕ = ψ ◦R.

Let H be the GNS space of ϕ, and let Λ : nϕ → H be the GNS map. There is a unitary W ,
the fundamental unitary, acting on H ⊗H (the Hilbert space tensor product) such that ∆(x) =
W ∗(1⊗x)W for x ∈M . The left-regular representation ofM∗ is the map λ : ω 7→ (ω⊗ι)(W ). This
is a homomorphism, and the σ-weak closure of λ(M∗) is a von Neumann algebra M̂ . We define a
coproduct ∆̂ on M̂ by ∆̂(x) = Ŵ ∗(1⊗ x)Ŵ , where Ŵ = ΣW ∗Σ (here Σ : H ⊗H → H ⊗H is the
swap map). Then we can find invariant weights to turn (M̂, Λ̂) into a locally compact quantum

group– the dual group to M . We have the biduality theorem that
ˆ̂
M =M canonically.

As is becoming common, we shall write G for the abstract “object” to be thought of as a
locally compact quantum group. We then write L∞(G) for M , L1(G) for M∗, and L

2(G) for H .
In this paper, we shall often have two quantum groups G1 and G2. Then we shall denote by Si
the antipode of Gi, for i = 1, 2, and similarly for Ri, ψi, and so forth.

There is of course a parallel C∗-algebraic theory, but we shall introduce this below in Section 4.

2.1 Isomorphisms of quantum groups

Definition 2.1. A quantum group isomorphism between G1 and G2 is a normal ∗-isomorphism

θ : L∞(G1) → L∞(G2) which intertwines the coproducts.

Suppose we have a ∗-isomorphism θ : L∞(G1) → L∞(G2) which intertwines the coproducts.
Then, arguing as in [14, Proposition 5.45], θ must intertwine the antipode, the unitary antipode,
and the scaling group. As the Haar weights are unique up to a constant, we may actually choose
the weights to be intertwined by θ. Hence every object associated to G1 is transfered to G2 by θ.
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Definition 2.2. A quantum group commutant isomorphism between G1 and G2 is a normal anti-

∗-isomorphism θ : L∞(G1) → L∞(G2) which intertwines the coproducts.

The commutant von Neumann algebraic quantum group to G is G′, which has L∞(G′) =
L∞(G)′, the commutant of L∞(G), and ∆′(x) = (J ⊗ J)∆(JxJ)(J ⊗ J), for x ∈ L∞(G)′. All the
other objects (such as W ′, R′, ϕ′) associated to G′ can be related to those of G using the modular
conjugation operator J . See [13, Section 4] for further details. Then, if θ : L∞(G1) → L∞(G2) is a
commutant isomorphism, then θ′(x) = Jθ(x)∗J defines a quantum group isomorphism from G1 to
G′

2; this motivates our choice of terminology. Notice that if G2 is commutative, then G′
2 = G2; thus

we have avoided the terminology “quantum group anti-isomorphism”, as this would be misleading
in the motivating commutative situation.

3 Isometries of convolution algebras

Throughout this section, fix two locally compact quantum groupsG1 andG2, and let T∗ : L
1(G2) →

L1(G1) be a linear bijective isometry which is an algebra homomorphism (in short, T∗ is an isometric
algebra isomorphism).

Then T = (T∗)
∗ : L∞(G1) → L∞(G2) is a bijective linear isometry between von Neumann

algebras. Kadison studied such maps in [8] (see also [6, Section 5.4]) where it is shown that T (1)
is a unitary in L∞(G2) and the map T1 : x 7→ T (x)T (1)∗ is a Jordan ∗-homomorphism. That is,

T1(x)
∗ = T1(x

∗), T1(xy + yx) = T1(x)T1(y) + T1(y)T1(x) (x, y ∈ L∞(G1)).

In our situation, we can say more about the unitary T (1).

Definition 3.1. Let G = (M,∆) be a Hopf-von Neumann algebra. The intrinsic group of G is

the collection of unitaries u ∈M with ∆(u) = u⊗ u.

Recall that a character on a Banach algebra is a non-zero multiplicative functional. The
following is more than we need, but is of independent interest; it generalises [6, Theorem 3.6.10]
(which again makes extensive use of a bounded antipode for a Kac algebra). Recall thatM(C0(G))
is the multiplier algebra of C0(G); for further details see Section 4 below.

Theorem 3.2. Let G = (M,∆) be a Hopf-von Neumann algebra. For x ∈ M , the following are

equivalent:

1. x is a character of the Banach algebra M∗;

2. x 6= 0 and ∆(x) = x⊗ x.

If G is a locally compact quantum group, then a character x ∈ L∞(G) is a unitary, and so auto-

matically x is a member of the intrinsic group of G. Furthermore, x ∈ M(C0(G)) and x ∈ D(S)
with S(x) = x∗. The maps

L1(G) → L1(G);ω 7→ ωx , xω

are isometric automorphisms of the algebra L1(G).

Proof. The equivalence of (1) and (2) is an easy calculation.
Suppose that G is a locally compact quantum group, and x 6= 0 is such that ∆(x) = x ⊗ x.

Suppose also that x ≥ 0; we shall prove that x = 1. The von Neumann algebra which x generates
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is abelian, and so isomorphic to L∞(K) for some measure space K. Let x̃ be the image of x in
L∞(K). We note that as ‖x‖ = ‖∆(x)‖ = ‖x⊗ x‖ = ‖x‖2, necessarily ‖x‖ = 1.

Let r ∈ [0, 1], and using the Borel functional calculus, let p = χ[r,1](x). Thus p̃ is the indicator
function of the set {k ∈ K : x̃(k) ≥ r}. The von Neumann algebra generated by x⊗x embeds into
L∞(K×K) by sending x⊗x to x̃⊗x̃, which is just the function (k, l) 7→ x̃(k)x̃(l). Then χ[r,1](x̃⊗x̃)
is the indicator function of the set {(k, l) ∈ K ×K : x̃(k)x̃(l) ≥ r}. Thus, if χ[r,1](x̃⊗ x̃)(k, l) = 1
then x̃(k)x̃(l) ≥ r so certainly x̃(k) ≥ r (as ‖x̃‖ = 1) and so (p̃⊗ 1)(k, l) = 1. It follows that

χ[r,1](x̃⊗ x̃) ≤ p̃⊗ 1.

By the homomorphism property of the Borel functional calculus,

∆(p) = χ[r,1](∆(x)) = χ[r,1](x⊗ x) ≤ p⊗ 1.

However, we can now appeal to [14, Lemma 6.4] to conclude that p = 0 or p = 1 (as an aside on
notation, Ã as used in [14] is simply L∞(G), see [14, Page 874]). So, we have that χ[r,1](x) = 1 or
0 for every r ∈ [0, 1]. It follows that x = 1.

Now let x ∈ L∞(G) be non-zero with ∆(x) = x ⊗ x. As ∆ is a ∗-homomorphism, it follows
that ∆(x∗x) = x∗x ⊗ x∗x, and so from the previous paragraph, x∗x = 1. Similarly, xx∗ = 1, so x
is a unitary, as required.

Then
1⊗ x = (x∗ ⊗ 1)∆(x), 1⊗ x∗ = ∆(x∗)(x⊗ 1),

and so from (the von Neumann algebraic analogue of) [14, Proposition 5.33] we conclude that x ∈
D(S) with S(x) = x∗. To show that x is a multiplier of C0(G), we adapt an idea from [26, Section 4],
which in turn is inspired by [1, Page 441]. We have that W ∈ M(C0(G) ⊗ K(L2(G))), where
K(L2(G)) is the compact operators on L2(G), see [14, Section 3.4] or compare [26, Theorem 1.5].
Then

x⊗ 1 = (1⊗ x∗)∆(x) = (1⊗ x∗)W ∗(1⊗ x)W ∈M(C0(G)⊗K(L2(G))),

and so x ∈M(C0(G)) as required.
Finally, for ω, ω′ ∈ L1(G), we see that

〈y, (ωω′)x〉 = 〈(x⊗ x)∆(y), ω ⊗ ω′〉 = 〈y, (ωx)(ω′x)〉 (y ∈ L∞(G)),

so the map ω 7→ ωx is an algebra homomorphism, with inverse ω 7→ ωx∗. The case of ω 7→ xω is
analogous.

We remark that similar results to the above theorem have been obtained independently by
Neufang and Kalantar, see Kalantar’s thesis, [9, Theorem 3.2.11] and [10, Theorem 3.9].

We hence see that if T∗ : L1(G2) → L1(G1) is an isometric algebra isomorphism, then so is
T1,∗ : ω 7→ T∗(T (1)

∗ω). For the rest of this section, we shall just assume that actually T (1) = 1.
Let p ∈ L∞(G2) be a central projection, and let Tp be the map x 7→ T (x)p. As in [6, Section 5.4],

we define

Ph =
{

p a central projection in L∞(G2) with Tp an algebra homomorphism
}

,

Pa =
{

p a central projection in L∞(G2) with Tp an algebra anti-homomorphism
}

.

Then [6, Lemma 5.4.5] shows that both Pa and Ph have greatest elements, say sa and sh. From
[19, Theorem 3.3], there is some p ∈ Pa with 1− p ∈ Ph, and so sa + sh ≥ 1.

The following results are also shown in [6], but we give sketch proofs to verify that the results
still hold for locally compact quantum groups.
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Lemma 3.3. Let x ∈ L∞(G) be a central projection with ∆(x) ≥ x ⊗ x and R(x) = x. Then

W (x⊗ x) = (x⊗ x)W and ∆(x)(x⊗ 1) = ∆(x)(1⊗ x) = x⊗ x.

Proof. We have that x⊗x = (x⊗x)∆(x) = (x⊗x)W ∗(1⊗x)W , and so (x⊗x)W ∗(1⊗x) = (x⊗x)W ∗.
Now we use that (Ĵ ⊗ J)W (Ĵ ⊗ J) = W ∗, see [13, Corollary 2.2]. Thus

x⊗ x = (x⊗ x)(Ĵ ⊗ J)W (Ĵ ⊗ J)(1⊗ x)(Ĵ ⊗ J)W ∗(Ĵ ⊗ J),

but JxJ = x∗ = x as x is central and self-adjoint, and ĴxĴ = R(x∗) = R(x) = x by assumption.
So x ⊗ x = (x ⊗ x)W (1 ⊗ x)W ∗. Taking adjoints gives x ⊗ x = W (1 ⊗ x)W ∗(x ⊗ x). As
W ∗ ∈ L∞(G)⊗L∞(Ĝ), we see that W ∗(x⊗ x) = (x⊗ 1)W ∗(1⊗ x), and so, from above,

x⊗ x = W (x⊗ x)W ∗(1⊗ x) = W (x⊗ x)W ∗.

Thus W (x⊗ x) = (x⊗ x)W .
Then, arguing similarly, ∆(x)(x⊗ 1) = W ∗(1⊗ x)W (x⊗ 1) =W ∗(x⊗ x)W = x⊗ x. The case

of ∆(x)(1⊗ x) follows by applying the result to Gop (see [13, Section 4]).

Corollary 3.4. Let p, q ∈ L∞(G) be central projections with ∆(p) ≥ p⊗ p and ∆(q) ≥ q⊗ q, with

R(p) = p and R(q) = q, and with p+ q ≥ 1. Then p = 1 or q = 1.

Proof. By the lemma, ∆(p)((1− p)⊗ p) = ∆(p)(1⊗ p)− p⊗ p = 0, and ∆(q)(q⊗ (1− q)) = 0. As
1− q ≤ p and 1−p ≤ q, it follows that ∆(p)((1−p)⊗ (1− q)) = 0 and ∆(q)((1−p)⊗ (1− q)) = 0.
As ∆(p) + ∆(q) ≥ 1, it follows that (1− p)⊗ (1− q) = 0, so p = 1 or q = 1.

Proposition 3.5. Form Sa and Sh as above. Then:

1. (TSh
⊗ TSh

)∆1(x) = ∆2(T (x))(Sh ⊗ Sh) for x ∈ L∞(G1);

2. (TSa
⊗ TSa

)∆1(x) = ∆2(T (x))(Sa ⊗ Sa) for x ∈ L∞(G1);

3. ∆2(Sh) ≥ Sh ⊗ Sh;

4. ∆2(Sa) ≥ Sa ⊗ Sa.

Proof. We prove claims for Sa; the proofs for Sh are easier. The preadjoint of TSa
is the map

ω 7→ T∗(Saω). Firstly, let ω, ω
′ ∈ L1(G2), and calculate

〈(TSa
⊗ TSa

)∆1(x), ω ⊗ ω′〉 = 〈x, T∗(Saω)T∗(Saω
′)〉 = 〈∆2(T (x)), Saω ⊗ Saω

′〉,

which shows (2).
As Sa is central, we see that Sa ⊗ Sa ∈ L∞(G2)

′⊗L∞(G2)
′ ⊆ ∆2(L

∞(G2))
′. Let q ∈ L∞(G2)

be such that ∆2(q) is the central support of Sa ⊗ Sa (so q is the smallest central projection with
∆2(q)(Sa ⊗ Sa) = Sa ⊗ Sa). Then

Φ : ∆2(L
∞(G2))(Sa ⊗ Sa) → ∆2(L

∞(G2)q); ∆2(x)(Sa ⊗ Sa) 7→ ∆2(xq) = ∆2(x)∆2(q),

is readily seen to be an isomorphism. Then, for x ∈ L∞(G1),

∆2(Tq(x)) = ∆2(T (x)q) = Φ
(

∆2(T (x))(Sa ⊗ Sa)
)

= Φ
(

(TSa
⊗ TSa

)∆1(x)
)

.

So x 7→ ∆2(Tq(x)) is anti-multiplicative, and so q ∈ Pa. Thus q ≤ Sa, and so ∆2(Sa) ≥ ∆(q) ≥
Sa ⊗ Sa as required.
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At this point, we can no longer follow [6]. We would like to show that TR1 = R2T (that
is, T ′ as defined in the next proposition, is the identity map) but we have to proceed somewhat
indirectly.

Proposition 3.6. Suppose that the map T ′ = T−1R2TR1 : L∞(G1) → L∞(G1) is a homomor-

phism. Then T is either a ∗-homomorphism or an anti-∗-homomorphism.

Proof. As the unitary antipode R2 is an anti-∗-homomorphism, it is easy to see that R2(Sh) is a
central projection. For x ∈ L∞(G1),

TR2(Sh)(x) = T (x)R2(Sh) = R2

(

R2(T (x))Sh
)

= R2

(

T (T ′(R1(x)))Sh
)

.

As y 7→ T (y)Sh is a homomorphism, it follows that TR2(Sh) is a homomorphism, and so R2(Sh) ≤ Sh.
As R2 preserves the order, also Sh ≤ R2(Sh), so Sh = R2(Sh).

A similar argument establishes that R(Sa) = Sa. So, combining the previous proposition and
corollary, we conclude that either Sh = 1, in which case T is a ∗-homomorphism, or Sh = 0, so
Sa = 1, and T is an anti-∗-homomorphism.

We are henceforth motivated to study the map T ′ = T−1R2TR1. Notice that this map is
normal, and the preadjoint T ′

∗ is an isometric algebra isomorphism from L1(G2) to itself.

3.1 Characterising the unitary antipode

We now study the unitary antipode more closely. For us, an important characterisation of R is
the following, given in [14, Proposition 5.20]:

R
(

(ψ ⊗ ι)((a∗ ⊗ 1)∆(b))
)

= (ψ ⊗ ι)
(

∆(σψ
−i/2(a

∗))(σψ
−i/2(b)⊗ 1)

)

,

where a, b ∈ Tψ. (We shall shortly explain further exactly what this formula means). We are
hence motivated to look at the right Haar weights, and how they interact with T . We shall then
split L∞(G1) into a direct summand, with T acting as a homomorphism in the first component,
and as an anti-homomorphism in the second. Then R1 and R2 will interact well with T on these
components, but less well on the cross-terms. However, this “bad interaction” will cancel out if
we consider T ′2, for T ′ as defined above.

Lemma 3.7. The map L∞(G1)
+ → [0,∞]; x 7→ ψ2(T (x)) is a right-invariant, normal semi-finite

faithful weight on L∞(G1), and is hence proportional to ψ1.

Proof. As T is a Jordan homomorphism, it restricts to an order isomorphism L∞(G1)
+ → L∞(G2)

+.
Thus we can define ψ = ψ2 ◦ T : L∞(G1)

+ → [0,∞], and it follows that ψ is a faithful weight, and
m

+
ψ = T−1(m+

ψ2
). Thus also mψ = T−1(mψ2

). As T is σ-weakly continuous, it is now routine to
establish that ψ is semi-finite, and normal (as T is an order isomorphism on the positive cones).

It remains to check that ψ is right-invariant. For ω ∈ L1(G1)
+ and y ∈ m

+
ψ , a simple calculation

shows that T ((ι ⊗ ω)∆1(y)) = (ι ⊗ T−1
∗ (ω))∆2(T (y)). As T−1

∗ (ω) ≥ 0 and T (y) ∈ m
+
ψ2
, it follows

that
ψ
(

(ι⊗ ω)∆(y)
)

= ψ2

(

(ι⊗ T−1
∗ (ω))∆2(T (y))

)

= 〈1, T−1
∗ (ω)〉ψ2(T (y)).

As T is unital, this shows that ψ is right-invariant.
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Henceforth, we shall actually assume that that ψ1 = ψ2 ◦ T .
Henceforth, using [19, Theorem 3.3], we fix a central projection p ∈ L∞(G2) such that Tp is a

homomorphism, and T1−p is an anti-homomorphism. Note that we cannot necessarily assume that
p = Sa and 1− p = Sh. Let q = T−1(p).

Lemma 3.8. With p, q as above, we have that q is a central projection in L∞(G1). Then L
∞(G1)

decomposes as qL∞(G1)⊕ (1− q)L∞(G1), L
∞(G2) decomposes as pL∞(G2)⊕ (1− p)L∞(G2), and

under these identifications, T decomposes as Tp ⊕ T1−p.

Proof. Let x ∈ L∞(G1). Then T (xq)p = Tp(xq) = Tp(x)Tp(q) = T (x)pT (q)p = T (x)p = Tp(x),
and similarly Tp(qx) = Tp(x), and T1−p(qx) = T1−p(xq) = 0. Thus

T (xq − qx) = Tp(xq − qx) + T1−p(xq − qx) = Tp(xq)− Tp(qx) = Tp(x)− Tp(x) = 0.

So q is central; it is easily seen to be a projection. The remaining claims now follow by simple
calculation.

This lemma means that, for example, given a ∈ qL∞(G1) and x ∈ L∞(G1),

T (ax) = T
(

axq + ax(1− q)
)

= Tp(a)Tp(x) = Tp(a)T (x) = T (a)Tp(x) = T (a)T (x).

Thus we understand T quite well; what is unclear is how T interacts with the unitary antipodes
R1 and R2.

We can then restrict ψ1 = ψ2 ◦ T to qL∞(G1) and to (1 − q)L∞(G2), say giving ψq1 and ψ1−q
1 .

As Tp is a ∗-homomorphism, it is clear that Tp gives a bijection from nψq
1
to nψp

2
. As T1−p is an anti-

∗-homomorphism, we have that x ∈ nψ1−q
1

if and only if T (x∗) = T (x)∗ ∈ nψ1−p
2

. To ease notation

for the modular automorphism groups, for t ∈ R, we shall let σ2,p
t = σ

ψp
2

t and σ2,1−p
t = σ

ψ1−p
2

t , and
similarly for ψ1.

Lemma 3.9. The map T intertwines the modular automorphism groups in the following ways:

Tp ◦ σ
1,q
t = σ

2,p
t ◦ Tp, T1−p ◦ σ

1,1−q
t = σ

2,1−p
−t ◦ T1−p (t ∈ R).

Proof. As Tp is a ∗-isomorphism between L∞(G1)q and L
∞(G2)p, it is standard that it intertwines

the modular automorphism group, compare [20, Corollary 1.4, Chapter VIII]. As T1−p is an anti-∗-
isomorphism, a variant of the standard argument will show that we get the sign change t 7→ −t.

As in [12, Section 6] (see also the C∗-algebraic version in [14, Section 1.5]) we let

m
+
ψ1⊗ι

=
{

x ∈ (L∞(G1)⊗L
∞(G1))

+ : (ι⊗ ω)(x) ∈ m
+
ψ1

(ω ∈ L1(G1)+
}

.

Then m
+
ψ1⊗ι

is a hereditary cone in (L∞(G1)⊗L
∞(G1))

+. Let mψ1⊗ι be the ∗-subalgebra generated

by m
+
ψ1⊗ι

; this agrees with the linear span of m+
ψ1⊗ι

. There is a linear map

(ψ1 ⊗ ι) : mψ1⊗ι → L∞(G1) with 〈(ψ1 ⊗ ι)(x), ω〉 = ψ1

(

(ι⊗ ω)x
)

.

We then set
nψ1⊗ι =

{

x ∈ L∞(G1)⊗L
∞(G1) : x

∗x ∈ m
+
ψ1⊗ι

}

.

This is a left ideal in L∞(G1)⊗L
∞(G1), and mψ1⊗ι is the linear span of n∗ψ1⊗ι

nψ1⊗ι.
As ψ1 is right-invariant, a simple calculation shows that for a, b ∈ nψ1

, we have that ∆(b) ∈ nψ1⊗ι

and that a⊗ 1 ∈ nψ1⊗ι. Thus (a
∗ ⊗ 1)∆(b) ∈ mψ1⊗ι, and similarly ∆(a∗)(b⊗ 1) ∈ mψ1⊗ι.

In particular, for a, b ∈ Tψ1
, we can make sense of the formula

R1

(

(ψ1 ⊗ ι)((a⊗ 1)∆1(b))
)

= (ψ1 ⊗ ι)
(

∆1(σ
ψ1

−i/2(a))(σ
ψ1

−i/2(b)⊗ 1)
)

.
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Lemma 3.10. Let a ∈ Tψ1
and b ∈ Tψ1

q. Then

T
(

(ψ1 ⊗ ι)((b⊗ 1)∆1(a))
)

= (ψ2 ⊗ ι)
(

(T (b)⊗ 1)∆2(T (a))
)

,

T
(

(ψ1 ⊗ ι)(∆1(a)(b⊗ 1))
)

= (ψ2 ⊗ ι)
(

∆2(T (a))(T (b)⊗ 1)
)

Proof. Let ω, ω′ ∈ L1(G2). Then, for x ∈ L∞(G1),

〈x, T∗(ω
′)b〉 = 〈T (bx), ω′〉 = 〈T (b)T (x), ω′〉 = 〈x, T∗(ω

′T (b))〉,

using that b ∈ L∞(G1)q. Thus

〈T
(

(ι⊗ T∗(ω))((b⊗ 1)∆1(a))
)

, ω′〉 = 〈(b⊗ 1)∆1(a), T∗(ω
′)⊗ T∗(ω)〉

= 〈∆1(a), T∗(ω
′T (b))⊗ T∗(ω)〉 = 〈T (a), (ω′T (b))ω〉 = 〈(T (b)⊗ 1)∆2(T (a)), ω

′ ⊗ ω〉.

Hence finally

〈T
(

(ψ1 ⊗ ι)((b⊗ 1)∆1(a))
)

, ω〉 = ψ1

(

(ι⊗ T∗(ω))((b⊗ 1)∆1(a))
)

= ψ2

(

(ι⊗ ω)(T (b)⊗ 1)∆2(T (a))
)

= 〈(ψ2 ⊗ ι)
(

(T (b)⊗ 1)∆2(T (a))
)

, ω〉,

as required.
Now, as ψ2 is a weight, we have that ψ2(x

∗) = ψ2(x) for x ∈ mψ2
. We can also verify that

(ι⊗ω)(x∗) = (ι⊗ω∗)(x)∗ for x ∈ mψ2⊗ι and ω ∈ L1(G2)
+. It follows that (ψ2⊗ι)(x

∗) = (ψ2⊗ι)(x)
∗.

As Tψ1
is a ∗-algebra, and T respects the involution, applying this calculation to a∗ and b∗ and

then taking the adjoint yields the second claimed equality.

Lemma 3.11. Let a ∈ Tψ1
and b ∈ Tψ1

(1− q). Then

T
(

(ψ1 ⊗ ι)((b⊗ 1)∆1(a))
)

= (ψ2 ⊗ ι)
(

∆2(T (a))(T (b)⊗ 1)
)

,

T
(

(ψ1 ⊗ ι)(∆1(a)(b⊗ 1))
)

= (ψ2 ⊗ ι)
(

(T (b)⊗ 1)∆2(T (a))
)

.

Proof. As in the previous proof, but now using that b ∈ L∞(G1)(1− q), we check that for ω, ω′ ∈
L1(G2), we have that T∗(ω

′)b = T∗
(

T (b)ω′
)

, which leads to

T
(

(ι⊗ T∗(ω))((b⊗ 1)∆1(a))
)

= (ι⊗ ω)
(

∆2(T (a))(T (b)⊗ 1)
)

,

which gives the first result. The second equality now follows by taking adjoints.

Proposition 3.12. As before, let T ′ = T−1R2TR1. If a, b ∈ Tψ1
q or a, b ∈ Tψ1

(1 − q), we have

that

T ′
(

(ψ1 ⊗ ι)((b⊗ 1)∆1(a))
)

= (ψ1 ⊗ ι)((b⊗ 1)∆1(a)).

Proof. Suppose that a, b ∈ Tψ1
(1− q), the other case being analogous. We have that

TR1

(

(ψ1 ⊗ ι)((b⊗ 1)∆1(a))
)

= T
(

(ψ1 ⊗ ι)
(

∆1(σ
1,1−q
−i/2 (b))(σ1,1−q

−i/2 (a)⊗ 1)
))

= (ψ2 ⊗ ι)
(

(T1−pσ
1,1−q
−i/2 (a)⊗ 1)∆2(T1−pσ

1,1−q
−i/2 (b))

)

= (ψ2 ⊗ ι)
(

(σ2,1−p
i/2 T1−p(a)⊗ 1)∆2(σ

2,1−p
i/2 T1−p(b))

)

using first Lemma 3.11 (applied to σ1,1−q
−i/2 (a) ∈ Tψ1

(1− q)) and then Lemma 3.9.
Thus, taking adjoints gives that

TR1

(

(ψ1 ⊗ ι)((b⊗ 1)∆1(a))
)

= (ψ2 ⊗ ι)
(

∆2(σ
2,1−p
−i/2 T1−p(b

∗))(σ2,1−p
−i/2 T1−p(a

∗)⊗ 1)
)∗

= R2

(

(ψ2 ⊗ ι)
(

(T1−p(b
∗)⊗ 1)∆2(T1−p(a

∗))
)∗)

= R2T
(

(ψ1 ⊗ ι)
(

∆1(a
∗)(b∗ ⊗ 1)

)∗)

= R2T
(

(ψ1 ⊗ ι)
(

(b⊗ 1)∆1(a)
))

,

as required.
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Proposition 3.13. As before, let T ′ = T−1R2TR1. If a ∈ Tψ1
(1− q) and b ∈ Tψ1

q, or vice versa,

we have that

T ′
(

(ψ1 ⊗ ι)((b⊗ 1)∆1(a))
)

= (ψ1 ⊗ ι)(∆1(a)(σ
ψ1

−i(b)⊗ 1)),

T ′
(

(ψ1 ⊗ ι)(∆1(a)(b⊗ 1))
)

= (ψ1 ⊗ ι)((σψ1

i (b)⊗ 1)∆1(a)).

Proof. Suppose that a ∈ Tψ1
(1 − q) and b ∈ Tψ1

q, so we can follow the previous proof through to
get that

TR1

(

(ψ1 ⊗ ι)((b⊗ 1)∆1(a))
)

= (ψ2 ⊗ ι)
(

(σ2,1−p
i/2 T1−p(a)⊗ 1)∆2(σ

2,p
−i/2Tp(b))

)

,

where here we remember that b ∈ Tψ1
q. Thus

TR1

(

(ψ1 ⊗ ι)((b⊗ 1)∆1(a))
)

= (ψ2 ⊗ ι)
(

∆2(σ
2,p
i/2Tp(b

∗))(σ2,1−p
−i/2 T1−p(a

∗)⊗ ι)
)∗

= R2

(

(ψ2 ⊗ ι)
(

(σ2,p
i (Tp(b

∗))⊗ 1)∆2(T1−p(a
∗))

)∗)

= R2T
(

(ψ1 ⊗ ι)
(

(σ1,q
i (b∗)⊗ 1)∆1(a

∗)
)∗)

= R2T
(

(ψ1 ⊗ ι)
(

∆1(a)(σ
ψ1

−i(b)⊗ 1)
))

,

as required, using Lemma 3.10. The case when a ∈ Tψ1
q and b ∈ Tψ1

(1−q) follows similarly. Again,

taking adjoints (and remembering that σψ1

i (b)∗ = σ
ψ1

−i(b
∗) gives the second claimed equality).

Corollary 3.14. We have that T ′2 = ι.

Proof. By density, it is enough to verify these identities on elements of the form (ψ1 ⊗ ι)((b ⊗
1)∆1(a)) for a, b ∈ Tψ1

. By linearity, we may suppose that a, b ∈ Tψ1
q or a, b ∈ Tψ1

(1− q), in which
case the result follows from Proposition 3.12, or that a ∈ Tψ1

q, b ∈ Tψ1
(1 − q) or vice versa, in

which case the result follows from Proposition 3.13.

Finally, we wish to show that T ′ commutes with the scaling group (τt). For this, recall from
[14, Proposition 6.8] that ∆1σ

ψ1

t = (σψ1

t ⊗ τ−t)∆1.

Proposition 3.15. We have that τtT
′ = T ′τt for each t ∈ R.

Proof. Let a ∈ Tψ1
(1− q) and b ∈ Tψ1

q. Then, from Proposition 3.13,

τtT
′
(

(ψ1 ⊗ ι)((b⊗ 1)∆1(a))
)

= τt(ψ1 ⊗ ι)(∆1(a)(σ
ψ1

−i(b)⊗ 1)).

Now, for ω, ω′ ∈ L1(G1),

〈(ι⊗ ω ◦ τt)(∆1(a)(σ
ψ1

−i(b)⊗ 1)), ω′〉 = 〈(ι⊗ τt)∆1(a), σ
ψ1

−i(b)ω
′ ⊗ ω〉

= 〈(σψ1

t ⊗ ι)∆1(σ
ψ1

−t(a)), σ
ψ1

−i(b)ω
′ ⊗ ω〉 = 〈(σψ1

t ⊗ ι)
(

∆1(σ
ψ1

−t(a))(σ
ψ1

−t−i(b)⊗ 1)
)

, ω′ ⊗ ω〉

= 〈σψ1

t

(

(ι⊗ ω)
(

∆1(σ
ψ1

−t(a))(σ
ψ1

−t−i(b)⊗ 1)
))

, ω′〉

Thus also

〈τt(ψ1 ⊗ ι)((b⊗ 1)∆1(a)), ω〉 = ψ1

(

(ι⊗ ω ◦ τt)(∆1(a)(σ
ψ1

−i(b)⊗ 1))
)

= ψ1

(

σ
ψ1

t

(

(ι⊗ ω)
(

∆1(σ
ψ1

−t(a))(σ
ψ1

−t−i(b)⊗ 1)
)))

= 〈(ψ1 ⊗ ι)
(

∆1(σ
ψ1

−t(a))(σ
ψ1

−t−i(b)⊗ 1)
)

, ω〉,
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and so we conclude that

τtT
′
(

(ψ1 ⊗ ι)((b⊗ 1)∆1(a))
)

= (ψ1 ⊗ ι)
(

∆1(σ
ψ1

−t(a))(σ
ψ1

−t−i(b)⊗ 1)
)

.

Similarly, we find that

〈(ι⊗ ω ◦ τt)((b⊗ 1)∆1(a)), ω
′〉 = 〈(ι⊗ τt)∆1(a), ω

′b⊗ ω〉

= 〈(σψ1

t ⊗ ι)∆1(σ
ψ1

−t(a)), ω
′b⊗ ω〉 = 〈(σψ1

t ⊗ ι)
(

(σψ1

−t(b)⊗ 1)∆1(σ
ψ1

−t(a))
)

, ω′ ⊗ ω〉.

So arguing similarly,

T ′τt
(

(ψ1 ⊗ ι)((b⊗ 1)∆1(a))
)

= T ′
(

(ψ1 ⊗ ι)((σψ1

−t(b)⊗ 1)∆1(σ
ψ1

−t(a)))
)

= (ψ1 ⊗ ι)
(

∆1(σ
ψ1

−t(a))(σ
ψ1

−t−i(b)⊗ 1)
)

= τtT
′
(

(ψ1 ⊗ ι)((b⊗ 1)∆1(a))
)

.

The same argument works if a ∈ Tψ1
q and b ∈ Tψ1

(1− q). Similarly, by using Proposition 3.12,
a similar calculation works for a, b ∈ Tψ1

q or a, b ∈ Tψ1
(1− q). By linearity and density, the result

follows.

3.2 The main result

We are now in a position to state and prove our main result.

Theorem 3.16. Let T∗ : L1(G2) → L1(G1) be an isometric algebra isomorphism. Then u =
T (1) ∈ L∞(G2) is a member of the intrinsic group, and there is a quantum group isomorphism, or

quantum group commutant isomorphism, θ : L∞(G1) → L∞(G2) such that

T∗(ω) = θ∗(uω) (ω ∈ L∞(G2)).

In particular, G1 is isomorphic to either G2 or G′
2.

Proof. Suppose that the result holds (with u = 1) when T = (T∗)
∗ is unital. Then we apply this

to T1 to find that
T∗(T (1)

∗ω) = T1,∗(ω) = θ∗(ω) (ω ∈ L1(G2)),

from which the general case follows.
So, we may suppose that T is unital. We wish to prove that T is either a ∗-homomorphism,

or an anti-∗-homomorphism. Form T ′ = T−1R2TR1. By Corollary 3.14, T ′2 = ι, so R1T
′R1 =

R1T
−1R2T = T ′−1 = T ′; thus T ′ commutes with R1.
Now, T ′(1) = 1 and T ′

∗ is an isometric algebra isomorphism. By Proposition 3.6, as T ′−1R1T
′R1 =

ι, it follows that T ′ is either a ∗-homomorphism, or an anti-∗-homomorphism. If T ′ is a ∗-
homomorphism, then Proposition 3.6 now shows that T itself is either a ∗-homomorphism or
an anti-∗-homomorphism, as required.

If we reverse the roles of G1 and G2, and work with T−1, then the same arguments show
that (T−1)′ = TR1T

−1R2 is either a ∗-homomorphism or an anti-∗-homomorphism. If it is a ∗-
homomorphism, then T−1 (and so T ) is either a ∗-homomorphism or an anti-∗-homomorphism, as
required.

So, the remaining case is when both T ′ and (T−1)′ are anti-∗-homomorphisms (and, to avoid
special cases, by this we mean that T ′ and (T−1)′ are not also ∗-homomorphisms). Then we can
consider the map Φ : L∞(G1) → L∞(G′

1) = L∞(G1)
′; x 7→ JT ′(x)∗J , which will be a ∗-isomorphism
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which intertwines the coproducts. Thus Φ will also intertwine the antipode, the unitary antipode,
and in particular the scaling group. The scaling group of L∞(G′

1) is τ
′
t(x) = Jτ−t(JxJ)J , see [13,

Section 4]. So, for x ∈ L∞(G1),

JT ′(τt(x))
∗J = Φ(τt(x)) = τ ′t(Φ(x)) = Jτ−t(T

′(x)∗)J.

Thus T ′τt = τ−tT
′. However, Proposition 3.15 shows that T ′τt = τtT

′; as T ′ bijects, it follows that
τt = ι for all t.

So the scaling group of G1 is trivial; arguing with (T−1)′ in place of T ′ shows that the same
is true of G2. This does not quite show that G1 and G2 are Kac algebras (see [22, Page 7]) but
it does give us enough that we can now easily follow the proof in the Kac algebra case, see [6,
Section 5.5]. Indeed, let

X = (Tp ⊗ ι)(W1) + (T1−pR1 ⊗ ι)(W ∗
1 ) ∈ L∞(G2)⊗L

∞(Ĝ1),

where W1 is the fundamental unitary for G1. This makes sense, as both Tp and T1−pR1 are
∗-homomorphisms.

Then X is unitary. This follows, as for x, y ∈ L∞(G1), Tp(x)T1−p(y) = T (x)T (y)p(1− p) = 0.
Thus

X∗X =
(

(Tp ⊗ ι)(W ∗
1 ) + (T1−pR1 ⊗ ι)(W1)

)(

(Tp ⊗ ι)(W1) + (T1−pR1 ⊗ ι)(W ∗
1 )
)

= (Tp ⊗ ι)(1) + (T1−pR1 ⊗ ι)(1) = 1,

and similarly XX∗ = 1.
As the scaling group is trivial, the familiar formula for the antipode, [14, Proposition 8.3] or

[13, Page 79], becomes

R1

(

(ι⊗ ω)(W1)
)

= (ι⊗ ω)(W ∗
1 ) (ω ∈ L1(Ĝ1)).

Thus, for ω ∈ L1(G2) and ω
′ ∈ L1(Ĝ1), as R

2
1 = ι,

〈(ω ⊗ ι)(X), ω′〉 = 〈Tp((ι⊗ ω′)W1), ω〉+ 〈T1−pR1((ι⊗ ω′)(W ∗
1 )), ω〉

= 〈Tp((ι⊗ ω′)W1), ω〉+ 〈T1−p((ι⊗ ω′)(W1)), ω〉

= 〈W1, T∗(ω)⊗ ω′〉 = 〈λ1(T∗(ω)), ω
′〉.

So the map L1(G2) → C0(Ĝ1);ω 7→ λ1(T∗(ω)) is a homomorphism, and now a simple calculation
shows that (∆2 ⊗ ι)(X) = X13X23.

Again, as S2 = R2, we can turn L1(G2) into a Banach ∗-algebra for the involution

〈x, ω♯〉 = 〈R2(x)∗, ω〉 (x ∈ L∞(G2), ω ∈ L1(G2)),

compare with Section 4 below. As X is unitary, [11, Proposition 5.2] shows that λ1T∗ is a ∗-
homomorphism. Hence T∗ is a ∗-homomorphism. So, for x ∈ L∞(G1) and ω ∈ L1(G2),

〈x, T∗(ω)
♯〉 = 〈R1(x)∗, T∗(ω)〉 = 〈T (R1(x))∗, ω〉

= 〈T (x), ω♯〉 = 〈R2(T (x))∗, ω〉,

showing that R2T = TR1. Thus T
′ = ι, so T ′ is a ∗-homomorphisms, a contradiction, completing

the proof.

We remark that a corollary of the proof is that, actually, T ′ = ι all along!
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3.3 Completely isometric homomorphisms

It is increasingly common in non-abelian harmonic analysis to study objects in the category of
operator spaces and completely bounded maps; see for example the survey [17]. It is well-known
that the transpose mapping is the canonical example of an isometric, but not completely isometric,
linear mapping. So we might suspect that a complete isometry cannot give rise to a anti-∗-
homomorphism, and this is indeed the case– this is well-known, but we include a sketch proof for
completeness.

Theorem 3.17. Let A and B be unital C∗-algebras, and let T : A → B be completely isometric

bijection. Then T (1) is a unitary, and the map A→ B; a 7→ T (a)T (1)∗ is a ∗-homomorphism.

Proof. By Kadison, T (1) is unitary, and S : a 7→ T (a)T (1)∗ is a unital, completely isometric
bijection. We can now follow [2, Section 1.3] to conclude that S is a ∗-homomorphism, as required.
Indeed, S is unital and completely contractive, and so is completely positive. Then the Stinespring
construction allows us to prove the Kadison-Schwarz inequality: S(a)∗S(a) ≤ S(a∗a). Applying
this to S−1 as well, and using polarisation, yields the result.

Theorem 3.18. Let T∗ : L
1(G2) → L1(G1) be a completely isometric algebra isomorphism. Then

u = T (1) ∈ L∞(G2) is a member of the intrinsic group, and there is a quantum group isomorphism

θ : L∞(G1) → L∞(G2) such that

T∗(ω) = θ∗(uω) (ω ∈ L∞(G2)).

In particular, G1 is isomorphic to G2.

Proof. The previous result shows that θ(x) = T (x)u∗ defines a ∗-homomorphism, and so the result
is immediate.

We remark that if T∗ : L1(G2) → L1(G1) is isometric, and completely contractive, then T∗
is induced by a quantum group isomorphism as above. Indeed, we only need to rule out the
possibility that θ : x 7→ T (x)T (1)∗ is an anti-∗-isomorphism. As θ is still a complete contraction,
the Kadison-Schwarz inequality would yield that θ(aa∗) = θ(a)∗θ(a) ≤ θ(a∗a), so applying θ−1

(which is an order-isomorphism) gives aa∗ ≤ a∗a, a contradiction (unless L∞(G1) is commutative,
in which case θ is a homomorphism, as required).

4 Isometries between measure algebras

In this section, we extend our results to isometric algebra isomorphisms between quantum measure
algebras. We thus start with a survey of the C∗-algebraic theory of locally compact quantum
groups.

A morphism between two C∗-algebras A and B is a non-degenerate ∗-homomorphism φ :
A → M(B) from A to the multiplier algebra of B. That φ is non-degenerate is equivalent to φ
extending to a unital, strictly continuous ∗-homomorphism M(A) →M(B). Thus morphisms can
be composed; for further details see [16, Appendix A].

Given G and its fundamental unitary W , the space {(ι ⊗ ω)(W ) : ω ∈ B(H)∗} is an algebra
σ-weakly dense in L∞(G). However, the norm closure turns out to be a C∗-algebra, which we shall
denote by C0(G). Then ∆ restricts to give a morphism C0(G) → M(C0(G) ⊗ C0(G)), and R, τt
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and so forth all restrict to C0(G). It is possible to define locally compact quantum groups purely
at the C∗-algebra level, although the necessary weight theory is more complicated; see [14].

As for L1(G), we use ∆ to turn C0(G)∗ = M(G) into a Banach algebra. In the commutative
case, this is the measure algebra of a group, which justifies the notation. As C0(G) is σ-weakly
dense in L∞(G), the embedding of L1(G) into M(G) is an isometry; clearly it is an algebra
homomorphism, and actually L1(G) becomes an ideal in M(G), see [14, Page 914].

Actually, we work in a little generality, and introduce the following (non-standard) terminology.

Definition 4.1. A quantum group above C0(G) is a triple (A,∆A, π) where A is a C∗-algebra,

∆A : A → M(A ⊗ A) is a morphism, coassociative in the sense that (ι ⊗ ∆A)∆A = (∆A ⊗ ι)∆A,

and π : A→ C0(G) is a surjective ∗-homomorphism with ∆π = (π⊗π)∆A. Then π
∗ :M(G) → A∗

is an algebra homomorphism, and we make the further requirement that π∗(L1(G)) is an essential

ideal in A∗. Here essential means that if π∗(ω)µ = 0 for all ω ∈ L1(G), then µ = 0, and similarly

with the orders reversed.

For example, C0(G) itself is a quantum group above C0(G). In the cocommutative case,
C0(G) = C∗

r (G) the reduced group C∗-algebra of a locally compact groupG, and soM(G) = Br(G),
the reduced Fourier-Stieltjes algebra. We could alternatively study the full group C∗-algebra
C∗(G), whose dual is B(G) the Fourier-Stieltjes algebra. Then C∗(G) is a quantum group above
C∗
r (G). It turns out that this example can be generalised to the quantum setting.
We follow [11]. Let G be a locally compact quantum group, and let L1

♯ (Ĝ) be the collection of

ω ∈ L1(Ĝ) such that there is w♯ ∈ L1(Ĝ) with

〈x, ω♯〉 = 〈S(x)∗, ω〉 (x ∈ D(Ŝ)).

Then L1
♯ (Ĝ) is a ∗-algebra for the involution ♯. Let Cu(G) be the universal enveloping C∗-algebra

of L1
♯ (Ĝ), and let λ̂u : L1

♯ (Ĝ) → Cu(G) be the canonical homomorphism. Then Cu(G) becomes a
“quantum group” which is very similar to C0(G), the essential difference being that the left and
right invariant weights are no longer faithful. For us, the important features are:

• There is a non-degenerate ∗-homomorphism ∆u : Cu(G) → M(Cu(G) ⊗ Cu(G)) which is
coassociative;

• There is a surjective ∗-homomorphism π : Cu(G) → C0(G) with ∆π = (π ⊗ π)∆u.

We note here that there are many differences in notation between [11] and that for Kac algebras
used in [6]. We shall continue to follow [11]. It is shown in [4, Section 8] that L1(G) is an essential
ideal in Cu(G)∗, and so Cu(G) is a quantum group above C0(G).

In [15] examples of discrete groups G are given so that there is a compact quantum group
(A,∆A) which “sits between” C∗

r (G) and C
∗(G), in the sense that we have proper quotient maps

C∗(G) → A → C∗
r (G) which intertwine the coproducts. Then the inclusion maps Br(G) → A∗ →

B(G) are isometric algebra homomorphisms. As the Fourier algebra A(G) is an essential ideal in
B(G), it follows that A is a quantum group above C∗

r (G). Indeed, this argument would work for
any quantum group sitting between C0(G) and Cu(G) (but to our knowledge, [15] gives the first
example of this phenomena).

4.1 Quantum group isomorphisms revisited

Let θ : L∞(G1) → L∞(G2) be a quantum group isomorphism. Assuming we have normalised
the Haar weights, θ will induce an isomorphism between the Hilbert spaces which intertwines the
fundamental unitaries. Thus θ will restrict to give a ∗-isomorphism C0(G1) → C0(G2).

14



Similarly, θ induces a quantum group isomorphism θ̂ : L∞(Ĝ2) → L∞(Ĝ1) which satisfies
θ̂λ2 = λ1θ∗. Then θ̂∗ will restrict to give a ∗-isomorphism between L1

♯ (G1) and L
1
♯ (G2). This will

induce a ∗-isomorphism θu : Cu(G1) → Cu(G2) which intertwines the coproducts, and satisfies
π2θu = θπ1.

For a quantum group commutant isomorphism θ we simply compose θ with the map x 7→ Jx∗J

to get a quantum group isomorphism from G1 to G
′
2. In [13, Section 4] it is shown that (G′

2)̂ = Ĝ
op
2 ,

where L∞(Ĝop
2 ) = L∞(Ĝ2) with the opposite coproduct ∆̂op = σ∆̂. Hence L1

♯ (Ĝ
op
2 ) agrees with

L1
♯ (Ĝ2), but with the reversed product, and similarly Cu(G

′
2) is canonically equal to the opposite C∗-

algebra to Cu(G2), but has the same coproduct. Thus, for example, θ lifts to an anti-∗-isomorphism
θu : Cu(G1) → Cu(G2) which intertwines the coproduct (somewhat as we might hope).

4.2 Normal extensions

Let B be a C∗-algebra non-degenerately represented on a Hilbert space H . Let M = B′′ be the
von Neumann algebra generated by B. We can identify the multiplier algebra of B with

M(B) = {x ∈M : xa, ax ∈ B (a ∈ B)}.

Let A be a C∗-algebra, and consider the enveloping C∗-algebra A∗∗. Let φ : A → M(B) be a
morphism. By the universal property of A∗∗, there is a unique normal ∗-homomorphism φ̃ : A∗∗ →
B′′ extending φ. As φ is non-degenerate, φ̃ is unital. In the special case when B′′ = B∗∗ (say with
B ⊆ B(H) the universal representation) the extension φ̃ is nothing but the second adjoint φ∗∗.

Now let (A,∆A, π) be a quantum group above C0(G), and let A ⊆ B(H) be the universal
representation, so that both A⊗ A (the spacial C∗-tensor product) and A∗∗⊗A∗∗ are subalgebras
of B(H ⊗H). We can hence form the extension ∆̃A : A∗∗ → A∗∗⊗A∗∗. Notice that then (A∗∗, ∆̃A)
becomes a Hopf-von Neumann algebra.

Similarly, we form π̃ : A∗∗ → L∞(G). The preadjoint of this map is simply the embedding
π̃∗ : L1(G) → A∗, which is the composition of the isometry L1(G) → C0(G)∗ with the isometry
π∗ : C0(G)∗ → A∗. Let supp π̃ be the support projection of π̃, so supp π̃ ∈ A∗∗ is the unique central
projection with, for x ∈ A∗∗, x supp π̃ = 0 if and only if π̃(x) = 0. Then

π̃∗(L
1(G))⊥ = {x ∈ A∗∗ : 〈x, π̃∗(ω)〉 = 0 (ω ∈ L1(G))} = ker π̃ = (1− supp π̃)A∗∗.

It follows that

π̃∗(L
1(G)) = {µ ∈ A∗ : 〈x, µ〉 = 0 (x ∈ (1− supp π̃)A∗∗)}

= {µ ∈ A∗ : (1− supp π̃)µ = 0} = (supp π̃)A∗.

Temporarily, let ∆0 be the coproduct on C0(G), and let ∆∞ be the coproduct on L∞(G).
Identifying M(C0(G)⊗C0(G)) with a subalgebra of L∞(G)⊗L∞(G), we see that ∆∞ extends ∆0.
It is easy to verify that as (π ⊗ π)∆A = ∆0π, also (π̃ ⊗ π̃)∆̃A = ∆∞π̃. We shall use this, and
similar relations, without comment in the next section.

We remark that we could work with a more general notion of a quantum group above C0(G).
Indeed, suppose that (A,∆A) is a C∗-bialgebra, and that π : A → L∞(G) is a ∗-homomorphism
with σ-weak dense range. Then π ⊗ π is a ∗-homomorphism A ⊗ A → L∞(G) ⊗ L∞(G) ⊆
L∞(G)⊗L∞(G), and so, by taking a normal extension, we have a ∗-homomorphism π :M(A⊗A) →
L∞(G)⊗L∞(G). We can thus make sense of the requirement that (π ⊗ π)∆A = ∆π. Then π∗

restricted to L1(G) gives a homomorphism L1(G) → A∗ (which is an isometry, as π has σ-weakly
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dense range, and using Kaplansky Density). We again insist that π∗(L1(G)) is an essential ideal
in A∗. A careful examination of the following proofs show that they would all work in this more
general setting; but in the absence of any examples, we do not make this a formal definition.

4.3 Isometries of duals of quantum groups

For i = 1, 2 let (Ai,∆Ai
, πi) be a quantum group above C0(Gi). Let T∗ : A

∗
2 → A∗

1 be an isometric
algebra isomorphism, and set T = (T∗)

∗ : A∗∗
1 → A∗∗

2 . The following is now proved in an entirely
analogous way to the arguments in Section 3.

Lemma 4.2. T (1) is a unitary element of A∗∗
2 which is a member of the intrinsic group. The map

T1∗ : A
∗∗
1 → A∗∗

2 ;ω 7→ T∗(T (1)
∗ω) is an isometric algebra isomorphism.

Again, we find that T1 = (T1∗)
∗ is a Jordan homomorphism. We now show (in a similar, but

more general, fashion to the arguments in [6, Section 5.6]) a link between π̃ and the order properties
of A∗∗, for (A,∆A, π) a quantum group above C0(G).

Proposition 4.3. Let G be a locally compact quantum group, and let (A,∆A) a quantum group

above C0(G). Let

Q = {Q ∈ A∗∗ : Q is a projection, Q 6= 1, ∆̃A(Q) ≤ Q⊗Q}.

Then Q has a maximal element, which is 1− supp π̃.

Proof. Let e = 1 − supp π̃, so as in Section 4.2 above, eA∗∗ = ker π̃ and π̃∗(L
1(G)) = (1 − e)A∗.

Let µ, µ′ ∈ A∗, so there are ω, ω′ ∈ L1(G) with π̃∗(ω) = (1− e)µ and π̃∗(ω′) = (1− e)µ′. Then

〈∆̃A(e)(e⊗ e), µ⊗ µ′〉 = 〈e, (eµ)(eµ′)〉 = 〈e, (µ− π̃∗(ω))(µ
′ − π̃∗(ω

′))〉

= 〈e, µµ′〉+ 〈e, π̃∗(ωω
′)− µπ̃∗(ω

′)− π̃∗(ω)µ
′〉

= 〈e, µµ′〉 = 〈∆̃A(e), µ⊗ µ′〉,

as π̃∗(L
1(G)) is an ideal in A∗. It follows that ∆̃A(e)(e⊗ e) = ∆̃A(e), and so ∆̃A(e) ≤ e⊗ e. Thus

e ∈ Q.
Now let Q ∈ Q, so that ∆π̃(Q) = (∆π)̃ (Q) = ((π ⊗ π)∆u)̃ (Q) = (π̃ ⊗ π̃)∆̃u(Q) ≤ π̃(Q) ⊗

π̃(Q) ≤ 1⊗ π̃(Q). By [14, Lemma 6.4], this can only occur when π̃(Q) = 0 or 1.
If π̃(Q) = 1, then Q ≥ supp π̃, and so Q+e ≥ 1. Thus ∆̃u(Q)+∆̃u(e) ≥ 1⊗1, but as Q, e ∈ Q,

it follows that
1⊗ 1 ≤ Q⊗Q + e⊗ e.

Thus also

(1−Q)⊗ (1− e) ≤
(

(1−Q)⊗ (1− e)
)(

Q⊗Q + e⊗ e
)(

(1−Q)⊗ (1− e)
)

= 0,

and so Q = 1 or e = 1, a contradiction. Thus π̃(Q) = 0, showing that Q ≤ e as required.

Proposition 4.4. With T∗, T, T1 as above, we have that:

1. T1(1− supp π̃1) = 1− supp π̃2.

2. T (ker π̃1) = ker π̃2.
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3. T∗(π̃2,∗(L
1(G2))) = π̃1,∗(L

1(G1)).

Proof. For i = 1, 2, form Qi for Ai as in Proposition 4.3. We claim that T1 gives a bijection Q1 to
Q2. Let Q ∈ Q1, so as T1 is Jordan homomorphism, T1(Q) is a projection which is not equal to 1
(as T1(1) = 1 and T1 bijects). For µ, µ′ ∈ A∗

2 positive, we see that

〈∆̃A2
(T1(Q)), µ⊗ µ′〉 = 〈∆A1

(Q), T1∗(µ)⊗ T1∗(µ
′)〉

≤ 〈Q⊗Q, T1∗(µ)⊗ T1∗(µ
′)〉 = 〈T1(Q)⊗ T1(Q), µ⊗ µ′〉.

It follows that ∆̃A2
(T1(Q)) ≤ T1(Q) ⊗ T1(Q), and so T1(Q1) ⊆ Q2. Applying the same argument

to T−1
1 yields that T1(Q1) ⊇ Q2, giving the claim. As T1 preserves the order, and 1 − supp π̃i is

the maximal element of Qi, it follows that T1(1− supp π̃1) = 1− supp π̃2 showing (1).
For i = 1, 2, we know that x ∈ ker π̃i if and only if x supp π̃i = 0. For x ∈ A∗∗

1 , as T1 is a Jordan
homomorphism, we see that

2T1(x) supp π̃2 = (supp π̃2)T1(x) + T1(x) supp π̃2 = T1(supp π̃1)T1(x) + T1(x)T1(supp π̃1)

= T1((supp π̃2)x+ x supp π̃2) = 2T1(x supp π̃2),

using (1). Thus T1(ker π̃1) = ker π̃2. As ker π̃1 is an ideal, and T (1) is unitary, it follows that
ker π̃1T (1) = ker π̃1, and so T (ker π̃1) = T1(ker π̃1T (1)) = ker π̃2 showing (2).

As in Section 4.2 above, we have that π̃i,∗(L
1(Gi)) =

⊥(ker π̃i), for i = 1, 2. Hence (3) follows
immediately from (2).

For i = 1, 2 we have that L1(Gi) ⊆ A∗
i isometrically, and so the restriction of T yields an

isometric algebra homomorphism Tr : L1(G2) → L1(G1). We have already characterised such
maps, and we next bootstrap this to determine the structure of T∗ on all of A∗

2. For the moment,
we restrict attention to the cases when Ai = C0(Gi) for i = 1, 2, or Ai = Cu(Gi), for i = 1, 2. In
the next section we use quantum group duality to say something about the general case.

Given a quantum group (commutant) isomorphism θ : L∞(G1) → L∞(G2), we recall from
Section 4.1 that θ restricts to a (anti-) ∗-isomorphism θ : C0(G1) → C0(G2), and lifts to a (anti-)
∗-isomorphism θu : Cu(G1) → Cu(G2). In the following, we call such a map “associated”.

Theorem 4.5. Let G1 and G2 be locally compact quantum groups. Suppose that either A1 =
C0(G1), A2 = C0(G2), or A1 = Cu(G1), A2 = Cu(G2). Let T∗ : A∗

2 → A∗
1 be a bijective isometric

algebra homomorphism, and set T = (T∗)
∗. Then v = T (1) and u = T ∗

r (1) are in the intrinsic

groups of A∗∗
2 and L∞(G2), respectively. There is either:

1. A quantum group isomorphism θ : L∞(G1) → L∞(G2) and associated ∗-isomorphism θ0 :
A1 → A2 which intertwines the coproducts; or

2. A quantum group commutant isomorphism θ : L∞(G1) → L∞(G2) and associated anti-∗-
isomorphism θ0 : A1 → A2 which intertwines the coproducts.

In either case, for ω ∈Mu(G2) and ω
′ ∈ L1(G2),

T∗(ω) = θ∗0(vω), Tr(ω
′) = θ∗(uω

′).

Proof. By previous work, u = T ∗
r (1) is a member of the intrinsic group of L∞(G2), and the

map θ : L∞(G1) → L∞(G2); x 7→ T ∗
r (x)u

∗ is either a normal ∗-isomorphism, or a normal anti-∗-
isomorphism, which in either case intertwines the coproduct.
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Suppose we are in the first case, where θ is a ∗-isomorphism. Then we have an associated
∗-isomorphism θ0 : A1 → A2 which intertwines the coproducts, and which satisfies π2θ0 = θπ1.
Taking adjoints gives that θ∗0π̃2,∗ = π̃1,∗θ∗.

For ω ∈ L1(G2), we have that θ∗(ω) = Tr(u
∗ω). Also, Tr is constructed so that T∗π̃2,∗ = π̃1,∗Tr.

Thus
T∗
(

π̃2,∗(u
∗ω)

)

= π̃1,∗
(

Tr(u
∗ω)

)

= π̃1,∗
(

θ∗(ω)
)

= θ∗0
(

π̃2,∗(ω)
)

(ω ∈ L1(G2)).

Recall that v = T (1) ∈ A∗∗
2 is also unitary. Then u = T ∗

r (1) = T ∗
r π̃1(1) = π̃2T (1) = π̃2(v). A

simple calculation shows that vπ̃2,∗(ω) = π̃2,∗(uω) for ω ∈ L1(G2).
Let µ ∈ A∗

2 and ω ∈ L1(G2), so we can find ω′ ∈ L1(G2) with π̃2,∗(ω
′) = π̃2,∗(ω)µ. Then

T∗
(

π̃2,∗(ω)
)

T∗(µ) = T∗
(

π̃2,∗(ω
′)
)

= θ∗0
(

π̃2,∗(uω
′)
)

= θ∗0
(

vπ̃2,∗(ω
′)
)

= θ∗0
(

v
(

π̃2,∗(ω)µ
))

= θ∗0
(

(vπ̃2,∗(ω))(vµ)
)

= θ∗0(vπ̃2,∗(ω))θ
∗
0(vµ) = T∗

(

π̃2,∗(ω)
)

θ∗0(vµ).

Recall that, from the hypothesis, π̃1,∗(L
1(G2)) is an essential ideal in A∗

1. As T∗ bijects π̃2,∗(L
1(G2))

to π̃1,∗(L
1(G2)), we see that

T∗(µ) = θ∗0(vµ) (µ ∈ A∗
2),

as claimed.
The other case, when θ is a quantum group commutant isomorphism, is entirely analogous.

The previous theorem needs a characterisation of the intrinsic group of A∗∗, for A a quantum
group above C0(G). The following results show that it is enough to know the intrinsic group of
L∞(G).

Lemma 4.6. Let A be a Banach algebra, and let I ⊆ A be a closed ideal. Let ΦI be the character

space I, and let X be the collection of characters on A which do not restrict to the zero functional

on I. Then restriction of linear functionals gives a bijection from X to ΦI .

Proof. Let f, g ∈ X induce the same (non-zero) character on I. Pick a0 ∈ I with f(a0) = g(a0) = 1.
Then, for a ∈ A, we see that f(a) = f(a)f(a0) = f(aa0) = g(aa0) = g(a)g(a0) = g(a), using that
aa0 ∈ I. Thus f = g, so the restriction map is injective.

Now let u ∈ ΦI , and pick a0 ∈ I with u(a0) = 1. Define f ∈ A∗ by f(a) = u(aa0) for each
a ∈ A. Then, for a, b ∈ A,

f(ab) = u(aba0) = u(a0)u(aba0) = u(a0aba0) = u(a0a)u(ba0) = u(a0a)u(a0)f(b)

= u(a0aa0)f(b) = u(a0)u(aa0)f(b) = f(a)f(b).

So f is a character on A. For a ∈ I, also f(a) = u(aa0) = u(a)u(a0) = u(a), and so f ∈ X and f
restricts to u. Thus the restriction map is a bijection.

The following should be compared with [24, Theorem 1] where Walter shows this in the co-
commutative case.

Theorem 4.7. Let (A,∆A, π) be a quantum group above C0(G). For a character u on A∗, the

following are equivalent:

1. u is a member of the intrinsic group of A∗∗;

2. u is invertible in A∗∗;
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3. π̃(u) 6= 0, that is, u does not induce the zero functional on π̃∗(L
1(G)).

Moreover, π̃ : A∗∗ → L∞(G) restricts to a bijection between the intrinsic groups of A∗∗ and L∞(G).

Proof. Let Y be the intrinsic group of L∞(G), which by Theorem 3.2 is the character space of
L1(G). Let X1 be the intrinsic group of A∗∗, let X2 be the collection of invertible characters, and
let X3 be the collection of characters not sent to zero by π̃. If u ∈ X2 then 1 = π̃(1) = π̃(uu−1) =
π̃(u)π̃(u−1), showing that π̃(u) 6= 0 and hence u ∈ X3. Thus X1 ⊆ X2 ⊆ X3. By the lemma, π̃
restricts to a bijection between X3 and Y .

Let u ∈ X3, so by Theorem 3.2, ∆̃A(u) = u ⊗ u. As ∆̃A is a ∗-homomorphism, also u∗u is a
character. As π̃(u) ∈ L∞(G) is a (non-zero) character, it is unitary, and so 1 = π̃(u)∗π̃(u) = π̃(u∗u).
Thus u∗u ∈ X3, and as π̃ injects on X3, and 1 ∈ X3, we conclude that u

∗u = 1. Similarly, uu∗ = 1.
Thus u is a member of the intrinsic group of A∗∗, that is, u ∈ X1. We hence have the required
equalities X1 = X2 = X3.

In special cases, we can say more.

Proposition 4.8. The intrinsic group of Cu(G)∗∗, respectively C0(G)∗∗, is a subgroup of the unitary

group of M(Cu(G)), respectively M(C0(G)).

Proof. Let x ∈ Cu(G)∗∗ be a member of the intrinsic group, and set y = π̃(x) ∈ L∞(G). By
Theorem 3.2, we have that y is unitary, and y ∈ M(C0(G)). Thus, in the language of [11,
Proposition 6.6], y is a unitary corepresentation of C0(G) on C, and so there is x0 ∈ M(Cu(G))
with π(x0) = y and ∆u(x0) = x0 ⊗ x0. By uniqueness (from the previous theorem) we must have
that x0 = x, treating M(Cu(G)) as a subalgebra of Cu(G)∗∗.

Now let x ∈ C0(G)∗∗ be a member of the intrinsic group. Again, π̃(x) = y ∈ M(C0(G)), so
let x0 be the image of y under the embedding M(C0(G)) → C0(G)∗∗. Thus x0 is a member of the
intrinsic group of C0(G)∗∗ and π̃(x0) = π̃(x), so again by uniqueness, we conclude that x0 = x.

4.4 The picture under duality

We now show that by using the duality theory of locally compact quantum groups, we can handle
the more general situation; this also gives results more reminiscent of those for Kac algebras, see
[6, Section 5.6].

Let (A,∆A, π) be a quantum group above C0(G). As L1(G) is an essential ideal in A∗, each
member of A∗ induces a (completely bounded) multiplier (or centraliser) of L1(G). Let us introduce
the notation that given µ ∈ A∗, we have maps Lµ, Rµ : L1(G) → L1(G) with

π̃∗Lµ(ω) = µπ̃∗(ω), π̃∗Rµ(ω) = π̃∗(ω)µ (ω ∈ L1(G)).

Let us denote by Mcb(L
1(G)) the algebra of completely bounded multipliers of L1(G). In [4,

Theorem 8.9], a homomorphism Λ : Mcb(L
1(G)) → Cb(Ĝ) was constructed (and a more general

construction, with one-sided multipliers, is given in [7]). We hence find a map, which we shall
continue to denote by Λ, from A∗ to Cb(Ĝ), which is uniquely determined by the properties that

Λ(µ)λ(ω) = λ(Lµ(ω)), λ(ω)Λ(µ) = λ(Rµ(ω)) (µ ∈ A∗, ω ∈ L1(G)).

An important link between multipliers and the antipode is established in [3]. In particular,
given µ ∈ A∗, define an associated left multiplier L†

µ by

L†
µ(ω) = Lµ(ω

∗)∗ so π̃∗L
†
µ(ω) =

(

µπ̃∗(ω
∗)
)∗

= µ∗π̃∗(ω),
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that is, L†
µ = Lµ∗ . (Recall that ω

∗ is the normal functional x 7→ 〈x∗, ω〉 so this calculation follows

immediately from the fact that ∆̃A and π̃ are ∗-homomorphisms). Then [3, Theorem 5.9] shows
that Λ(µ∗) ∈ D(Ŝ)∗ and Λ(µ) = Ŝ(Λ(µ∗)∗).

For λ : L1(G) → C0(G) (which Λ extends) we can see this directly. Recall (see [14, Proposi-
tion 8.3]) that Ŝ((ι ⊗ ω)(Ŵ )) = (ι ⊗ ω)(Ŵ ∗). As Ŵ = σW ∗σ, we see that λ(ω) = (ω ⊗ ι)(W ) =
Ŝ((ω ⊗ ι)(W ∗)) = Ŝ(λ(ω∗)∗).

Lemma 4.9. Let u ∈ L∞(G) be a member of the intrinsic group. For x ∈ L∞(Ĝ), let γ̂u(x) =
uxu∗. Then γ̂u is a ∗-automorphism of L∞(Ĝ), which restricts to a ∗-automorphism of C0(Ĝ).
Furthermore, γ̂uλ(ω) = λ(uω) for ω ∈ L1(G).

Proof. We have that ∆(u) = u⊗ u, so W ∗(1⊗ u)W = u⊗ u. Using that W and u are unitary, it
follows that (1⊗ u)W (1⊗ u∗) =W (u⊗ 1). Then, for ω ∈ L1(G),

γ̂uλ(ω) = u(ω ⊗ ι)(W )u∗ = (ω ⊗ ι)
(

(1⊗ u)W (1⊗ u∗)
)

= (ω ⊗ ι)
(

W (u⊗ 1)
)

= λ(uω),

as claimed. By density, it follows that γ̂u is a self-map of C0(Ĝ), which clearly has the inverse γ̂u∗.
As γ̂u is normal, it follows that γ̂u is also an automorphism of L∞(Ĝ).

For the construction of θ̂ in the following, we again refer the reader to Section 4.1.

Theorem 4.10. For i = 1, 2, let Gi be a locally compact quantum groups, and let (Ai,∆Ai
, πi) be

a quantum group above C0(Gi). Let T∗ : A
∗
2 → A∗

1 be a bijective isometric algebra homomorphism,

and set T = (T∗)
∗. Then v = T (1) and u = π̃2(v) are members of the intrinsic groups of A∗∗

2 and

L∞(G2), respectively. Then either:

1. There is a quantum group isomorphism θ : L∞(G1) → L∞(G2), leading to a quantum group

isomorphism θ̂ : L∞(Ĝ2) → L∞(Ĝ1), with

Λ1T∗ = θ̂γ̂uΛ2.

2. There is a quantum group commutant isomorphism θ : L∞(G1) → L∞(G2), leading to a

quantum group isomorphism θ̂ : L∞(Ĝop
2 ) → L∞(Ĝ1), with

Λ1T∗ = θ̂R̂2Ŝ
−1
2 γ̂uΛ2.

In particular, G1 is isomorphic to either G2 or G′
2.

Proof. In this more general situation, the proof of Theorem 4.5, and Theorem 4.7, still give the
facts about v and u, and yields θ such that

T∗
(

π̃2,∗(u
∗ω)

)

= π̃1,∗
(

θ∗(ω)
)

(ω ∈ L1(G2)).

Suppose first that θ is a quantum group isomorphism. Let θ̂ : L∞(Ĝ2) → L∞(Ĝ1) be the
quantum group isomorphism induced by θ, which satisfies λ1θ∗ = θ̂λ2.

Let ω ∈ L1(G2) and µ ∈ A∗
2. There is ω′ ∈ L1(G2) with µπ̃2,∗(ω) = π̃2,∗(ω

′). Then

Λ1(T∗(µ))Λ1(T∗(π̃2,∗(ω))) = Λ1(T∗(π̃2,∗(ω
′))) = λ1(θ∗(uω

′)) = θ̂(λ2(uω
′)) = θ̂(γ̂u(λ2(ω

′)))

= θ̂γ̂u
(

Λ2(µ)λ2(ω)
)

= θ̂γ̂uΛ2(µ)Λ1(T∗(π̃2,∗(ω))),
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using that, similarly, Λ1(T∗(π̃2,∗(ω))) = θ̂(γ̂u(λ2(ω))). As the set

{γ̂u(λ2(ω)) : ω ∈ L1(G2)}

is norm dense in C0(Ĝ2), working in M(C0(Ĝ2)), we conclude that

Λ1T∗(µ) = θ̂γ̂uΛ2(µ) (µ ∈ A∗
2),

as required.
In the case when θ is a quantum group commutant isomorphism, define Φ : L∞(G2) →

L∞(G′
2); x 7→ Jx∗J , and set θ′ = Φθ : L∞(G1) → L∞(G′

2), which is a quantum group isomor-
phism. As in Section 4.1 we find a quantum group isomorphism θ̂′ : L∞((G′

2)̂ ) → L∞(Ĝ1). As
(G′

2)̂ = (Ĝ2)
op, this gives a normal ∗-isomorphism θ̂ : L∞(Ĝ2) → L∞(Ĝ1) with ∆̂1θ̂ = σ(θ̂⊗ θ̂)∆̂2.

Then θ̂λ′2 = λ1θ
′
∗ = λ1θ∗Φ∗.

We now calculate λ′2Φ
−1
∗ . Let ξ, η, α, β ∈ L2(G), so

(

λ′2Φ
−1
∗ (ωξ,η)α

∣

∣β
)

=
(

λ′2(ωJη,Jξ)α
∣

∣β
)

=
(

W ′
2(Jη ⊗ α)

∣

∣Jξ ⊗ β
)

=
(

(J ⊗ J)W2(η ⊗ Jα)
∣

∣Jξ ⊗ β
)

=
(

W ∗
2 (ξ ⊗ Jβ)

∣

∣η ⊗ Jα
)

=
(

(ωξ,η ⊗ ι)(W ∗
2 )Jβ

∣

∣Jα
)

=
(

J((ωξ,η ⊗ ι)(W ∗
2 ))

∗Jα
∣

∣β
)

,

using that W ′
2 = (J ⊗ J)W2(J ⊗ J). With reference to the discussion before Lemma 4.9, we see

that
λ′2Φ

−1
∗ (ω) = R̂2

(

(ω ⊗ ι)(W ∗
2 )
)

= R̂2

(

λ2(ω
∗)∗

)

= R̂2Ŝ
−1
2 λ2(ω) (ω ∈ L1(G2)).

In particular,
λ1θ∗ = θ̂R̂2Ŝ

−1
2 λ2.

Finally, we follow the previous argument through. So let ω, ω′ ∈ L1(G2) and µ ∈ A∗
2 with

µπ̃2,∗(ω) = π̃2,∗(ω
′). Then

Λ1(T∗(µ))Λ1(T∗(π̃2,∗(ω))) = λ1(θ∗(uω
′)) = θ̂R̂2Ŝ

−1
2 γ̂uλ2(ω

′) = θ̂R̂2Ŝ
−1
2 γ̂u

(

Λ2(µ)λ2(ω)
)

=
(

θ̂R̂2Ŝ
−1
2 γ̂uΛ2(µ)

)

Λ1(T∗(π̃2,∗(ω))),

using that R̂2Ŝ
−1
2 is a homomorphism on D(S−1

2 ). This completes the proof.
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