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Matthew Daws
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Abstract

We show that any completely positive multiplier of the convolution algebra of the
dual of an operator algebraic quantum group G (either a locally compact quantum group,
or a quantum group coming from a modular or manageable multiplicative unitary) is
induced in a canonical fashion by a unitary corepresentation of G. It follows that there is
an order bijection between the completely positive multipliers of L1(G) and the positive
functionals on the universal quantum group Cu

0 (G). We provide a direct link between the
Junge, Neufang, Ruan representation result and the representing element of a multiplier,
and use this to show that their representation map is always weak∗-weak∗-continuous.
Keywords: Locally compact quantum group, manageable multiplicative unitary, com-
pletely bounded multiplier, completely positive multiplier, corepresentation.
MSC classification (2010): 20G42, 22D10, 22D15, 43A22, 46L07, 46L89, 81R50.

1 Introduction

Multipliers arise throughout the study of algebras in analysis, as a useful tool for embedding a
non-unital algebra into its “largest” unitisation. In abstract harmonic analysis, the convolution
algebra L1(G) of a locally compact group G is unital only when G is discrete; Wendel’s Theorem
tells us that the multiplier algebra of L1(G) is the measure algebra M(G). On the “Fourier
transform” side, the Fourier algebra A(G) is unital only for compact G. Here it seems most
profitable to study the completely bounded multipliers, as these are more tractable, have better
functorial properties, and can capture interesting geometric aspects of the group G, see [7, 11,
28] for example.

The convolution algebras of locally compact quantum groups G form a generalisation of
both L1(G) and A(G), together with genuinely “non-commutative” examples, such as compact
quantum groups. Again, completely bounded multipliers are profitable to study, and in par-
ticular, it was shown by Junge, Neufang and Ruan in [17] that there is a bijection between
“abstract” completely bounded (left) multipliers of the dual L1(Ĝ) (that is, right module maps
on L1(Ĝ)) and “concrete” multipliers– elements of L∞(G) which “multiply” the image of L1(Ĝ)
into itself. This mirrors the Fourier algebra picture, where there is a bijection between com-
pletely bounded multipliers of A(G), thought of as module maps on A(G), and continuous
functions f on G which multiply the function algebra A(G) into itself.

It was shown by De Canniere and Haagerup, [11, Proposition 4.2], that completely positive
multipliers of A(G) biject with positive definite functions on G. Positive definite functions arise
from unitary group representations, equivalently, ∗-representations of the full group C∗-algebra.
In this light, we can also observe that positive multipliers of L1(G) arise from positive measures
in M(G), or equivalently, ∗-representations of C0(G). Similarly, the use of completely positive
multipliers of quantum groups has arisen in the study of various approximation properties
associated to quantum group algebras; see for example [14], and in relation to the Haagerup
approximation property, [4, 5].
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The main objective of this paper is to establish the same result for quantum groups: any
completely positive multiplier of L1(Ĝ) comes from a unitary corepresentation of G, or equiv-
alently, from a ∗-representation of the universal quantum group Cu

0 (Ĝ) (to be thought of as
generalising the role of C∗(G).) We remark that such a result cannot in general be extended
to completely bounded multipliers, as unpublished work of Losert, extending his paper [23],
shows that G is amenable if and only if the Fourier-Stieltjes algebra B(G) = C∗(G)∗ agrees with
the algebra of completely bounded multipliers of A(G). (This was shown for various explicit
examples in [7, 11] and for all discrete groups in [3].)

A key tool for us is the representation result of [17], where it is shown that a completely
bounded multiplier of L1(Ĝ) extends to a normal, completely bounded map on B(L2(G)) with
certain properties. In the completely positive case, applying the Stinespring construction to
this map yields a Hilbert space, and it is this space which will be the carrier for our unitary
corepresentation.

Thus a completely bounded (left) multiplier gives rise to both a normal map Φ on B(L2(G))
and a “representing element” a0 ∈ L∞(G). We show that these are linked by the relation

(
Φ(θξ,η)α

∣∣β
)

= 〈∆(a0), ωα,η ⊗ ω
♯∗
ξ,β〉.

Here θξ,η is the compact operator α 7→ (α|η)ξ, and ♯ denotes the (in general unbounded) ∗-
operation on L1(G). See Proposition 6.1 for a precise statement. We use this result to show
that the representation map of [17] is always weak∗-weak∗ continuous, which answers in the
affirmative the question asked before [16, Theorem 4.7]. Furthermore, this suggests a possible
definition for a “positive definite function” on a quantum group: namely, those a0 such that
Φ can be chosen to be completely positive. In joint work with Salmi, [10], we verify this
conjecture– namely, it is indeed the case that if Φ can be chosen to be completely positive,
then automatically Φ must come from a completely positive multiplier, and so a0 comes from
a corepresentation of G.

The organisation of the paper is as follows. In Section 2 we quickly survey the Operator
Algebraic quantum groups which we shall study, and we prove some useful auxiliary results.
In this paper, all our arguments work in the slightly more general setting of quantum groups
coming from manageable (or modular) multiplicative unitaries (that is, without assuming in-
variant weights). In Section 3 we recall the construction of [17]. As the actual constructions
involved, and not just the results of that paper, are indispensable to us, we sketch some of the
proofs, and take the opportunity to show how the arguments can be made to work for quantum
groups coming from manageable multiplicative unitaries. In Section 4 we show how certain
corepresentations of G canonically give rise to completely bounded multipliers of L1(Ĝ). We
also show how unitary corepresentations, equivalently, ∗-representations of the universal dual
algebra Cu

0 (Ĝ), give rise to completely positive multipliers of L1(Ĝ). The following section is
the main part of the paper, and proves the converse– any completely positive multiplier of
L1(Ĝ) comes from a unitary corepresentation of G in the manner discussed in Section 4. As
mentioned above, we construct the Hilbert space for our corepresentation from the Stinespring
dilation construction. We can view this as a completion of L1(G) with respect to a certain
inner-product; then the corepresentation U is built by actually forming U∗, which is linked to
the anti-representation of L1(G) given by right multiplication of L1(G) on itself. We then pro-
ceed to show that U is in fact unitary, and then that we can recover the original multiplier from
U . In the final section, we explore, as discussed above, the link between multipliers as maps on
L1(G) (or, via [17], as maps on B(L2(G))) and their “representing elements” in L∞(G).

A final word on notation. Our Hilbert space inner products shall be linear in the first
variable, and we write (·|·) for an inner product (or more generally, a sesquilinear form). We
write 〈·, ·〉 for the bilinear pairing between a Banach space and its dual. For a Hilbert space
H , we write B(H) for the algebra of all bounded operators on H , write B(H)∗ for its predual
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(the trace class operators) and write B0(H) for the ideal of compact operators. For ξ, η ∈ H ,
we denote by ωξ,η the normal functional in B(H)∗, and by θξ,η the rank one operator in B0(H),
which are defined by

〈T, ωξ,η〉 = (Tξ|η), θξ,η(γ) = (γ|η)ξ (T ∈ B(H), γ ∈ H).

Given a normal map T on a von Neumann algebra M , we write T∗ for the pre-adjoint of T
acting on the predual M∗. We write ⊗ to mean a completed tensor product, either of Hilbert
spaces, or the minimal C∗-algebraic tensor product. We write ⊗ for the von Neumann algebraic
tensor product, and ⊙ for the purely algebraic tensor product. We write Σ for the tensor swap
map of Hilbert spaces, say Σ : H ⊗H → H ⊗H ; ξ ⊗ η 7→ η ⊗ ξ.

We use the basic theory of Operator Spaces without comment; see, for example, [12] for
further details.

Acknowledgements: The author wishes to thank Michael Brannan for asking the initial
question which lead to this paper, and to thank Zhong-Jin Ruan for pointing out that the
argument at the end of Proposition 3.2 needed more justification. The anonymous referee of
an earlier version of this paper made many helpful comments; in particular suggesting the
argument of Theorem 2.2.

2 Operator algebraic quantum groups

In this paper, we shall be concerned with quantum groups in the operator algebraic setting– to
be precise, either locally compact quantum groups, in the Kustermans, Vaes sense [20, 21, 22,
30], or C∗-algebraic quantum groups built from manageable or modular multiplicative unitaries,
in the So ltan, Woronowicz sense [25, 26, 33] (the latter generalising the former). In fact, for
many of our results, we shall need remarkably little– our main tool being that “invariants are
constant” (see below– our inspiration here is [24, Section 2]).

A locally compact quantum group in the von Neumann algebraic setting is a Hopf-von Neu-
mann algebra (M,∆) equipped with left and right invariant weights. As usual, we use ∆ to
turn M∗ into a Banach algebra, and we write the product by juxtaposition. We shall “work on
the left”; so using the left invariant weight, we build the GNS space H , and a multiplicative
unitary W acting on L2(G) ⊗ L2(G) (of course, the existence of a right weight is needed to
show that W is unitary). There is a (in general unbounded) antipode S which admits a “polar
decomposition” S = Rτ−i/2, where R is the unitary antipode, and (τt) is the scaling group.
There is a nonsingular positive operator P which implements (τt) as τt(x) = P itxP−it. Then
W is manageable with respect to P .

A manageable multiplicative unitary W acting on H ⊗H has, by definition, a nonsingular
positive operator P , and an operator W̃ acting on H ⊗H such that

(
W (ξ ⊗ α)

∣∣η ⊗ β
)

=
(
W̃ (P−1/2ξ ⊗ β)

∣∣P 1/2η ⊗ α
)
,

for all α, β ∈ H and ξ ∈ D(P−1/2), η ∈ D(P 1/2). A word on notation: we work with left
multiplicative unitaries, whereas So ltan and Woronowicz, in the conventions of [22], work with
right multiplicative unitaries, and so we have translated everything to the left.

Given such a W , the space {(ι ⊗ ω)W : ω ∈ B(H)∗} is an algebra, and its closure is a C∗-
algebra, say A. There is a coassociative map ∆ : A → M(A⊗A) given by ∆(a) = W ∗(1⊗a)W .
If we formed W from (M,∆) with invariant weights, then A is σ-weakly dense in M , and
the two definitions of ∆ agree. Similarly, {(ω ⊗ ι)W : ω ∈ B(H)∗} is norm dense in a C∗-
algebra Â, and defining ∆̂(â) = Ŵ ∗(1 ⊗ â)Ŵ , we get a non-degenerate ∗-homomorphism
∆̂ : Â → M(Â ⊗ Â), where here Ŵ = ΣW ∗Σ. If we started with (M,∆) having invariant
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weights, then we can construct invariant weights on (Â′′, ∆̂). The unitary W is in the multiplier
algebra M(A⊗ Â) ⊆ B(H ⊗H).

When W is a manageable multiplicative unitary, we can still form S,R and (τt) with the
usual properties. The antipode S has elements of the form (ι⊗ω)W as a core, and S((ι⊗ω)W ) =
(ι⊗ ω)(W ∗). Then also S = Rτ−i/2 and (τt) is again implemented by P (the same map which
appears in the definition of “manageable”).

There is a more general notation of a modular multiplicative unitary, see [26], which is more
natural in certain examples. However, at the cost of changing our space H , we can recover
(A,∆) from a different, but related, manageable multiplicative unitary. Indeed, in [25], it is
shown that if (A,∆) is given by some modular multiplicative unitary, then (Â, ∆̂), the σ-weak
topologies on A and Â, the image of W in M(A ⊗ Â), and all the maps S,R, (τt), Ŝ, R̂ and
(τ̂t), are independent of the particular choice of modular multiplicative unitary giving (A,∆).
For this reason, we shall henceforth work only with manageable multiplicative unitaries (but
of course all our results hold in the modular case as well).

We write G for an abstract object to be thought of as a quantum group. We write
C0(G), L∞(G) and L1(G) for A,M and M∗ (and similar for the dual objects); as mentioned
in the previous paragraph, these are well-defined. We also write L2(G) for H , but be aware
that if G is given by a modular or manageable multiplicative unitary, then there is some arbi-
trary choice involved in L2(G). If G has invariant weights, then these weights unique up to a
constant, and so L2(G) is unique.

This concludes our brief summary; we shall develop further theory as and when we need it.
We finish this section with one of our major tools– that “invariants are constant”. Notice that,
by using the unitary antipode, we could replace y13 by y23 in the following; but we shall have
no need of this variant.

Theorem 2.1. For any G and a von Neumann algebra N , if x, y ∈ L∞(G)⊗N satisfy (∆⊗ι)x =
y13, then x = y ∈ C⊗N .

Proof. We shall prove this when N = C, the general case comes from considering (ι ⊗ ω)x
and (ι ⊗ ω)y, as ω ∈ N∗ varies. For locally compact quantum groups, this was shown in [1,
Lemma 4.6], compare also [21, Result 5.13]. For general G, [24, Theorem 2.6] shows that if
a, b ∈ B(L2(G)) with W ∗(1 ⊗ a)W = b ⊗ 1 (working with left multiplicative unitaries) then
a = b ∈ C1, and this immediately implies the result.

The following result is, when we have invariant weights, well-known to experts, but proofs
can be hard to find (for example, [17] cites [32, Proposition 3.5], which uses Tomita-Takesaki
theory; compare also the proof of [31, Proposition 5.13]). The argument here was suggested to
us by the anonymous referee of an earlier version of this paper.

Theorem 2.2. Let G be a quantum group. Then the linear span of L∞(Ĝ)L∞(G)′ = {x̂y′ :
x̂ ∈ L∞(Ĝ), y′ ∈ L∞(G)′} is σ-weakly dense in B(L2(G)).

Proof. Let N be the σ-weak closed linear span of L∞(Ĝ)L∞(G)′, and let P be the von Neumann
algebra generated by N . We first claim that N = P ; we need only show that P ⊆ N . In fact,
it suffices to show that L∞(G)′L∞(Ĝ) ⊆ N , as then N will be a bimodule over both L∞(Ĝ)
and L∞(G)′, and hence will contain the algebra generated by L∞(Ĝ) and L∞(G)′.

Let y′ ∈ L∞(G)′, let ξ, η ∈ L2(G) and set x = (ι ⊗ ωξ,η)(Ŵ ) ∈ L∞(Ĝ). Letting (ei) be an
orthonormal basis for L2(G), we have that

y′x = y′(ι⊗ ωξ,η)(Ŵ ) = (ι⊗ ωξ,η)(ŴŴ ∗(y′ ⊗ 1)Ŵ )

=
∑

i

(ι⊗ ωei,η)(Ŵ )(ι⊗ ωξ,ei)(Ŵ
∗(y′ ⊗ 1)Ŵ ),
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the sum converging σ-weakly. However, for ω ∈ B(L2(G))∗ and y ∈ L∞(G),

(ι⊗ ω)(Ŵ ∗(y′ ⊗ 1)Ŵ )y = (ω ⊗ ι)(W (1 ⊗ y′)W ∗(1 ⊗ y)) = (ω ⊗ ι)(W (1 ⊗ y′)∆(y)W )

= (ω ⊗ ι)(W∆(y)(1 ⊗ y′)W ) = (ω ⊗ ι)((1 ⊗ y)W (1 ⊗ y′)W )

= y(ι⊗ ω)(Ŵ ∗(y′ ⊗ 1)Ŵ ).

It follows that (ι ⊗ ω)(Ŵ ∗(y′ ⊗ 1)Ŵ ) ∈ L∞(G)′, and so y′(ι ⊗ ωξ,η)(Ŵ ) ∈ N . As such x are

σ-weakly dense in L∞(Ĝ), the claim follows.
Now let z ∈ P ′ = L∞(Ĝ)′ ∩ L∞(G). Then ∆(z) = W ∗(1 ⊗ z)W = 1 ⊗ z as W ∈

L∞(G)⊗L∞(Ĝ). By applying Theorem 2.1 to R(z) it follows that z ∈ C1. Thus N = P =
(C1)′′ = B(L2(G)) as required.

3 Multipliers of quantum groups

In this section, we review some of the ideas used by Junge, Neufang and Ruan in [17]. We shall
actually need some constructions coming from the proofs in [17] (and not just the statements
of the results). Rather than just give sketch proofs, we instead give quick, full proofs, and
take the opportunity to show that some of their results also hold for quantum groups coming
from manageable multiplicative unitaries. Further details and related ideas can be found in
[8, 9, 16, 17].

Definition 3.1. A completely bounded left multiplier of L1(G) is a completely bounded map
L∗ : L1(G) → L1(G) with L∗(ω1ω2) = L∗(ω1)ω2 for ω1, ω2 ∈ L1(G).

Such maps are also often called “centralisers” in the literature (and in particular, in [17]).
A simple calculation shows that a completely bounded map L∗ : L1(G) → L1(G) is a left
multiplier if and only if its adjoint L = (L∗)

∗ satisfies (L⊗ ι)∆ = ∆L.
Let us make a few remarks about normal completely bounded maps. As explained, for

example, in the proof of [15, Theorem 2.5], as L is normal, we can find a normal ∗-representation
π : L∞(G) → B(H) for some Hilbert space H , and bounded maps P,Q : L2(G) → H , with
L(x) = P ∗π(x)Q for each x ∈ L∞(G). By the structure theory for normal ∗-representations (see
[29, Theorem 5.5, Chapter IV]) by adjusting P and Q, and may suppose that H = L2(G)⊗H ′

for some Hilbert space H ′, and that π(x) = x⊗ 1. For example, it then follows that

(L⊗ ι)(Ŵ ) = (P ∗ ⊗ 1)Ŵ13(Q⊗ 1).

As Ŵ ∈ M(B0(L
2(G))⊗C0(G)), it follows easily from this that also (L⊗ι)(Ŵ ) ∈ M(B0(L

2(G))⊗
C0(G)), a fact we shall use in the following proof.

The following is a short unification of (the left version of) [17, Corollary 4.4] (compare [17,
Theorem 4.10]) and [8, Theorem 4.2]; we make use of the “invariants are constant” technique.

Remember that the left regular representation of G is the injective homomorphism λ :
L1(G) → C0(Ĝ);ω 7→ (ω⊗ ι)(W ). By duality we define λ̂ : L1(Ĝ) → C0(G); ω̂ 7→ (ω̂⊗ ι)(Ŵ ) =
(ι⊗ ω̂)(W ∗).

Proposition 3.2. Let L∗ be a completely bounded left multiplier of L1(Ĝ). There is a ∈
M(C0(G)) with aλ̂(ω̂) = λ̂(L∗(ω̂)) for ω̂ ∈ L1(G), or equivalently, with (1⊗a)Ŵ = (L⊗ ι)(Ŵ ).

Proof. That aλ̂(ω̂) = λ̂(L∗(ω̂)) for each ω̂ ∈ L1(G), if and only if (1 ⊗ a)Ŵ = (L ⊗ ι)(Ŵ )
follows easily from the definition of λ̂. Consider now

(∆̂ ⊗ ι)
(
(L⊗ ι)(Ŵ )Ŵ ∗

)
=

(
(L⊗ ι⊗ ι)(∆̂ ⊗ ι)(Ŵ )

)
(∆̂ ⊗ ι)(Ŵ ∗)

=
(
(L⊗ ι⊗ ι)(Ŵ13Ŵ23)

)
Ŵ ∗

23Ŵ
∗
13

= (L⊗ ι)(Ŵ )13Ŵ
∗
13,
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where we have used that ∆̂L = (L⊗ ι)∆̂, that ∆̂ is a ∗-homomorphism, and that (∆̂⊗ ι)(Ŵ ) =
Ŵ13Ŵ23. By Theorem 2.1, it follows that there is a ∈ L∞(G) with (L ⊗ ι)(Ŵ )Ŵ ∗ = 1 ⊗ a.
However, as Ŵ ∈ M(B0(L

2(G)) ⊗ C0(G)), we see that

1 ⊗ a = (L⊗ ι)(Ŵ )Ŵ ∗ ∈ M(B0(L
2(G)) ⊗ C0(G)),

from which it follows immediately that a ∈ M(C0(G)).

In the language of [8], the previous lemma says that L∗ is “represented”; in the language of
[17], the element a is the “multiplier” associated to the “centraliser” L∗.

Proposition 3.3. Let L∗ be a completely bounded left multiplier of L1(Ĝ). There is a completely
bounded, normal map Φ : B(L2(G)) → B(L2(G)) which extends L, and which is a L∞(G)′-
bimodule map. Indeed, Φ satisfies

1 ⊗ Φ(x) = Ŵ
(
(L⊗ ι)(Ŵ ∗(1 ⊗ x)Ŵ )

)
Ŵ ∗ (x ∈ B(L2(G))).

Proof. We closely follow [17, Proposition 4.3], while translating “to the left” and using that
“invariants are constant”. Define

T : B(L2(G)) → L∞(Ĝ)⊗B(L2(G)), T (x) = Ŵ
(
(L⊗ ι)(Ŵ ∗(1 ⊗ x)Ŵ )

)
Ŵ ∗.

We now perform a similar calculation to that in the previous lemma:

(∆̂ ⊗ ι)T (x) = Ŵ13Ŵ23(L⊗ ι⊗ ι)
(
(∆̂ ⊗ ι)(Ŵ ∗(1 ⊗ x)Ŵ )

)
Ŵ ∗

23Ŵ
∗
13

= Ŵ13Ŵ23(L⊗ ι⊗ ι)
(
Ŵ ∗

23Ŵ
∗
13(1 ⊗ 1 ⊗ x)Ŵ13Ŵ23

)
Ŵ ∗

23Ŵ
∗
13

= Ŵ13(L⊗ ι⊗ ι)
(
Ŵ ∗

13(1 ⊗ 1 ⊗ x)Ŵ13

)
Ŵ ∗

13

= T (x)13.

So by Theorem 2.1, there is Φ(x) ∈ B(L2(G)) with T (x) = 1 ⊗Φ(x). It is easy to see that Φ is
completely bounded and normal.

For x ∈ L∞(Ĝ)

1 ⊗ Φ(x) = T (x) = Ŵ ((L⊗ ι)∆̂(x))Ŵ ∗ = Ŵ ∆̂(L(x))Ŵ ∗ = 1 ⊗ L(x),

and so Φ extends L. For y, z ∈ L∞(G)′, as Ŵ ∈ L∞(Ĝ)⊗L∞(G), it is easy to see that

T (yxz) = (1 ⊗ y)T (x)(1 ⊗ z) (x ∈ B(L2(G))),

and so Φ(yxz) = yΦ(x)z as required.

In the language of [17], we have thus constructed a map from the set of completely bounded

left multipliers of L1(Ĝ) to CB
σ,L∞(Ĝ)
L∞(G)′ (B(L2(G))). It seems that, to continue with the arguments

of [17], we start to need to use arguments that involve the relative position of L∞(G) and its

commutant in B(L2(G)). In particular, to show that every Φ ∈ CB
σ,L∞(Ĝ)
L∞(G)′ (B(L2(G))) comes

from a left multiplier would require us to know that L∞(G) ∩ L∞(Ĝ) = C (at least if one is
following the proof of [17, Proposition 3.2]), and we have no proof of this in the Manageable
Multiplicative Unitary setting.
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4 Multipliers coming from invertible corepresentations

In this section, we show, rather explicitly, how corepresentations and “universal” quantum
groups give rise to completely bounded and completely positive multipliers.

A corepresentation of G shall be, for us, an element U ∈ L∞(G)⊗B(H) with (∆ ⊗ ι)(U) =
U13U23 (so, we don’t assume that U is unitary). We state the following in a little generality,
but note that it obviously applies to unitary corepresentations. Similar ideas are explored in
[8, Section 6], and for Kac algebras, with much less emphasis on corepresentation theory, see
[18].

Proposition 4.1. Let U be a corepresentation of G, and suppose there is V ∈ B(L2(G) ⊗H)
with V U∗ = 1 (that is, U has a right inverse). For each α, β ∈ H, there is a completely bounded
left multiplier of L1(Ĝ) represented by a = (ι ⊗ ωα,β)(U∗). If U∗ is an isometry (so we may
take V = U) and α = β, then the multiplier is completely positive.

Proof. We have that (∆ ⊗ ι)(U∗) = U∗
23U

∗
13, or equivalently, W ∗

12U
∗
23 = U∗

23U
∗
13W

∗
12. Thus also

V23W
∗
12U

∗
23 = U∗

13W
∗
12, and using that Ŵ = ΣW ∗Σ, it follows that V13Ŵ12U

∗
13 = U∗

23Ŵ12. Thus
define L : L∞(Ĝ) → B(L2(G)) by

L(x̂) = (ι⊗ ωα,β)(V (x̂⊗ 1)U∗) (x̂ ∈ L∞(Ĝ)).

Clearly L is a normal, completely bounded map. Then immediately we see that (L⊗ ι)(Ŵ ) =
(1 ⊗ a)Ŵ , and it is now easy to see (compare [8, Proposition 2.3]) that L maps into L∞(Ĝ),
and that L is the adjoint of a left multiplier on L1(Ĝ), represented by a.

When U∗ is an isometry, V = U and α = β, clearly L is completely positive.

For U, V as in the proposition, we could weaken the condition on U to asking that U ∈
B(L2(G) ⊗ H) with W ∗

12U23W12 = U13U23. Then, arguing as in [33, Page 142], we see that
U13 = W ∗

12U23W12V
∗
23 ∈ M(C0(G) ⊗ B0(L

2(G)) ⊗ B0(H)), and so U ∈ M(C0(G) ⊗ B0(H)), in
particular, U is a corepresentation in our sense.

Let us just remark that if also V is a corepresentation, then consider forming Φ as in
Section 3, using the L given as in the proposition. So, for x ∈ B(L2(G)),

1 ⊗ Φ(x) = (ι⊗ ωα,β ⊗ ι)
(
Ŵ13V12Ŵ

∗
13(1 ⊗ 1 ⊗ x)Ŵ13U

∗
12Ŵ

∗
13

)

= (ι⊗ ι⊗ ωα,β)
(
Ŵ12V13Ŵ

∗
12(1 ⊗ x⊗ 1)Ŵ12U

∗
13Ŵ

∗
12

)
.

Now, Ŵ (a⊗ 1)Ŵ ∗ = ΣW ∗(1 ⊗ a)WΣ = Σ∆(a)Σ for a ∈ L∞(G), and so

1 ⊗ Φ(x) = (ι⊗ ι⊗ ωα,β)
(
V23V13(1 ⊗ x⊗ 1)U∗

13U
∗
23

)
= 1 ⊗ (ι⊗ ωα,β)

(
V (x⊗ 1)U∗

)
.

Hence Φ has the same “defining formula” as L.

4.1 Links with universal quantum groups

Universal quantum groups are constructed in [19] and [26, Section 5]. We write Cu
0 (Ĝ) for the

universal dual of C0(G). For us, the important properties are that:

• There is a coassociative non-degenerate ∗-homomorphism ∆̂u : Cu
0 (Ĝ) → M(Cu

0 (Ĝ) ⊗
Cu

0 (Ĝ));

• There is a surjective ∗-homomorphism π̂u : Cu
0 (Ĝ) → C0(Ĝ) with ∆̂π̂u = (π̂u ⊗ π̂u)∆̂u;

• There is a unitary corepresentation W ∈ M(C0(G) ⊗ Cu
0 (Ĝ)) of C0(G) such that (ι ⊗

π̂u)W = W and (ι⊗ ∆̂u)W = W13W12.
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• The space {(ω ⊗ ι)(W) : ω ∈ L1(G)} is dense in Cu
0 (Ĝ).

• There is a bijection between unitary corepresentations U of C0(G) and non-degenerate
∗-homomorphisms π : Cu

0 (Ĝ) → B(H) given by the relation that U = (ι⊗ π)(W).

Note that our W is denoted by V̂ in the notation of [19]; and is the “left analogue” of W in the
notation of [26].

The map π̂∗
u : L1(Ĝ) → Cu

0 (Ĝ)∗ is an isometry and an algebra homomorphism. We know (see
for example [9, Proposition 8.3]) that this identifies L1(Ĝ) with an ideal in Cu

0 (Ĝ)∗, and hence
that members of Cu

0 (Ĝ)∗ induce multipliers on L1(Ĝ). Let us make links with Proposition 4.1.

Proposition 4.2. Let U be a unitary corepresentation of G on H, and let α, β ∈ H. Let π
be the ∗-representation of Cu

0 (Ĝ) on H associated with U . Then the multiplier represented by
(ι⊗ ωα,β)(U∗) is given by left multiplication by µ = ωα,β ◦ π ∈ Cu

0 (Ĝ)∗.

Proof. Let L : L∞(Ĝ) → L∞(Ĝ) be the adjoint of the completely bounded left multiplier
represented by a = (ι ⊗ ωα,β)(U∗), as constructed in Proposition 4.1. Then (L ⊗ ι)(Ŵ ) =

(1 ⊗ a)Ŵ , or equivalently, (ι⊗ L)(W ∗) = (a⊗ 1)W ∗.
Define L†(x̂) = L(x̂∗)∗ for x̂ ∈ L∞(Ĝ), so L† is a normal, completely bounded map on

L∞(Ĝ). For any von Neumann algebra M and X ∈ M⊗L∞(Ĝ), we see that (ι ⊗ L†)(X∗) =
(ι ⊗ L)(X)∗. In particular, it follows that (L† ⊗ ι)∆̂ = ∆̂L†, and so L† is the adjoint of a
completely bounded left multiplier of L1(Ĝ), represented by b say. The proof of Proposition 4.1
shows that b = (ι⊗ ωβ,α)(U∗).

Given ω̂ ∈ L1(Ĝ), we wish to show that µπ̂∗
u(ω̂) = π̂∗

u(L∗(ω̂)). Let ω ∈ L1(G) and set
x = (ω ⊗ ι)W ∈ Cu

0 (Ĝ). Then

〈µπ̂∗
u(ω̂), x〉 = 〈µ⊗ π̂∗

u(ω̂), ∆̂u((ω ⊗ ι)W)〉 = 〈ω ⊗ µ⊗ π̂∗
u(ω̂),W13W12〉

= 〈ω ⊗ ωα,β ⊗ ω̂, (ι⊗ π̂u)(W)13(ι⊗ π)(W)12〉 = 〈W13U12, ω ⊗ ωα,β ⊗ ω̂〉,

and also

〈π̂∗
u(L∗(ω̂)), x〉 = 〈(ι⊗ π̂u)W, ω ⊗ L∗(ω̂)〉 = 〈W,ω ⊗ L∗(ω̂)〉 = 〈(ι⊗ L)(W ), ω ⊗ ω̂〉.

Now, (ι ⊗ L)(W ) = (ι ⊗ L†)(W ∗)∗ = ((b ⊗ 1)W ∗)∗ = W (b∗ ⊗ 1), and so, using that b∗ =
(ι⊗ ωα,β)(U), we have that

〈π̂∗
u(L∗(ω̂)), x〉 = 〈W (b∗ ⊗ 1), ω ⊗ ω̂〉 = 〈W13U12, ω ⊗ ωα,β ⊗ ω̂〉.

As such x are dense in Cu
0 (Ĝ), the proof is complete.

In particular, taking U = W, we see that every positive functional on Cu
0 (Ĝ) induces a

completely positive left multiplier of L1(Ĝ). The main result of this paper is to show that the
converse is also true.

5 Completely positive multipliers

In this section, we study completely positive multipliers of L1(Ĝ). Motivated by Proposition 3.3,
we will first study completely positive normal maps on B(L2(G)). As B0(L

2(G)) is σ-weakly-
dense in B(L2(G)), it suffices to consider completely positive maps B0(L

2(G)) → B(L2(G)).
The following is simply the Stinespring construction, tailored to this specific situation. We give
the details, as they are central to our argument. For ξ, η ∈ L2(G), let θξ,η ∈ B0(L

2(G)) be the
rank-one operator α 7→ (α|η)ξ.
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Let Φ : B0(L
2(G)) → B(L2(G)) be a completely positive map. We remark that Φ has a

unique normal extension to a normal completely positive map B(L2(G)) → B(L2(G)), which we
shall also denote by Φ. Let H be the completion of the algebraic tensor product L2(G)⊙L2(G)
for the pre-inner-product (

ξ ⊗ α
∣∣η ⊗ β

)
H

=
(
Φ(θη,ξ)α|β

)
.

That this is a positive sesquilinear form follows from the fact that Φ is completely positive
(compare with [29, Theorem 3.6] for example). We shall write να,ξ for the equivalence class of
ξ ⊗ α in H ; see the end of the following paragraph for an explanation of this notation.

Let (ei) be an orthonormal basis of L2(G), and define

V : L2(G) → L2(G) ⊗H ; α 7→
∑

i

ei ⊗ να,ei .

This makes sense, that is, the sum converges, as
∑

i

‖να,ei‖
2
H =

∑

i

(Φ(θei,ei)α|α) = (Φ(1)α|α).

Then, for α, β, ξ, η ∈ L2(G),

(V ∗(θξ,η ⊗ 1)V α|β) =
∑

i,j

(θξ,η(ei) ⊗ να,ei|ej ⊗ νβ,ej)H

=
∑

i

(ei|η)(ξ|ej)(Φ(θej ,ei)α|β) = (Φ(θξ,η)α|β).

Thus we have a Stinespring dilation of Φ. Now let (fi) be an orthonormal basis of H , and
define a family (ai) in B(L2(G)) by setting

V (α) =
∑

i

ai(α) ⊗ fi ∈ L2(G) ⊗H (α ∈ L2(G)).

It follows that Φ(x) =
∑

i a
∗
ixai for each x ∈ B(L2(G)). Furthermore, for ξ, η, α, β ∈ L2(G),

(να,ξ|νβ,η)H =
∑

i

(a∗i θη,ξaiα|β) =
∑

i

(aiα|ξ)(η|aiβ) =
∑

i

〈ai, ωα,ξ〉〈ai, ωβ,η〉,

and so να,ξ =
∑

i〈ai, ωα,ξ〉fi in H . This explains the choice of notation να,ξ, which is deliberately
reminiscent of ωα,ξ.

Proposition 5.1. In the above setting, suppose further that M is a von Neumann algebra on
L2(G), and that Φ is an M-bimodule map. Then (x⊗ 1)V = V x for each x ∈ M , and ai ∈ M ′

for each i.

Proof. For readability, we drop the ν notation in this proof. For x ∈ M and ξ, η, α, β ∈ L2(G),

(x∗(ξ) ⊗ α|η ⊗ β)H = (Φ(θη,ξx)α|β) = (Φ(θη,ξ)xα|β) = (ξ ⊗ x(α)|η ⊗ β)H .

Thus x∗(ξ) ⊗ α = ξ ⊗ x(α) in H . It follows that

V (x(α)) =
∑

i

ei ⊗ (ei ⊗ x(α)) =
∑

i

ei ⊗ (x∗(ei) ⊗ α) =
∑

i,j

ei ⊗ ((x∗(ei)|ej)ej ⊗ α)

=
∑

i,j

(x(ej)|ei)ei ⊗ (ej ⊗ α) =
∑

j

x(ej) ⊗ (ej ⊗ α) = (x⊗ 1)V (α),

remembering that H is the completion of L2(G) ⊗ L2(G). It now follows that xai = aix for
each i, and so as x ∈ M was arbitrary, ai ∈ M ′ for each i.

The previous result (in the more general completely bounded setting) is well-known, see for
example [27, Theorem 3.1] and unpublished work of Haagerup. However, the actual construc-
tion will be central to our arguments.
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5.1 Constructing a corepresentation

For the remainder of this section, fix a completely positive left multiplier on L1(Ĝ). Form
Φ : B(L2(G)) → B(L2(G)) using Proposition 3.3 applied to this multiplier, and apply the
construction of the previous section to find H and V : L2(G) → L2(G) ⊗ H . Fixing an
orthonormal basis (fi) for H , we find ai such that Φ(x) =

∑
i a

∗
ixai for each x ∈ B(L2(G)). By

Proposition 5.1, we see that (x⊗1)V = V x for each x ∈ L∞(G)′, equivalently, that ai ∈ L∞(G)
for each i.

Proposition 5.2. There is a unique isometry U∗ on L2(G) ⊗H which satisfies

U∗
(
ξ ⊗ να,η

)
=

∑

i

(ωα,η ⊗ ι)∆(ai)ξ ⊗ fi,

for all ξ, η, α ∈ L2(G).

Proof. We know that Φ(x) =
∑

i a
∗
ixai for x ∈ L∞(Ĝ). We now use Proposition 3.3, which

tells us that

1 ⊗ Φ(x) =
∑

i

Ŵ (a∗i ⊗ 1)Ŵ ∗(1 ⊗ x)Ŵ (ai ⊗ 1)Ŵ ∗ (x ∈ B0(L
2(G))).

For ξ1, η1, α1, ξ2, η2, α2 ∈ L2(G), we hence have that

(
ξ1 ⊗ να1,η1

∣∣ξ2 ⊗ να2,η2

)
L2(G)⊗H

=
(
(1 ⊗ Φ(θη2,η1))(ξ1 ⊗ α1)

∣∣ξ2 ⊗ α2

)

=
∑

i

(
Ŵ (a∗i ⊗ 1)Ŵ ∗(1 ⊗ θη2,η1)Ŵ (ai ⊗ 1)Ŵ ∗(ξ1 ⊗ α1)

∣∣ξ2 ⊗ α2

)

=
∑

i

(
(1 ⊗ θη2,η1)Σ∆(ai)Σ(ξ1 ⊗ α1)

∣∣Σ∆(ai)Σ(ξ2 ⊗ α2)
)

=
∑

i

(
(θη2,η1 ⊗ 1)∆(ai)(α1 ⊗ ξ1)

∣∣∆(ai)(α2 ⊗ ξ2)
)

=
∑

i

(
(ωα1,η1 ⊗ ι)∆(ai)ξ1

∣∣(ωα2,η2 ⊗ ι)∆(ai)ξ2
)
,

using that Ŵ (a ⊗ 1)Ŵ ∗ = Σ∆(a)Σ for a ∈ L∞(G). It follows immediately that U∗ exists
and is an isometry; uniqueness follows as vectors of the form ξ ⊗ να,η are linearly dense in
L2(G) ⊗H .

As να,η =
∑

i〈ai, ωα,η〉fi, by using linearity and continuity, we see that also

U∗
(
ξ ⊗

∑

i

〈ai, ω〉fi

)
=

∑

i

(ω ⊗ ι)∆(ai)ξ ⊗ fi (ξ ∈ L2(G), ω ∈ L1(G)).

Proposition 5.3. The operator U is a member of L∞(G)⊗B(H), and is a corepresentation,
that is, (∆ ⊗ ι)U = U13U23.

Proof. Let x ∈ L∞(G)′, so for ξ, α, β ∈ L2(G),

U∗(xξ ⊗ να,β) =
∑

i

(ωα,β ⊗ ι)∆(ai)xξ ⊗ fi =
∑

i

x(ωα,β ⊗ ι)∆(ai)ξ ⊗ fi

= (x⊗ 1)U∗(ξ ⊗ να,β).

Thus U∗ ∈ (L∞(G)′⊗C)′ = L∞(G)⊗B(H), and of course the same is true of U .
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We shall prove that (∆ ⊗ ι)(U∗) = U∗
23U

∗
13. It is easy to see that this is equivalent to

π : L1(G) → B(H);ω 7→ (ω ⊗ ι)(U∗) being an anti-homomorphism of the Banach algebra
L1(G). However, notice that for ω1, ω2 ∈ L1(G) and ξ, η ∈ L2(G),

(
π(ωξ,η)

∑

i

〈ai, ω1〉fi

∣∣∣
∑

j

〈aj, ω2〉fj

)
=

(
U∗

(
ξ ⊗

∑

i

〈ai, ω1〉fi

)∣∣∣η ⊗
∑

j

〈aj , ω2〉fj

)

=
(∑

i

(ω1 ⊗ ι)∆(ai)ξ ⊗ fi

∣∣∣η ⊗
∑

j

〈aj , ω2〉fj

)

=
(∑

i

〈ai, ω1ωξ,η〉fi

∣∣∣
∑

j

〈aj, ω2〉fj

)
.

Thus
π(ω)

(∑

i

〈ai, ω
′〉fi

)
=

∑

i

〈ai, ω
′ω〉fi (ω, ω′ ∈ L1(G)),

and it is now immediate that π is an anti-homomorphism.

We remark that we can view H as being a completion of L1(G), where we identify ω ∈ L1(G)
with

∑
i〈ai, ω〉fi ∈ H . Then π in the above proof (that is, the anti-homomorphism from L1(G)

to B(H) induced by U∗) is simply the map π(ω) : ω′ 7→ ω′ω.
We now finish the argument by showing that U is unitary.

Lemma 5.4. The closed image of U∗ is equal to the closed linear span of {(â ⊗ 1)V (ξ) : ξ ∈
L2(G), â ∈ C0(Ĝ)}. In particular, the image of U∗ contains the image of V , and so U∗UV = V .

Proof. Let ξ1, ξ2, η ∈ L2(G), and let
∑

i ξi ⊗ fi ∈ L2(G) ⊗H , and observe that
(
U∗

(
ξ1 ⊗

∑

i

(aiξ2|η)fi
)∣∣∣
∑

j

ξj ⊗ fj

)
=

∑

i

(
(ωξ2,η ⊗ ι)∆(ai)ξ1

∣∣ξi
)

=
∑

i

(
(1 ⊗ ai)W (ξ2 ⊗ ξ1)

∣∣W (η ⊗ ξi)
)
.

We will compute the image of U∗ by taking linear combinations of ξ1, ξ2 and η. In particular,
as W is unitary, we may replace W (ξ2 ⊗ ξ1) by ξ2 ⊗ ξ1 in the above expression. It follows that
the image of U∗ is the closed linear span of vectors of the form

∑

i

(ω ⊗ ι)(W )∗ai(ξ) ⊗ fi (ω ∈ L1(G), ξ ∈ L2(G)).

Now, {(ω ⊗ ι)(W )∗ : ω ∈ L1(G)} is dense in C0(Ĝ), and so the result follows, as V (ξ) =∑
i ai(ξ) ⊗ fi. As C0(Ĝ) contains a bounded approximate identity, clearly the image of U∗

contains the image of V . As U∗U is the orthogonal projection onto the image of U∗ (as U∗ is
an isometry) it follows immediately that U∗UV = V .

Proposition 5.5. The corepresentation U is unitary.

Proof. Suppose that
∑

i ξi ⊗ fi ∈ L2(G) ⊗H is orthogonal to the image of U∗. Let ξ ∈ L2(G)

and x′ ∈ L∞(G)′, so by Lemma 5.4, for any â ∈ C0(Ĝ),

0 =
(

(â⊗ 1)V x′ξ
∣∣∣
∑

i

ξi ⊗ fi

)
=

∑

i

(
âaix

′ξ
∣∣ξi

)
=

∑

i

(
âx′aiξ

∣∣ξi
)
.

As C0(Ĝ) is σ-weakly dense in L∞(Ĝ), it follows that
∑

i

(
x̂x′aiξ

∣∣ξi
)

= 0 (ξ ∈ L2(G), x̂ ∈ L∞(Ĝ), x′ ∈ L∞(G)′)),
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By Theorem 2.2, this implies that

0 =
∑

i

(
Taiξ

∣∣ξi
)

=
(

(T ⊗ 1)V ξ
∣∣∣
∑

i

ξi ⊗ fi

)
(ξ ∈ L2(G), T ∈ B(L2(G))).

However, we know that {(x⊗1)V (ξ) : x ∈ B0(L
2(G)), ξ ∈ L2(G)} is linearly dense in L2(G)⊗H .

Hence
∑

i ξi ⊗ fi = 0, and so U∗ has dense range, as required.

Remark 5.6. We started with a completely positive left multiplier of L1(Ĝ); let L be the
adjoint, a normal completely positive map on L∞(Ĝ). We immediately used Proposition 3.3 to
extend L to a normal completely positive map Φ on all of B(L2(G)). Remember that the repre-
sentation Φ(x) = V ∗(x⊗1)V is unique (up to unitary isomorphism), as this dilation is minimal.
This is equivalent to the non-degeneracy condition that {(x⊗1)V ξ : x ∈ B0(L

2(G)), ξ ∈ L2(G)}
is linearly dense in L2(G) ⊗H .

As Φ extends L, we hence have a normal Stinespring representation of L, as L(x̂) = V ∗(x̂⊗
1)V . The previous results show that {(x̂ ⊗ 1)V (ξ) : x̂ ∈ L∞(Ĝ), ξ ∈ L2(G)} is also linearly
dense in L2(G)⊗H . It follows that we also have a minimal Stinespring dilation of the original
multiplier L.

5.2 Recovering the multiplier

In the previous section, we showed how to construct a unitary corepresentation of G from a
completely positive left multiplier of L1(Ĝ). We now show how to recover the multiplier from
the corepresentation.

Proposition 5.7. There is α0 ∈ H such that U∗(ξ ⊗ α0) = V (ξ) =
∑

i ai(ξ) ⊗ fi for all
ξ ∈ L2(G).

Proof. Let our left multiplier be represented by a0 ∈ M(C0(G)), so that (1 ⊗ a0)Ŵ = (Φ ⊗
ι)(Ŵ ) =

∑
i(a

∗
i ⊗ 1)Ŵ (ai ⊗ 1). Equivalently,

∑
i(1 ⊗ a∗i )∆(ai) = a0 ⊗ 1. For ω ∈ L1(G) and

ξ, η ∈ L2(G), observe that

(
U∗

(
ξ ⊗

∑

i

〈ai, ω〉fi
)∣∣∣V (η)

)
=

∑

i

(
(ω ⊗ ι)∆(ai)ξ

∣∣ai(η)
)

=
(

(ω ⊗ ι)
(
(1 ⊗ a∗i )∆(ai)

)
ξ
∣∣η
)

= 〈a0, ω〉(ξ|η).

As this holds for all ξ, η, it follows that the map
∑

i〈ai, ω〉fi 7→ 〈a0, ω〉 is bounded, and so the
Riesz representation theorem for Hilbert spaces provides α0 ∈ H such that

(∑

i

〈ai, ω〉fi

∣∣∣α0

)
= 〈a0, ω〉 (ω ∈ L1(G)).

By continuity,

(
U∗(ξ ⊗ α)

∣∣V (η)
)

= (ξ ⊗ α|η ⊗ α0) (ξ, η ∈ L2(G), α ∈ H),

that is, UV (η) = η ⊗ α0 for all η ∈ H . By Lemma 5.4, as U∗UV = V , it follows that
V (η) = U∗UV (η) = U∗(η ⊗ α0) as required.

We now take slices of U against this vector α0, and find that this constructs our original
multiplier, in the sense of Proposition 4.1.

Theorem 5.8. Let L∗ be a completely positive left multiplier of L1(Ĝ). There is a unitary
corepresentation U of G on H, such that L = (L∗)

∗ is induced by U , using α0 ∈ H.
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Proof. Form U as above and form α0 as in the previous proposition. It is immediate that
ai = (ι ⊗ αα0,fi)(U

∗) for all i. So the multiplier constructed by Proposition 4.1 for α0 is, on

L∞(Ĝ), the map x̂ 7→ a∗i x̂ai, which is just L, as required.

Theorem 5.9. Let G be a locally compact quantum group. There is an isometric, order pre-
serving bijection between the completely positive multipliers of L1(Ĝ) and Cu

0 (Ĝ)∗+.

Proof. Members of Cu
0 (Ĝ)∗+ induce completely positive left multipliers of L1(Ĝ) in the sense

discussed in Section 4.1. Conversely, any completely positive left multiplier comes from a
unitary corepresentation, and this is associated to a member of Cu

0 (Ĝ)∗+ by Proposition 4.2.

That this procedure gives a bijection follows as L1(Ĝ) is an essential ideal in Cu
0 (Ĝ)∗, see [9,

Proposition 8.3].
If µ ∈ Cu

0 (Ĝ)∗+ is a state, then suppose that Cu
0 (Ĝ) ⊆ B(H) is the universal representation,

so µ = ωα,α for some α ∈ H . Then W can be identified with a member of B(L2(G) ⊗H), and
Proposition 4.2 and Proposition 4.1 show that left multiplication by µ induces the completely
positive multiplier L, where in particular,

L(1) = (ι⊗ ωα,α)(WW∗) = 1〈µ, 1〉 = 1.

So ‖L‖ = 1, and hence our bijection is an isometry.
Finally, if µ ≤ λ in Cu

0 (Ĝ)∗+ then form the associated completely positive multipliers Lµ

and Lλ. Let L be the multiplier formed from λ − µ, so by uniqueness, L = Lλ − Lµ. As L is
completely positive, Lλ ≥ Lµ. The converse is simply a case of reversing the argument. Thus
our bijection is order preserving.

We remark that it is completely obvious from these results that for any completely positive
left multiplier L, there is a completely positive right multiplier L′ such that (L, L′) forms a
double multiplier (simply let L′ be induced by right multiplication by the element of Cu

0 (Ĝ)∗

associated to L). It seems to be unknown if a similar result holds for completely bounded
multipliers.

6 Representing elements for completely bounded multi-

pliers

Notice that while Proposition 3.2 shows that all completely bounded multipliers are “repre-
sented”, we didn’t use this fact until Proposition 5.7. Here we show how to use the representing
element more directly.

Recall, from [19] for example, that L1(G) contains a dense ∗-subalgebra L1
♯ (G); we define

ω ∈ L1
♯ (G) if and only if there is τ ∈ L1(G) with 〈x, τ〉 = 〈S(x)∗, ω〉 for all x ∈ D(S), and in

this case, denote ω♯ = τ . We note that the elementary properties of L1
♯ (G) can be developed

mutatis mutandis for G coming from manageable multiplicative unitaries.
Recall that the scaling group (τt) is implemented as τt(x) = P itxP−it, where P is a certain

positive injective operator. As R and τt commute for all t, and S = Rτ−i/2, it follows that R

leaves D(S) invariant, and RS = SR. It is then easy to see that R∗ leaves L1
♯ (G) invariant,

and R∗(ω
♯) = R∗(ω)♯ for ω ∈ L1

♯ (G). Given β ∈ D(P−1/2) and ξ ∈ D(P 1/2), we have that for
x ∈ D(S) = D(τ−i/2),

〈x, ωP−1/2β,P 1/2ξ〉 =
(
P 1/2xP−1/2β

∣∣ξ
)

= 〈τ−i/2(x), ωβ,ξ〉 = 〈S(R(x)), ω∗
ξ,β〉 = 〈x,R∗(ω

♯
ξ,β)〉,

and so ωξ,β ∈ L1
♯ (G) with ω

♯
ξ,β = R∗(ωP−1/2β,P 1/2ξ).
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Proposition 6.1. Let L be a completely bounded left multiplier of L1(Ĝ), represented by a0 ∈
M(C0(G)). For ξ, η ∈ D(P 1/2) and α, β ∈ D(P−1/2), we have that

(
Φ(θξ,η)α

∣∣β
)

= 〈∆(a0), ωα,η ⊗ ω
♯∗
ξ,β〉.

Proof. Let ξ0 ∈ L2(G) be a unit vector, let (ei) be an orthonormal basis for L2(G), and let
W (α ⊗ ξ0) =

∑
i αi ⊗ ei and W (β ⊗ ξ0) =

∑
i β

′
i ⊗ ei. For ǫ > 0, we can find a family (βi) in

D(P−1/2) with ∥∥∥W (β ⊗ ξ0) −
∑

i

βi ⊗ ei

∥∥∥ < ǫ.

Using Proposition 3.3, and that Ŵ = ΣW ∗Σ, we see that

(
Φ(θξ,η)α

∣∣β
)

=
(
(ι⊗ L)(W (θξ,η ⊗ 1)W ∗)W (α⊗ ξ0)

∣∣W (β ⊗ ξ0)
)

=
∑

i,j

(
(ωαi,β′

j
⊗ ι)(ι⊗ L)(W (θξ,η ⊗ 1)W ∗)ei

∣∣ej
)

=
∑

i,j

(
L((ωξ,β′

j
⊗ ι)(W )(ωαi,η ⊗ ι)(W ∗))ei

∣∣ej
)
.

A similar calculation establishes that if

x =
∑

i,j

(
L((ωξ,βj

⊗ ι)(W )(ωαi,η ⊗ ι)(W ∗))ei
∣∣ej

)
,

then ∣∣(Φ(θξ,η)α
∣∣β
)
− x

∣∣ < ǫ‖L‖cb‖α‖‖ξ‖‖η‖.

That is, we may replace (β ′
j) by (βj), at the cost of a small error term.

As (ω⊗ ι)(W )∗ = (ω♯⊗ ι)(W ) for ω ∈ L1
♯ (G), we see that (ωξ,βj

⊗ ι)(W ) = (ω♯
ξ,βj

⊗ ι)(W )∗ =

(ω♯∗
ξ,βj

⊗ ι)(W ∗). This makes sense, as βj ∈ D(P−1/2) and ξ ∈ D(P 1/2). Thus

(ωξ,βj
⊗ ι)(W )(ωαi,η ⊗ ι)(W ∗) = (ω♯∗

ξ,βj
⊗ ι)(W ∗)(ωαi,η ⊗ ι)(W ∗) = (ωαi,ηω

♯∗
ξ,βj

⊗ ι)(W ∗).

Recall that (ι⊗ L)(W ∗) = (a0 ⊗ 1)W ∗, and that (∆ ⊗ ι)(W ∗) = W ∗
23W

∗
13, and so

x =
∑

i,j

(
(ωαi,ηω

♯∗
ξ,βj

⊗ ι)((ι⊗ L)(W ∗))ei
∣∣ej

)

=
∑

i,j

〈(∆(a0) ⊗ 1)W ∗
23W

∗
13, ωαi,η ⊗ ω

♯∗
ξ,βj

⊗ ωei,ej〉

=
∑

j

〈(∆(a0) ⊗ 1)W ∗
23, ωα,η ⊗ ω

♯∗
ξ,βj

⊗ ωξ0,ej〉.

Let a ∈ D(S)∗, so that

∑

j

〈(a⊗ 1)W ∗, ω
♯∗
ξ,βj

⊗ ωξ0,ej〉 =
∑

j

〈aS((ι⊗ ωξ0,ej)(W )), ω♯∗
ξ,βj

〉

=
∑

j

〈S((ι⊗ ωξ0,ej)(W ))∗a∗, ω♯
ξ,βj

〉 =
∑

j

〈(ι⊗ ωξ0,ej)(W )S(a∗)∗, ωξ,βj
〉

=
∑

j

〈W (S(a∗)∗ ⊗ 1), ωξ,βj
⊗ ωξ0,ej〉 =

(
W (S(a∗)∗ ⊗ 1)(ξ ⊗ ξ0)

∣∣∑

j

βj ⊗ ej

)
.
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By comparison,

(
W (S(a∗)∗ ⊗ 1)(ξ ⊗ ξ0)

∣∣∑

j

β ′
j ⊗ ej

)
=

(
(S(a∗)∗ ⊗ 1)(ξ ⊗ ξ0)

∣∣W ∗W (β ⊗ ξ0)
)

= 〈S(a∗)∗, ωξ,β〉 = 〈a∗, ω♯
ξ,β〉 = 〈a, ω♯∗

ξ,β〉.

If it so happens that a = (ωα,η ⊗ ι)∆(a0) is in D(S)∗, then we have

∣∣x− 〈a, ω♯∗
ξ,β〉

∣∣ ≤ ǫ‖ξ‖‖S(a∗)‖.

However, observe that for this choice of a,

〈a, ω♯∗
ξ,β〉 = 〈∆(a0), ωα,η ⊗ ω

♯∗
ξ,β〉,

and so as ǫ > 0, this gives the required result.
So it remains to show that a = (ωα,η ⊗ ι)∆(a0) ∈ D(S)∗. By [8, Theorem 5.9], we know

that a0 ∈ D(S)∗, and by hypothesis, ωη,α ∈ L1
♯ (G). Thus, for ω ∈ L1

♯ (G),

〈a∗, ω♯〉 = 〈(ωη,α ⊗ ι)∆(a∗0), ω
♯〉 = 〈a∗0, ωη,αω

♯〉 = 〈S(a∗0)
∗, ωω

♯
η,α〉 = 〈(ι⊗ ω

♯
η,α)∆(S(a∗0)

∗), ω〉.

This is enough to show that a∗ ∈ D(S) with S(a∗) = (ι ⊗ ω♯
η,α)∆(S(a∗0)

∗), given that S is a
σ-weakly closed operator; for details see for example [6, Appendix A].

6.1 Weak∗-continuity of the Junge, Neufang, Ruan representation

As explained in Section 3 above, [17] shows that for a locally compact quantum group G, there
is a bijection between the completely bounded left multipliers of L1(Ĝ), say M l

cb(L
1(Ĝ)), and

CB
σ,L∞(Ĝ)
L∞(G)′ (B(L2(G))). In [16], it is shown that this map is weak∗-weak∗ continuous, at least

when Ĝ has the left co-AP property, see [16, Corollary 4.10] (and [16, Theorem 4.7] for the
version for right multipliers). In this final section of the paper, we apply the result of the
previous section to show that this weak∗-continuity result is true for all G.

Firstly, we recall from [16] the proof that M l
cb(L

1(Ĝ)) is a dual space. Proposition 3.2 shows

that we have a map Λ : M l
cb(L

1(Ĝ)) → L∞(G) (actually, this maps into M(C0(G)), but this is
unimportant here) which satisfies

(L⊗ ι)(W )W ∗ = 1 ⊗ Λ(L∗), Λ(L∗)λ̂(ω̂) = λ̂
(
L∗(ω̂)

)
(ω̂ ∈ L1(Ĝ)).

It follows that Λ is a contractive algebra homomorphism. Then [16, Proposition 3.4] shows
that if we denote by X the image of Λ, equipped with the norm coming from M l

cb(L
1(Ĝ)), then

the closed unit ball of X is weak∗-closed in L∞(G). Indeed, giving M l
cb(L

1(Ĝ)) its canonical
operator space structure, the closed unit ball of Mn(X) is weak∗-closed in Mn(L∞(G)). Using
this, [16, Theorem 3.5] shows that if we let Ql

cb(L
1(Ĝ)) be the closure in M l

cb(L
1(Ĝ))∗ of the

image of L1(G) under the adjoint of Λ, then Ql
cb(L

1(Ĝ))∗ is completely isometrically isomorphic

to M l
cb(L

1(Ĝ)). Thus we get a weak∗-topology on M l
cb(L

1(Ĝ)).
In [9, Section 8] we independently gave an analogous construction of a weak∗-topology on

the space of double multipliers. In fact, the first part of the proof of [9, Proposition 8.11]
already works for merely left multipliers, and then one can apply the abstract result which is
[9, Proposition 8.12] to construct Ql

cb(L
1(Ĝ)). In [9] we found a very “Banach algebraic” way

to construct preduals for double multiplier algebras (see [9, Theorem 7.7] for example), but it
seems that at several crucial points, it really is necessary to work with double multipliers. It
would be interesting to know how to adapt these ideas to one-sided multipliers.
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For us, the important point is that if (Lα) is a bounded net in M l
cb(L

1(Ĝ)), then (Lα) is

weak∗-null with respect to Ql
cb(L

1(Ĝ)) if and only if (Λ(Lα)) is weak∗-null in L∞(G).

We next consider the space CB
σ,L∞(Ĝ)
L∞(G)′ (B(L2(G))). Firstly, we consider the larger space

CBσ(B(L2(G))) which can be identified with CB(B0(L
2(G)),B(L2(G))). This in turn is the dual

space of B0(L
2(G))⊗̂B(L2(G))∗, the operator space projective tensor product of the compact

operators B0(L
2(G)) with the trace-class operators B(L2(G))∗. By restriction, we have a weak∗-

topology on CB
σ,L∞(Ĝ)
L∞(G)′ (B(L2(G))). Again, for us the important point is that a bounded net (Φα)

in CB
σ,L∞(Ĝ)
L∞(G)′ (B(L2(G))) is weak∗-null if and only if (Φα(θ)) is a weak∗-null net in B(L2(G)), for

each θ ∈ B0(L
2(G)). All this is explained in [16, Section 4] and the references therein.

The following improves [16, Theorem 4.7] (which is stated for right multipliers) in that we
need make no approximation property type assumptions.

Theorem 6.2. For any G, the map M l
cb(L

1(Ĝ)) → CB
σ,L∞(Ĝ)
L∞(G)′ (B(L2(G))) is weak∗-weak∗-

continuous. If G is a locally compact quantum group, this correspondence is a weak∗-weak∗-
continuous homeomorphism.

Proof. Denote by φ the map M l
cb(L

1(Ĝ)) → CB
σ,L∞(Ĝ)
L∞(G)′ (B(L2(G))). To show that φ is weak∗-

continuous, it suffices to show that if (Li) is a bounded, weak∗-null net in M l
cb(L

1(Ĝ)), then
the corresponding bounded net, say (Φi), in CBσ(B(L2(G))) is weak∗-null. When G is a locally
compact quantum group, we know from [17] that φ is a completely isometric isomorphism, and
then if φ is weak∗-continuous, it is automatically a weak∗-weak∗-continuous homeomorphism.
This is perhaps not well-known (in the operator space setting) but see [9, Lemma 10.1] for
example.

We fix a bounded weak∗-null net (Li) of left multipliers, with corresponding net (Φi). For
each i let Li be represented by ai ∈ L∞(G). That (Li) is weak∗-null means that (ai) is weak∗-
null in L∞(G). As explained above, as Λ is a contraction, (ai) is also a bounded net. By
Proposition 6.1, we have that

(Φi(θξ,η)α|β) = 〈ai, ωα,ηω
♯∗
ξ,β〉 (ξ, η ∈ D(P 1/2), α, β ∈ D(P−1/2)).

As D(P 1/2) and D(P−1/2) are dense in L2(G), we immediately see that

lim
i
〈Φi(θ), ω〉 = 0

for a dense collection of θ ∈ B0(L
2(G)) and ω ∈ B(L2(G))∗. As (Φi) is a bounded net, this is

enough to show that (Φi) is weak∗-null, as required.

As remarked on in the proof of [16, Theorem 4.7], we can equivalently state this result in
terms of the Haagerup tensor product (see [12, Chapter 9]). We have a completely isometric
isomorphism

B0(L
2(G))⊗̂B(L2(G))∗ → B(L2(G))∗

h
⊗ B(L2(G))∗; θξ,η ⊗ ωα,β 7→ ωξ,β ⊗ ωα,η.

See also the discussion after [16, Remark 4.6]. The adjoint gives a normal completely isometric
isomorphism

B(L2(G))
eh
⊗ B(L2(G)) → CBσ(B(L2(G))); x⊗ y 7→ Tx,y.

Here we use the extended (or weak∗) Haagerup tensor product, see [2, 13], and Tx,y is the

operator z 7→ xzy. This isomorphism restricts to an isomorphism between L∞(G)
eh
⊗ L∞(G)

and CBσ
L∞(G)′(B(L2(G))), and the predual of L∞(G)

eh
⊗ L∞(G) is L1(G)

h
⊗ L1(G).
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We can hence restate Theorem 6.2 as saying that there is a completely bounded map

φ∗ : L1(G)
h
⊗ L1(G) → Ql

cb(L
1(Ĝ)),

the adjoint of which is our map M l
cb(L

1(Ĝ)) → CBσ
L∞(G)′(B(L2(G))).
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(Constanţa, 2001), 379–400 (Theta, Bucharest, 2003).

[33] S. L. Woronowicz, “From multiplicative unitaries to quantum groups”, Internat. J. Math. 7 (1996)
127–149.

Matthew Daws
School of Mathematics,
University of Leeds,
LEEDS LS2 9JT
United Kingdom
Email: matt.daws@cantab.net

18

http://arxiv.org/abs/1011.4284
http://wis.kuleuven.be/analyse/stefaan/

	author_post-print_version_article_.pdf
	1107.5244v4.pdf
	1 Introduction
	2 Operator algebraic quantum groups
	3 Multipliers of quantum groups
	4 Multipliers coming from invertible corepresentations
	4.1 Links with universal quantum groups

	5 Completely positive multipliers
	5.1 Constructing a corepresentation
	5.2 Recovering the multiplier

	6 Representing elements for completely bounded multipliers
	6.1 Weak*-continuity of the Junge, Neufang, Ruan representation



