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A Note on Operator Biprojectivity of Compact Quantum Groups

Matthew Daws

Abstract

Given a (reduced) locally compact quantum group A, we can consider the convolution algebra L
1(A) (which

can be identified as the predual of the von Neumann algebra form of A). It is conjectured that L
1(A) is operator

biprojective if and only if A is compact. The “only if” part always holds, and the “if” part holds for Kac
algebras. We show that if the splitting morphism associated with L

1(A) being biprojective can be chosen to
be completely positive, or just contractive, then we already have a Kac algebra. We give another proof of the
converse, indicating how modular properties of the Haar state seem to be important.

Keywords: Compact quantum group, Biprojective, Kac algebra, Modular automorphism group.
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1 Introduction

A Banach algebra A is biprojective if the multiplication map ∆∗ : A⊗̂A → A has a right inverse
in the category of A-bimodule maps. This can be thought of as a “finiteness condition”. In
particular, the group algebra L1(G) is biprojective if and only if G is compact, see [8, Chapter IV,
Theorem 5.13].

When dealing with more non-commutative (or “quantum”) algebras (here we focus on L1(G)∗ =
L∞(G) when we suggest that the classical situation is commutative) there is a large amount of
evidence that operator spaces form the correct category to work in. For example, if we consider
the Fourier algebra A(G), then A(G) is operator biprojective if and only if G is discrete, [22].

When G is abelian, as A(G) ∼= L1(Ĝ), and Ĝ is compact if and only if G is discrete, this result is
in full agreement with what we might expect. By contrast, if we ask when A(G) is biprojective,
then, if G is discrete and almost abelian (contains a finite-index abelian subgroup) then A(G) is
biprojective. Conversely, if A(G) is biprojective, then G is discrete, and either almost abelian, or
is non-amenable yet does not contain F2, see [15].

In this note, we shall continue the study of when the convolution algebra of a (reduced) compact
quantum group is operator biprojective. It was shown in [1, Theorem 4.12] that if the convolution
algebra of a locally compact quantum group G is operator biprojective, then G is already compact.
Conversely, if G is a compact Kac algebra, then G is operator biprojective. We shall show that
if the right inverse to ∆∗ can be chosen to be completely contractive, then G must already be a
Kac algebra. We make some remarks on the general case. We indicate that the modular theory
of the Haar state seems to be important outside of the Kac case, and it seems likely that a better
understanding of how to deal with how the coproduct iteracts with the modular automorphism
group will be necessary to completely characterise when the convolution algebra of G is operator
biprojective.

We shall follow the notation of [5], and in particular, write ⊗̂ for the operator space projective
tensor product, and write CB(E, F ) to denote the space of complete bounded linear maps between
operator spaces E and F .
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2 Locally compact quantum groups

Locally compact quantum groups [9, 11] are an axiomatic framework which encompass the L1(G)
algebras, the Fourier algebra A(G), and various “quantum” examples, for example, Woronowicz’s
compact quantum groups. Kac algebras [6] are an earlier axiomatic framework which fails to
encompass many of the “quantum” examples, for example [25].

However, we shall concentrate on the compact case, which is technically easier. We shall follow
the presentation of [20], which in turn closely follows Woronowicz’s original papers [23] and [24].
See also readable, non-technical accounts in [11], and the survey [12], although be aware that these
sources use different notation.

A compact quantum semigroup is a unital C∗-algebra A equipped with a unital ∗-homomorphism
∆ : A → A ⊗min A such that (∆ ⊗ ι)∆ = (ι ⊗ ∆)∆. A compact quantum group is a compact
quantum semigroup (A, ∆) which satisfies the cancellation laws, namely that

∆(A)(A ⊗ 1) := lin{∆(a)(b ⊗ 1) : a, b ∈ A}, ∆(A)(1 ⊗ A),

are both dense in A ⊗min A. If G is a compact semigroup, then we may set A = C(G) and
∆(f)(s, t) = f(st) to get a compact quantum semigroup (A, ∆). Then the cancellation laws
correspond to G having the cancellation laws: namely that if st = sr for s, t, r ∈ G, then t = r,
and similarly with the orders reversed. As sketched in [12], these are equivalent to G being a
group.

From now on, fix a compact quantum group (A, ∆). These axioms imply that A carries a unique
Haar state, that is, a state ϕ ∈ A∗ such that

(ϕ ⊗ ι)∆(a) = ϕ(a)1 = (ι ⊗ ϕ)∆(a) (a ∈ A).

We can form the GNS construction (H, Λ) for ϕ. We shall always suppose that (A, ∆) is reduced,
that is, that ϕ is faithful. As such, we shall identify A with a concrete C∗-algebra acting on H .
If ϕ is not faithful, then we may quotient by its kernal N = {a ∈ A : ϕ(a∗a) = 0} to obtain a
reduced compact quantum group. Note that N is an ideal because ϕ is a KMS weight (see below),
see the details in [3, Theorem 2.1].

Let M = A′′ be the von Neumann algebra generated by A. Then ∆ extends to a normal
∗-homomorphism ∆ : M → M⊗M . Then, by [5, Theorem 7.2.4], (M⊗M)∗ = M∗⊗̂M∗ and
normality of ∆ induces a complete contraction ∆∗ : M∗⊗̂M∗ → M∗. That ∆ is coassociative
implies that ∆∗ is associative, so M∗ becomes a completely contractive Banach algebra. If we
started with a compact group G, then M∗ is nothing but L1(G), and so we refer to M∗ as the
convolution algebra of (A, ∆). For more on (locally) compact quantum groups in the von Neumann
algebra setting see [10].

A finite-dimensional corepresentation of (A, ∆) is a matrix u = (ui,j) ∈ Mn(A) such that

∆(uij) =
n∑

k=1

uik ⊗ ukj (1 ≤ i, j ≤ n).

There are suitable notions of intertwiner between corepresentations, and what an irreducible corep-
resentation is. Every finite-dimensional corepresentation can be written as the direct sum of ir-
reducible corepresentations. Using the Haar state, it can be shown that every finite-dimensional
corepresentation is equivalent to a unitary one, that is, where u ∈ Mn(A) is unitary. The gen-
eral corepresentation theory of (A, ∆) parallels the representation theory of compact groups very
closely.
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Let {uα = (uα
ij)

nα

i,j=1
: α ∈ A} be a maximal family of finite-dimensional irreducible unitary

co-representations of (A, ∆). Let α0 ∈ A be such that vα0 = 1, the trivial corepresentation. Let
A be the algebra generated by {uα

ij : α ∈ A, 1 ≤ i, j ≤ nα} in A. Then A is a Hopf ∗-algebra, and
{uα

ij : α ∈ A, 1 ≤ i, j ≤ nα} forms a basis for A. This means that A is a ∗-algebra, that ∆ restricts
to give a ∗-homomorphism ∆ : A → A ⊗ A (the algebraic tensor product) and there exist maps
ǫ : A → C and S : A → A, the counit and antipode, satisfying the usual properties. Indeed, for
α ∈ A and 1 ≤ i, j ≤ nα, we have that

∆
(
uα

i,j

)
=

nα∑

k=1

uα
i,k ⊗ uα

k,j, S(uα
i,j) =

(
uα

j,i

)
∗

, ǫ
(
uα

i,j

)
= δij , ϕ

(
uα

i,j

)
= δα,α0

.

Furthermore, for each α ∈ A, there exists a unique positive invertible matrix F α ∈ Mnα
with

Tr F α = Tr(F α)−1, and such that

ϕ
(
(uβ

ij)
∗uα

kl

)
= δαβδjl

((F α)−1)ki

Tr(F α)
, ϕ

(
uβ

ij(u
α
kl)

∗
)

= δαβδik

F α
lj

Tr(F α)
.

The Hopf ∗-algebra A is norm dense in A, and is the unique such dense Hopf ∗-algebra, see [3,
Appendix A].

These “F -matricies” allow us to define characters on A. For z ∈ C, define

fz : A → C, uα
ij 7→

(
(F α)z

)
ij
.

As F α is positive, the matrix (F α)z makes sense. Then, for w, z ∈ C, define

ρz,w : A → A, uα
ij 7→

nα∑

k,l=1

fw(uα
ik)fz(u

α
lj)u

α
kl.

Then ρz,w is an automorphism of A with inverse ρ−z,−w, and if z and w are purely imaginary, then
ρz,w is a ∗-automorphism of A.

In particular, set
σz = ρiz,iz, τz = ρ−iz,iz (z ∈ C).

Then (σt)t∈R is the (restriction) of the modular automorphism group for ϕ, and (τt)t∈R is the
(restriction) of the scaling group. For example, we can calculate that ϕ(aσ−i(b)) = ϕ(ba) for
a, b ∈ A, a relation which we expect, as ϕ is KMS for σ. See [19] for more details on modular
theory of weights.

Proposition 2.1. There exists a maximal family of finite-dimensional irreducible unitary co-
representations of (A, ∆), say {vα = (vα

ij)
nα

i,j=1
: α ∈ A}, with the property that the associated F -

matricies are all diagonal, say F α has diagonal entries (λα
i )nα

i=1
, so that

∑
i λ

α
i =

∑
i(λ

α
i )−1 = Trα,

say.

Proof. Start with some maximal family {uα = (uα
ij)

nα

i,j=1
: α ∈ A} as before. As each F α is positive

it can be diagonalised by some unitary matrix Qα ∈ Mnα
. Let (λα

i )nα

i=1
be the eigenvalues of F α,

so that Tr(F α) =
∑

i λ
α
i = Tr((F α)−1) =

∑
i(λ

α
i )−1. Then (Qα)∗F αQα is the diagonal matrix with

entries (λα
i )nα

i=1
. Set

vα
ij =

(
(Qα)∗uαQα

)
ij

=

nα∑

k,l=1

Qα
kiu

α
klQ

α
lj (α ∈ A, 1 ≤ i, j ≤ nα).
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It is now routine to check that vα is a unitary corepresentation matrix, and that the properties
above still hold for the family {vα

ij}. For example, we see that

ϕ
(
(vβ

ij)
∗vα

kl

)
= ϕ

((∑

r,s

Qβ
riu

β
rsQ

β
sj

)
∗ ∑

t,p

Qα
tku

α
tpQ

α
pl

)
=

∑

r,s,t,p

Qβ
riQ

β
sjQ

α
tkQ

α
plϕ

(
(uβ

rs)
∗uα

tp

)

= δαβ
1

Tr(F α)

∑

r,s,t

Qβ
riQ

β
sjQ

α
tkQ

α
sl((F

α)−1)tr

= δαβ
1

Trα

∑

s

(Qα)∗jsQ
α
sl

(
(Qα)∗(F α)−1Qα

)
ki

= δαβδjlδki
1

Trα

1

λα
i

.

Similar calculations show that

ϕ
(
vβ

ij(v
α
kl)

∗
)

= δαβδikδjl

λα
j

Trα
.

and also

fz(v
α
ij) = δij(λ

α
i )z, ρz,w(vα

ij) = (λα
i )w(λα

j )zvα
ij .

3 Biprojectivity

Let (A, ∆) be a reduced compact quantum group, with associated Haar state ϕ, GNS construction
(H, Λ), von Neumann algebra M and convolution algebra M∗. We shall study when M∗ is operator
biprojective, that is, whether there is a completely bounded right inverse to ∆∗ : M∗⊗̂M∗ → M∗

which is also an M∗-bimodule homomorphism. Henceforth, we shall term such a map θ∗ a splitting
morphism.

See [1, 2] for further details on the operator space case, and [8, Chapter IV] or [16, Section 4.3]
for the classical Banach space setting.

Lemma 3.1. M∗ is biprojective if and only if there exists a normal completely bounded map
θ : M⊗M → M with

θ∆ = id, ∆θ = (θ ⊗ id)(id⊗∆) = (id⊗θ)(∆ ⊗ id).

Proof. Suppose that such a θ exists, so as θ is normal, there exists θ∗ : M∗ → M∗⊗̂M∗ with
∆∗θ∗ = id. Then, for ω, τ ∈ M∗ and x ∈ M ,

〈x, θ∗(ω ∗ τ)〉 = 〈θ(x), ∆∗(ω ⊗ τ)〉 = 〈(θ ⊗ id)(id⊗∆)(x), ω ⊗ τ〉

= 〈(id⊗∆)(x), θ∗(ω) ⊗ τ〉 = 〈x, θ∗(ω) ∗ τ 〉.

Here we write ∗ for both the product in M∗, and the bimodule action of M∗ on M∗⊗̂M∗. Similarly,
θ∗(ω ∗ τ) = ω ∗ θ∗(τ), so we see that θ∗ is a M∗-bimodule homomorphism.

The converse is simply a case of reversing the argument.

In the following section, we shall carefully study the structure of normal completely bounded
maps M⊗M → M . From now on, fix such a map θ : M⊗M → M and let {(vα

ij)
nα

i,j=1
: α ∈ A} be

as in Proposition 2.1.
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Proposition 3.2. We have that θ∆ = id and ∆θ = (θ ⊗ id)(id⊗∆) = (id⊗θ)(∆ ⊗ id) if and
only if there exists a family {Xα ∈ Mnα

: α ∈ A} such that, for α, β ∈ A, 1 ≤ i, j ≤ nα and
1 ≤ k, l ≤ nβ,

θ
(
vα

ij ⊗ vβ
kl

)
= δαβXα

jkv
α
il,

nα∑

r=1

Xα
rr = 1.

Proof. The “if” part follows as A generates M and θ is normal.
Conversely, let x ∈ M and α ∈ A. For 1 ≤ i, j ≤ nα,

∆θ
(
x ⊗ vα

ij

)
= (θ ⊗ id)(id⊗∆)

(
x ⊗ vα

ij

)
=

nα∑

r=1

θ
(
x ⊗ vα

ir

)
⊗ vα

rj.

Let aij = θ(x ⊗ vα
ij), so that ∆(aij) =

∑
r air ⊗ vα

rj . As ∆ is a ∗-homomorphism, for 1 ≤ k, l ≤ nα,
we have that

∆
(
aij(v

α
kl)

∗
)

=

nα∑

r,s=1

air(v
α
ks)

∗ ⊗ vα
rj(v

α
sl)

∗.

Applying (ι ⊗ ϕ), we see that, by the calculations in Proposition 2.1,

ϕ
(
aij(v

α
kl)

∗
)
1 =

nα∑

r,s=1

air(v
α
ks)

∗ϕ
(
vα

rj(v
α
sl)

∗
)

= δjl

λα
j

Trα

nα∑

r=1

air(v
α
kr)

∗.

As vα is a unitary matrix, we see that 1 =
∑

k(v
α
kr)

∗vα
ks = δrs1 for 1 ≤ r, s ≤ nα. Thus

nα∑

k=1

ϕ
(
aij(v

α
kl)

∗
)
vα

ks = δjl

λα
j

Trα

nα∑

r,k=1

air(v
α
kr)

∗vα
ks = δjl

λα
j

Trα
ais.

It follows that

ais =
Trα

λα
j

nα∑

k=1

ϕ
(
aij(v

α
kj)

∗
)
vα

ks

(
α ∈ A, 1 ≤ i, j, s ≤ nα

)
.

Similarly, if we set bij = θ(vα
ij ⊗ x), then ∆(bij) =

∑
r vα

ir ⊗ brj , and we can show that

bsj = λα
i Trα

nα∑

k=1

ϕ
(
(vα

ik)
∗bij

)
vα

sk

(
α ∈ A, 1 ≤ i, j, s ≤ nα

)
.

In particular, we see that θ(vα
ij ⊗ vβ

kl) is in the linear span of {vα
is : 1 ≤ s ≤ nα}, and the linear

span of {vβ
rl : 1 ≤ r ≤ nβ}. Hence θ(vα

ij ⊗ vβ
kl) = 0 if α 6= β. If α = β, then by linear independence,

we see immediately that

θ(vα
ij ⊗ vα

kl) = Xα
jkv

α
il,

for some scalar Xα
jk. Finally, as

∑
k θ(vα

ik ⊗ vα
kj) = vα

ij , it follows
∑

k Xα
kk = 1, as required.

Theorem 3.3. Let (A, ∆) be a compact quantum group with associated von Neumann algebra M .
Let θ∗ : M∗ → M∗⊗̂M∗ be a splitting morphism, and suppose further that θ = θ∗

∗
is an M-bimodule

map, in the sense that θ(∆(a)x∆(b)) = aθ(x)b for x ∈ M⊗M and a, b ∈ M . Then the Haar state
ϕ is tracial, so (M, ∆) is a Kac algebra.
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Proof. Let α ∈ A and 1 ≤ i, j, k ≤ nα. As θ(x∆(b)) = θ(x)b for x ∈ M⊗M and b ∈ M , using the
notation of the last proposition, we see that

Xα
jkv

α
ij(v

α
ij)

∗ = θ
(
vα

ij ⊗ vα
kj

)
(vα

ij)
∗ =

nα∑

l=1

θ
(
vα

ij(v
α
il)

∗ ⊗ vα
kj(v

α
lj)

∗
)
. (1)

Now, as {vβ
rs} forms a basis for the ∗-algebra A, and as ϕ picks out the trivial corepresentation

vα0 = 1, by the calculations of Proposition 2.1, we see that

vα
ij(v

α
il)

∗ ⊗ vα
kj(v

α
lj)

∗ = δjl

λα
j

Trα

1 ⊗ δkl

λα
j

Trα

1 + other terms.

By the structure of θ established in the last proposition, it follows that

nα∑

l=1

ϕθ
(
vα

ij(v
α
il)

∗ ⊗ vα
kj(v

α
lj)

∗
)

= δjk

( λα
j

Trα

)2

1 + other terms.

By applying ϕ to (1), we conclude that

Xα
jk

λα
j

Trα

= δjk

( λα
j

Trα

)2

so that Xα
jk = δjk

λα
j

Trα

.

We now repeat this argument on the right, so we find that

Xα
jk(v

α
ij)

∗vα
ij = (vα

ij)
∗θ

(
vα

ij ⊗ vα
kj

)
=

∑

s

θ
(
(vα

is)
∗vα

ij ⊗ (vα
sj)

∗vα
kj

)

=
∑

s

δsj
1

λα
i Trα

δsk
1

λα
k Trα

1 + other terms

Again, by applying ϕ we see that

Xα
jk

1

λα
i Trα

= δjk
1

λα
i Trα

1

λα
k Trα

so that Xα
jk = δjk

1

λα
k Trα

.

We hence see that for all α and 1 ≤ k ≤ nα, we have λα
k = 1/λα

k . As λα
k > 0, we see that λα

k = 1.
In particular, the modular automorphism group σ is trivial, and so ϕ is tracial, as claimed.

Indeed, if ϕ is tracial, then from Proposition 2.1, we see that λα
j = (λα

i )−1 for all i, j. Thus
λα

i = 1 for all i and α. It follows that the automorphism ρz,w are trivial, and hence also the scaling
group is trivial. So the antipode S is bounded. It is now easy to verify the axioms of a compact
Kac algebra, see [6, Section 6.2].

We note that an argument of Soltan, [17, Remark A.2], shows that if a compact quantum group
(A, ∆) has a faithful family of tracial states (that is, for non-zero x ∈ A there is a tracial state φ
with φ(x∗x) 6= 0) then (M, ∆) is a Kac algebra.

Theorem 3.4. Let (A, ∆) be a compact quantum group with associated von Neumann algebra M .
Let θ∗ : M∗ → M∗⊗̂M∗ be a splitting morphism. Suppose that θ = θ∗

∗
is completely positive, or that

∆θ is a contraction. Then (M, ∆) is a Kac algebra.

Proof. As θ(1) = θ∆(1) = 1, if θ is positive, then θ is contractive, so ∆θ is contractive.
We have that ∆θ : M⊗M → M⊗M is contractive, and is a projection of M⊗M onto the

subalgebra ∆(M). A result of Tomiyama, [21] or [18, Theorem 3.4, Chapter III], tells us that, in
particular, ∆θ(∆(a)x∆(b)) = ∆(a)θ(x)∆(b) for a, b ∈ M and x ∈ M⊗M . As ∆ is an injective
homomorpshim, the above theorem applies.
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In the following section, we shall show the converse to this corollary: namely that for a compact
Kac algebra (M, ∆), we can choose θ to be a complete contraction; alternatively, see [14] or [1].

It is shown in [4] that if we have a completely bounded map θ : M⊗M → M with θ∆ = id
then there exists a completely bounded map θ1 : M⊗M → M which is an M-bimodule map, in
the above sense. However, there is no reason that θ1 need be normal, and no reason that the other
conditions on θ will carry over to θ1, so that Proposition 3.2 need not apply to θ1. We can even
choose θ1 to be completely positive, which were it also faithful would imply, by [19, Theorem 4.2,
Chapter IX], the existence of a weight ω on M⊗M with interesting modular properties. Again,
there seems to be no reason to expect that we can choose θ1 in such a way.

4 Completely bounded maps

There is a well-known structure theory for completely bounded maps, [5, Section 5.3]. If θ : N →
(M, H) is a completely positive normal map between von Neumann algebras, then the usual proof
of the Stinespring theorem (for example, [18, Chapter IV, Theorem 3.6]) can be adapted to show
that there exists a Hilbert space K, a normal ∗-homomorphism π : N → B(K) and a bounded
map U : H → K such that θ(x) = U∗π(x)U for x ∈ N .

Showing the same for completely bounded maps is not quite as simple, but the details are
worked out in, for example, the proof of [7, Theorem 2.4]. In particular, given θ : N → (M, H) a
completely contractive normal map between von Neumann algebras, there exist unital completely
positive normal maps φ1, φ2 : N → M such that

σ : M2(N) → M2(M);

(
a b
c d

)
7→

(
φ1(a) θ(b∗)∗

θ(c) φ2(d)

)

is unital completely positive and normal. One can now follow the presentation in [5, Theorem 5.33]
or [13], essentially applying the Stinespring construction to σ. This yields a Hilbert space K, a
normal ∗-homomorphism ρ : M2(N) → B(K) and an isometry U : H2 → K such that σ(x) =
U∗ρ(x)U for x ∈ M2(N). Following the proof of [7, Theorem 2.3], there also exists a normal
∗-homomorphism ρ′ : M2(M)′ → ρ(M2(N))′ such that ρ′(y)U = Uy for y ∈ M2(M)′.

Define π : M⊗M → B(K), π′ : M ′ → B(K) and S, T : H → K by

π(x) = ρ

(
x 0
0 x

)
, π′(y) = ρ′

(
y 0
0 y

)
, T (ξ) = ρ

(
0 0
1 0

)
U

(
ξ
0

)
, S(ξ) = U

(
0
ξ

)
,

for x ∈ M⊗M, y ∈ M ′ and ξ ∈ H . So π and π′ are normal ∗-homomorphisms and S and T are
contractions. Then, for x ∈ M⊗M and ξ, η ∈ H ,

(
S∗π(x)Tξ

∣∣η
)

=
(
ρ

(
x 0
0 x

)
ρ

(
0 0
1 0

)
U

(
ξ
0

) ∣∣∣U
(

0
η

) )

=
(
σ

(
0 0
x 0

) (
ξ
0

) ∣∣∣
(

0
η

) )
=

(
θ(x)ξ

∣∣η
)
.

So θ(x) = S∗π(x)T . Then also, for y ∈ M ′ and ξ ∈ H ,

Tyξ = ρ

(
0 0
1 0

)
U

(
y 0
0 y

) (
ξ
0

)
= ρ

(
0 0
1 0

)
π′(y)U

(
ξ
0

)
= π′(y)Tξ.

So Ty = π′(y)T and similarly Sy = π′(y)S, for y ∈ M ′.

7



Let M be a von Neumann algebra with a normal faithful state ϕ, leading to GNS construction
(H, Λ) (here we identify M with a subalgebra of B(H)). We can apply Tomita-Takesaki theory
to find an anti-linear isometry J : H → H such that M ′ = JMJ (see [19]). Let (σt)t∈R be the
modular automorphism group, and let A ⊆ M be a ∗-subalgebra of elements analytic for (σt) such
that σz(a) ∈ A for z ∈ C and a ∈ A. For a ∈ A, write a′ = Jσi/2(a)∗J . Then

a′Λ(1) = Jσi/2(a)∗JΛ(1) = Λ(a) (a ∈ A).

Proposition 4.1. Let M be a von Neumann algebra as above, and suppose that A′′ = M . Let N
be a von Neumann algebra. If θ : N → M is completely bounded normal map, then we can find a
Hilbert space K, normal ∗-homomorphisms π : N → B(K) and π′ : M ′ → π(N)′, and ξ0, ξ1 ∈ K
such that the maps

Λ(a) 7→ π′(a′)ξ0, Λ(a) 7→ π′(a′)ξ1 (a ∈ A),

are bounded, and
ϕ(θ(x)a) =

(
π(x)π′(a′)ξ0

∣∣ξ1

)
(x ∈ N, a ∈ A). (2)

Conversely, given such K, π, π′, ξ0 and ξ1, there exists a completely bounded normal map θ : N → M
satisfying (2).

Furthermore, θ is completely positive if and only if we can choose ξ0 = ξ1.

Proof. As A′′ = M , it follows that A is strongly dense in M and hence that Λ(A) is norm dense
in H . If θ is of the form claimed, then the map T : Λ(A) → K; Λ(a) 7→ π′(a′)ξ0 is bounded
and so extends to a bounded linear map T : H → K. Similarly, there exists S ∈ B(H, K) with
SΛ(a) = π′(a′)ξ1. Then, for a, b ∈ A and x ∈ N ,

(
S∗π(x)TΛ(a)

∣∣Λ(b)
)

=
(
π(x)π′(a′)ξ0

∣∣π′(b′)ξ1

)
=

(
π(x)π′((b′)∗a′)ξ0

∣∣ξ1

)

= ϕ
(
θ(x)aσ−i(b

∗)
)
,

as (b′)∗ = (Jσi/2(b)
∗J)∗ = Jσi/2(b)J = Jσi/2(c)

∗J = c′ if c = σ−i(b
∗), and d 7→ d′ is an anti-

homomorphism. By the KMS condition, we see that
(
S∗π(x)TΛ(a)

∣∣Λ(b)
)

= ϕ
(
b∗θ(x)a

)
=

(
θ(x)Λ(a)

∣∣Λ(b)
)
.

Hence θ is completely bounded, as θ(x) = S∗π(x)T for x ∈ N . If ξ0 = ξ1 then S = T and θ is
completely positive.

Conversely, given θ, from the discussion above, we can find normal ∗-homomorphisms π : N →
B(K) and π′ : M ′ → π(N)′, and bounded maps S, T : H → K with θ(x) = S∗π(x)T for x ∈ N
and Sy = π′(y)S, Ty = π′(y)T for y ∈ M ′. Thus, for x ∈ N and a ∈ A,

ϕ(θ(x)a) =
(
S∗π(x)TΛ(a)

∣∣Λ(1)
)

=
(
S∗π(x)π′(a′)TΛ(1)

∣∣Λ(1)
)
,

so the proof is complete by setting ξ0 = TΛ(1) and ξ1 = SΛ(1). If θ is completely positive, then
we can set S = T and hence ξ0 = ξ1.

Notice that by the KMS condition, the calculations above also show that if x, y ∈ M are such
that ϕ(xa) = ϕ(ya) for all a ∈ A, then x = y.

The following is proved using different methods in [14] and [1]. Our proof makes explicit how
ϕ being tracial, for a Kac algebra, is central to the proof, and indicates that understanding the
modular properties of ϕ for a general compact quantum group will be important in finding a
completely bounded analogue of the following.
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Theorem 4.2. Let (M, ∆) be a compact Kac algebra. Then there exists a splitting morphism
θ∗ : M∗ → M∗⊗̂M∗ such that θ = θ∗

∗
is completely positive.

Proof. We have that ϕ is tracial. Let π : M⊗M → M⊗M ⊆ B(H ⊗ H) be the trivial representa-
tion, let ξ0 = ξ1 = Λ(1) ⊗ Λ(1), and define π′ by

π′(y) = (J ⊗ J)∆(JyJ)(J ⊗ J) (y ∈ M ′).

This formula is derived from the natural coproduct on M ′, see [10, Section 4]. Let A be the Hopf
∗-algebra associated to (M, ∆), as before. Then we can apply the above proposition to see that
there exists a completely positive normal map θ : M⊗M → M such that

ϕ(θ(x)a) =
(
x(J ⊗ J)∆(a∗)(J ⊗ J)Λ(1) ⊗ Λ(1)

∣∣Λ(1) ⊗ Λ(1)
)
,

where we use that σ is trivial, as ϕ is tracial. Then JΛ(a) = Λ(a)∗ for a ∈ A, and so, as
∆(a∗) ∈ A⊗A,

ϕ(θ(x)a) =
(
x(J ⊗ J)∆(a∗)Λ(1) ⊗ Λ(1)

∣∣Λ(1) ⊗ Λ(1)
)

=
(
x(Λ ⊗ Λ)∆(a)

∣∣Λ(1) ⊗ Λ(1)
)

= (ϕ ⊗ ϕ)
(
x∆(a)

)
.

In particular,

ϕ(θ∆(x)a) = (ϕ ⊗ ϕ)
(
∆(xa)

)
= ϕ(xa),

so by the observation above, θ∆ = id. Indeed, one may calculate (thinking about Proposition 3.2)
that

θ(vα
ij ⊗ vα

kl) =
1

nα
δjkv

α
il ,

using that λα
i = 1 for all α and i. Thus also ∆θ = (θ ⊗ id)(id⊗∆) = (id⊗θ)(∆ ⊗ id), and so θ∗,

the preadjoint to θ, is a splitting morphism, as required.

If ϕ is not tracial, then the above proof fails, as for a ∈ A,

∆(σi/2(a)∗) =
(
(τi/2 ⊗ σi/2)∆(a)

)
∗

,

and hence, as JΛ(b) = Λ(σi/2(b)
∗) for b ∈ A,

(J ⊗ J)∆(σi/2(a)∗)(J ⊗ J)(Λ(1) ⊗ Λ(1)) = (Λ ⊗ Λ)
(
(τi/2σ−i/2 ⊗ id)∆(a)

)
.

If we continus to form θ as above, then we find that

θ
(
vα

ij ⊗ vβ
kl

)
= δαβvα

il

δjk

Trα
(α, β ∈ A, 1 ≤ i, j ≤ nα, 1 ≤ k, l ≤ nβ).

This is nearly of the correct form, but we find that

θ∆
(
vα

ij

)
=

nα

Trα
vα

ij (α ∈ A, 1 ≤ i, j ≤ nα).

Notice that nα =
∑

i(λ
α
i )1/2(λα

i )−1/2 ≤
( ∑

i λ
α
)1/2(∑

i(λ
α)−1

)1/2

= Trα, it follows that θ∆ = id if
and only if λα

i = 1 for all α, i, that is, again, ϕ is tracial.
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