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Amenability of ultrapowers of Banach algebras

Matthew Daws

September 17, 2009

Abstract

We study when certain properties of Banach algebras are stable under ultrapower constructions. In particular,
we consider when every ultrapower of A is Arens regular, and give some evidence that this is so if and only if A
is isomorphic to a closed subalgebra of operators on a super-reflexive Banach space. We show that such ideas
are closely related to whether one can sensibly define an ultrapower of a dual Banach algebra. We study how
tensor products of ultrapowers behave, and apply this to study the question of when every ultrapower of A is
amenable. We provide an abstract characterisation in terms of something like an approximate diagonal, and
consider when every ultrapower of a C*-algebra, or a group L'-convolution algebra, is amenable.
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1 Introduction

Given a Banach space F and an ultrafilter U, we can form the ultrapower (E);. This construction
has proved to be useful in Banach space theory, especially with regards to local theory. Given a
Banach algebra A, it is trivial that (A);, is a Banach algebra. Right at the beginning of the study
of ultrapowers, in [6], certain sequence spaces which are Banach algebras were studied. As noted
n [16], C*-algebra techniques can be used to show that the class of C'(K') spaces is closed under
ultrapower constructions. In [I5], [17] and [7], ultrapowers of Banach algebras were used to study
the Arens products on the bidual of A. In [14], Ge and Hadwin study ultrapowers of C*-algebras.
Otherwise, the study of ultrapowers of Banach algebras has been surprisingly sparse (see below
for further points).

For a property of Banach spaces (P), we say that a Banach space has super-(P) if every
ultrapower of E has (P). The best known example is that of a super-reflexive Banach space (see
[16, Section 6]). We shall study some super properties of Banach algebras: in particular, when
ultrapowers of a Banach algebra are Arens regular, and when they are amenable.

There seems to be a close relationship between a Banach algebra being super Arens regular,
and the algebra being isomorphic to a closed subalgebra of operators on a super-reflexive Banach
space. We also show that the natural construction of an ultrapower of a dual Banach algebra only
works, in practice, for super Arens regular Banach algebras.

We say that a Banach algebra A is ultra-amenable if every ultrapower of A is amenable (the term
super-amenable is used for another meaning by Runde in [30]). We show that ultra-amenability
is strictly weaker than contractability (which is what Runde calls super-amenable), and strictly
stronger than amenability. Part of our motivation is that it is generally easy to show that a Banach
algebra is not contractible, while amenability is a much harder property to settle (this applies in
particular to B(FE), the algebra of operators on a Banach space E). We hope that perhaps the
ultra-amenability of B(E) can be more easily settled, although our current techniques do not allow
this.
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We provide an abstract characterisation of ultra-amenability, similar to the concept of an ap-
proximate diagonal, see [30, Section 2.2]. To do this, we need to first study how tensor products
and ultrapowers interact. We present a counter-example due to Charles Read that ultrapowers
and tensor products do not “commute”. We settle when a C*-algebra is ultra-amenable, and show
for many locally compact groups G that ultra-amenability is equivalent to being finite.

1.1 Notation and basic concepts

We generally follow [3] for notation and Banach algebra concepts. Let E be a Banach space.
We write E’ for the dual space of E, and for + € E and p € E', we write (u,z) for u(x). We
occasionally use square brackets for inner-products. Recall the canonical map kg : £ — E”
defined by (kg(x), ) = (i, x) for x € E and p € E'. When kp is an isomorphism, we say that E
is reflexive.

Recall the notions of filter and ultrafilter. Let U be a non-principal ultrafilter on a set I, and
let ¥ be a Banach space. We form the Banach space

(B, 1) = {(wier € B+ (@) 1= sup ]| < o<},
and define the closed subspace
Ny = {(xi)ig € (*(B, ) : lim |lz:]| = o}.
Thus we can form the quotient space, called the ultrapower of E with respect to U,

(E)u = EOO(E, [)/Nz,{

In general, this space will depend on U, though many properties of (E); turn out to be independent
of U, as long as U is sufficiently “large” in some sense.
We can verify that, if (z;);c; represents an equivalence class in (F)y, then

1(i)ier + Noll = Tim ).

We shall abuse notation and write (x;) for the equivalence class it represents; of course, it can be
checked that any definition we make is independent of the choice of representative of the equivalence
class. There is a canonical isometry £ — (E)y given by sending = € F to the constant family (z).
We again abuse notation and write x € (E)y, identifying £ with a closed subspace of (F)y.

Definition 1.1. An ultrafilter U is countably incomplete when there exists a sequence (U,)32; in
U such that Uy D Uy D U3 D - -+ and such that () U, = 0.

Countably incomplete ultrafilters are useful, because they allow us to embed sequential conver-
gence into convergence along the ultrafilter (see numerous examples of this argument in [16]). We
remark that if there exists a non-countably incomplete ultrafilter, then there exists an uncountable
measurable cardinal, and it is known that the existence of such cardinals cannot be shown in ZFC.
See [I Section 4.2] for further details. Notice that any non-principal ultrafilter on a countable
index set is certainly countably incomplete.

There is a canonical map (E')y — (E);, given by

((pa), () = lim (s i) (i) € (Eu, () € (Eu).

This map is an isometry, and so we identify (E’);, with a closed subspace of (E)j,. It is shown in
[16, Proposition 7.1] that when U is countably incomplete, (F);, = (E')y if and only if (E)y is



reflexive. Furthermore, we define a Banach space E to be super-reflexive if (E)y is reflexive for
any ultrafilter . As shown in [16, Proposition 6.4], this definition is equivalent to the original one
given by James (see [1§]).

For Banach spaces E and F', we write B(E, F') for the space of bounded linear operators from
E to F. Then there is a canonical isometric map (B(FE, F'))y — B((E)y, (F)y) given by

T(x) = (Ti(z:))  (T'=(Ti) € (BE, F))u, v = (i) € (E)u)-

We shall often identify (B(E, F'))y with its image in B((E)y, (F)u)-

2 Basics of ultrapowers of Banach algebras

When A is a Banach algebra, (A), becomes a Banach algebra under the pointwise product. This
follows, as it is easy to show that N, is a closed ideal in the Banach algebra £*°(A,I).

In [14], Ge and Hadwin make a general study of ultrapowers of C*-algebras. Much of what they
prove can easily be adapted to general Banach algebras. To give just one example, the ideas of
[14, Section 3] will show that if A is a separable Banach algebra and ¢ and V are non-principal
ultrafilters on N, then (A);, and (A)y are isomorphic as Banach algebras, assuming the continuum
hypothesis holds.

Proposition 2.1. For a Banach algebra A, an ultrapower (A)y is unital if and only if A is unital.

Proof. Clearly, if A is unital, then so is (A)y. Let e = (¢;) € (A)y be a unit for (A)y, and choose
e; such that ||e;|| = |le|| > 1 for each i. For € > 0, for each i, let a; € A be such that ||a;|| = 1 and

la; — e;a;|| > sup{|la — e;al :a € A, |a| <1} —e.
Let b = (a;) € (A)y, so that b = eb = (e;a;) € (A)y, and hence
0= 211_)12 lla; — e;a;|| > Zh_)nbllsup{Ha —eal|rae A la| <1} —e
As € > 0 was arbitrary, we see that
zlLHLl{ sup{|la — e;al| :a € A, |ja|| < 1} =0.
Analogously, we see that

1iIIZ/l{ sup{|la — ae;|| :a € A, |ja|| < 1} =0.

Fore>0,let U=/{i:|a—ael + |la—ea| <e(a€A,lal <1)} el Thus, fori,j e U,
le: — €| < lle;s — eiesl| + llej — esejl| < 2¢lle]].

It is straightforward to extract a sequence from the family (e;) which will be Cauchy, and hence
converges to, say, eq4 € A. It is then clear that e4 will be a unit for A. O

The following is perhaps a little more surprising.

Proposition 2.2. For a Banach algebra A, an ultrapower (A)y has a bounded approzimate identity
if and only if A does. The same statement holds for left or right bounded approzimate identities.



Proof. Suppose that A has a bounded approximate identity of bound M > 1. Let U be an
ultrafilter on an index set I, let a = (a;) € (A)y, and let € > 0. Again, we may suppose that
||a;|| = ||a|| for each i € I. For each i € I, we can find u; € A with ||u;|| < M and ||a; — w;a;|| < e.
Let u = (u;)ier € (A)y, so that ||a — wal| < e. As a and € were arbitrary, we see that (A), has
bounded left approzimate units. By [3, Corollary 2.9.15], we have that (A); has a bounded left
approximate identity of bound M. By symmetry, (A)y has a bounded right approximate identity
of bounded M, and so by a result due to Dixon, see [3, Proposition 2.9.3], we have that (.4); has
a bounded approximate identity of bound 2M + M?2.

Conversely, suppose that (A);, has a bounded approximate identity of bound M, but that
A does not have a bounded left approximate identity of bound < M. Hence A does not have
bounded left approximate units of bound < M. In particular, there exists a € A and § > 0
such that ||a — ual > § for all u € A with ||u|| < M. However, we can find u = (u;) € (A)y
with ||a — ua|| < 0/2, that is, lim;_ |la — w;a| < §/2, a contradiction. So A has a bounded
left approximate identity of bound M, and thus by symmetry, A has a bounded approximate
identity. O

Ultrapowers have been studied in the context of von Neumann algebras. However, here the
definition is different to ours: this is because, for example, if M = (> and U is a non-principal
ultrafilter on N, then (M), is not a dual space, and hence not a von Neumann algebra. Instead,
a construction using traces is often used; however, it can be shown that the predual of the von
Neumann algebra ultrapower is precisely the Banach space ultrapower of the predual (see, for
example, [28 Section 1]). We study such ideas for dual Banach algebras below.

Ultrapowers of Banach spaces have been used in [2] to study representations of Banach algebras
and representations of groups; see also the similar ideas used in [10] and [29].

3 Arens regularity

Let A be a Banach algebra. We now recall the Arens products on A”. Firstly, we turn A’ into a
A-bimodule in the usual fashion,

<CL~,U,,b> = <:U’7ba>7 </J,-CL,b> = </J,,6Lb> (CL,bEA,MGA/).

In a similar way, A” and so forth also become A-bimodules. Then we define bilinear maps A" x

AL A x A" — A’ by

(D pya)y =(P,pu-a), (u-P,a)= (P a-pu) (PeA peAacA).
Finally, we define bilinear maps 0,0 : A” x A” — A" by

(®OW, p) = (D, U - p), (DPOU, u) = (U, - D) (@, 0veA” ueA).

These are associative products which extend the natural action of A on A”, called the first and
second Arens products. See [3], Section 3.3] or [22, Section 1.4] for further details. Thus O and <
agree with the usual product on k4(A). When O and < agree on all of A", we say that A is Arens
reqular.

By Goldstein’s Theorem, we know that the unit ball of A is weak*-dense in the unit ball of A”.
This allows us to find an ultrafilter U such that, given &, ¥ € A", we can find bounded families
(a;) and (b;) with (a;) tending to ® weak* along U, and (b;) tending to W. See [16], Proposition 6.7]
for further details. Then

(@OW, y1) = lim lim (1, a;b;), (POW, p) = lim lim (11, a;b;) (€ A').
j—Ui—-U i—U j—U



In [7] we show that when A is Arens regular, we can find a more “symmetric” version of these
formulae.

We shall say that A is super Arens reqular if every ultrapower of A is Arens regular. As Arens
regularity passes to subalgebras, clearly a super Arens regular Banach algebra is Arens regular.

Proposition 3.1. Let A be a Banach algebra isomorphic to a closed subalgebra of B(E) for a
super-reflexive Banach space EE. Then A is super Arens reqular.

Proof. 1t is shown in [10] that B(E) is Arens regular for any super-reflexive Banach space E. Let
U be an ultrafilter. As an ultrapower of an ultrapower is again an ultrapower (see [16, Page 90]),
we see that (E)y is super-reflexive. We identify (B(E))y as a closed subalgebra of B((£)y). Thus
(B(E))y is Arens regular, and hence so is (A)y, as required. O

Note that if A is a Banach algebra whose underlying Banach space is super-reflexive, then every
ultrapower of A is reflexive, and hence certainly Arens regular. As noted in [I0], if A is a closed
subalgebra of B(FE) for a super-reflexive £ (or A is super-reflexive) then every even dual of A is
Arens regular.

Let p € A’'. We say that p is weakly almost periodic if the map

L,:A— A a—a-p (a € A),

is weakly compact, and write up € WAP(A'). Then A is Arens regular if and only if WAP(A") =
A’ See [4, Section 3] for further details (and be aware that they write WAP(A)). A useful
characterisation of WAP(A"), due originally to John Pym (see [27, Theorem 4.3]), is that u €
WAP(A’) if and only if (POW, ) = (PO, u) for all &, ¥ € A”. Combining this fact with some
careful arguments yields the following repeated limit criterion.

Proposition 3.2. Let A be a Banach algebra, and let p € A’. Then u is weakly almost periodic
if and only if, for bounded sequences (a,) and (by,) in A, we have that
lim lim (u,a,b,) = lim lim (u,a,by,),

n—0o0 Mm—0oQ m—00 N—00

whenever all the iterated limits exist.
Proof. See [3, Theorem 2.6.17] or J4, Section 3], for example. O

For an ultrapower (A)y, we generally do not fully understand the dual (A);,. However, we

have the norming subspace (A’)y, and so in particular, if (A)y, is Arens regular, then (A"), C
WAP((A);,).

Lemma 3.3. Let A be a Banach algebra, and let U be a countably incomplete ultrafilter. An
ultrapower (A)y is Arens regular if and only if (A")y € WAP((A);,).

Proof. We need only show the “if” part. Let u € (A)},, and suppose that u is not weakly almost
periodic. Thus there exist bounded sequences (a,,) and (b,,) in (A)y such that the iterated limits
of ((i, anbm)) exist, but are not equal. Let £ C (A)y be the closed linear span of (@, )n men, S0
that E is separable. As U is countably incomplete, we can apply [16, Corollary 7.5] to see that
there exists A € (A')y such that (u,anb,) = (A, anby,,) for all n and m. Thus A is not weakly
almost periodic, a contradiction. O

For a Banach space E, let F(FE) be the space of finite-rank operators on F, and let A(FE) be the
space of approzimable operators, the norm closure of F(E) in B(E). See below for further details,
and for what it means for a Banach space E to have the approzimation property. It is known that
if F is a reflexive Banach space with the approximation property, then A(FE) is Arens regular, and
that A(E)” = B(E) as a Banach algebra (see, for example, [21] or [22 Section 1.7]). In general,
A(FE) is Arens regular if and only if E is reflexive (see [3| Theorem 2.6.23], for example).
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Proposition 3.4. Let E be a Banach space. The A(FE) is super Arens reqular if and only if E is
super-reflexive.

Proof. By the above, if E is super-reflexive, then A(F) is super Arens regular. If E is not super-
reflexive, then by the results of [16, Section 6], there exists a countably incomplete ultrafilter U
on an index set I such that (£); is not reflexive. By a result of James (see, for example, [10
Section 4]), we can find bounded sequences (z™) in (E)y and (u™) in (E);, such that

0 :m>n
(m) )y — )
e, ) {1 m < n.

Let E be the closed linear span of the (z(™), so that E is separable. As we only care about the

value of ™ on E, by [16, Corollary 7.5], we may suppose that u™ € (E')y. Let 2™ = (xE"))

and u™ = (1) for each n.

Let A € ' and = € E be such that (A, z) = 1. For each n > 1, define

T,=p™ @z = (1" @) € (AE)y, S.=r2z™ =Nz e (AE))u.
Define A € (A(E));, by
(A, R) = lim (X, Ri(w)) (R = (Ri) € (A(E))u)-

It is hence easy to see that
<AaTnSTrL> = <:u(n) I(m)>a

from which it follows that A is not weakly almost periodic, as required. O

Notice that in the above proof, A is a member of A(E)’, where we naturally embed A(E)" into
(A(FE));,- Hence, when E is not super-reflexive, (A(E))y fails to be Arens regular is this rather
strong sense.

An alternative way to see the above is the following. For a Banach space E, we can regards
(A(F))y as a subalgebra of B((E)y) in the usual way. It is then easy to see that A((E)y) is
contained in (A(FE))y, and so if (A(F))y is Arens regular, so is A((E)y), and hence, as mentioned
above, (E)y must be reflexive.

Combining the above results, we might be tempted to make the following conjecture: a Banach
algebra A is super Arens regular if and only if A is isomorphic to a subalgebra of B(FE) for some
super-reflexive Banach space E. In [34], Young showed that a Banach algebra A is isomorphic to
a subalgebra of B(F) for a reflexive F if and only if WAP(A") approximately norms A, that is, for
some 9 > 0,

lall > dsup {[{u, a)| - p € WAP(A), [lu] <1} (a € A).

In particular, Arens regular Banach algebras are even isometric to closed subalgebras of B(F) for
reflexive E/. The key tool which Young uses is that of interpolation spaces, although this wasn’t
recognised at the time (compare Kaijser’s work in [19]). However, it is not clear how interpolation
spaces and ultrapowers interact; just because an ultrapower (A)y, is isomorphic to a subalgebra of
B(E) does not seem to imply that E need to be ultrapower.

3.1 Ultrapowers of dual Banach algebras

Surprisingly, defining ultrapowers of dual Banach algebras is not as straight forward as for von
Neumann algebras: we have to take account of Arens regularity.



Recall that a dual Banach algebra is a Banach algebra A which is the dual of a Banach space,
say A = A/, such that the product on A is separately weak*-continuous. The canonical example
is a von Neumann algebra, in which case the predual A, is isometrically unique. In general, there
may be a choice of A, so we shall write (A, A,) to indicate the predual. See [31] or [§] for general
further information.

By analogy with the von Neumann case, the natural way to define an ultrapower of A is to
form the Banach space ultrapower (\A,)y, and then to extend the product from (A)y to the dual
space (A,

Proposition 3.5. Let (A, A,) be a dual Banach algebra, and let U be an ultrafilter on an index
set I. Let A, = (A)y and A=A, The following are equivalent:

1. There is a product on A extending the product on (A)y and turning (A, 2A) into a dual Banach
algebra;

2. If we identify (A.)y with a subspace of (A),,, we have that (A.)y € WAP((A);,).

Proof. Notice that as (A)y is weak*-dense in 2(, any product making (2, 2l,) into a dual Banach
algebra, and which extends the product on (A);, must be unique. If () holds then it is an easy
calculation (see [8, Section 2]) that A, C WAP(('). Condition (2)) is immediate from this.

Conversely, notice that 2 = (\A,)y is an (A)y-bimodule, and so 2’ is also an (A)y-bimodule. It
is obvious that this bimodule structure extends the product on (A)y. We can hence extend this
bimodule structure to a bilinear map on 2, either by extending on the left, or on the right, by
weak*-continuity. Let us check that these give the same result. Let a,b € 2, so by [16, Section 7],
there exist bounded nets (a,) and (b,) in (A)y, tending to a and b respectively. For p € 2, we
see that

lim (aq - b, u) = lim (b, i - a,) = lim lién (bg, 1 - ag) = lim lién (anbg, 1)

= lién lim (anbg, ) = lién (a-bg,p).

We can swap the order of the limits, as 1 € WAP((A)j,). The construction of this product is
very similar to the construction of the Arens products, and checking that our product on 2 is
associative is similar to the analogous calculation for the Arens products.

Finally, we show that (2, 2l,) is a dual Banach algebra, for which it suffices to check that 2, is
an 2A-submodule of A'. Let p € A, and a € A, and suppose that a - pu € A, C A’ so there exists
¢ ¢ A" annihilating 2, and with (®,a-u) = 1. Let (b,) be a bounded net in A tending to ®
weak® in 21”. For each «, let (c,,3) be a bounded net in (A), tending to b, weak* in 2. Let (c,)
be a bounded net in (A)y tending to a in the weak*-topology on 2. Then we see that

1={(P,a-p)=lim(a-pu,by) =1lim(b,a,p) = lim lién (Capa, pr) = lim lién (a, p - cop)
= lign lién liy (Cys b+ Carg) = lign lién liin (Ca,BCy, p) = liin lign lién (Ca,BCy, 1)

= limlim (b, ¢, - ) = 0,
vy «

a contradiction. Again, we use that u € WAP((.A)],) to allow us to swap the order of limits. Hence
a-p €, and similarly p-a € 2, as required. O

Notice that if A is super Arens regular, then certainly condition (2) above always holds.

Proposition 3.6. Let (A, A.) be a dual Banach algebra, and suppose that for all ultrafilters U,
we have that (Ay)y € WAP((A)},). Then every even dual of A is Arens regular.



Proof. Firstly we show that A is Arens regular. Let u € A" and let (a,) and (b,,) be bounded
sequences in A4 with the repeated limits lim,, lim,, (u, a,b,,) and lim,, lim,, (4, a,b,,) existing. By
[16, Proposition 6.7], for a suitable ultrafilter U, there exists (u;) € (Ax)y with

lim (a, pi5) = (p,a) - (a € A).
As (A.)y € WAP((A)},), we have that (u;) € WAP((A)j,), and so

lim lim (1, a,,b,,) = lim lim lim (a,, by, ;) = hm hm ((an)(bm), (1))

n m n  m i—U

= lim lim ((a,)(bm), (15)) = hm lim (p, anbpn),

as required.

Let A € A" and let (®,) and (V,,) be bounded sequences in A” with the repeated limits
lim, lim,, (A, ®,¥,,) and lim,, lim, (A, ®,V,,) existing. For an ultrapower (A),, define a map
oy : (A)y — A" by

(oula). ) =l (0 (= (a:) € (A).

As A is Arens regular, by the main result of [7], there exists an ultrafilter & on an index set I,
and a map K : A" — (A)y, such that o o K is the identity on A", and

(ou(K(P)K(V)), p) = (OY, p)  (ne A, Ve A"

There exists an ultrafilter V on an index set J such that oy, : (A")y, — A" is surjective.
We define (see the end of Section 7 in [16]) the ultrafilter U x V on I x J by, for A C I x J,
setting A € U x V if and only if

{iel:{jeJ:(i,j)e Ay eV} el.
Then, for a family (z; j)ier jes in a compact Hausdorff space X, we have that

limlimxz; ; = lim ;.
j—=Vi=U (4,§)—=UXV

For each n let K(®,) = (a!) € (A)y, and let K(0,) = (b)) € (A)y. Let (1) € (A)y be
such that oy ((15)) = A. We then see that, as (p;) € WAP((A)}v)s

()

z )

limlim (A, &, ¥,,) = lim lim hII)lj (®,, Wy, ptj) = lim lim lim hm (i, a

n o m j— n m j—oVi—

=limlim lim  (u;, En)b(m)>

n - m (i,j)-UXV !
—limlim lim (g, ab™) = limlim (A, 9, 0,,).
m n (i,j)—>Z,{><V m n
Hence A” is Arens regular.
Repeating this argument allows us to show that every even dual of A is Arens regular, as
claimed. 0

Again, it would be interesting to know if, when every even dual of a Banach algebra A is Arens
regular, we have A is super Arens regular? In conclusion, we see that our approach to ultrapowers
of dual Banach algebras requires a rather strong condition on the underlying algebra, indeed, in
practice, we need A to be a subalgebra of B(E) for a super-reflexive Banach space E.
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4 Tensor products of ultrapowers

We shall now sketch the basics of the theory of tensor products of Banach spaces. We refer the
reader to the books [32] or [12] for introductory treatments of this material, or to the book [11]
for further information.

For Banach spaces E and F, let E ® F be the algebraic tensor product of E and F. We define
the projective tensor norm by

7]l = inf{z lzillllyll : 7= > 7 ® yi} (re E®F).
i=1 i—1

The completion of E ® F with respect to || - || is EQF, the projective tensor product of E and F.
E®F has the universal property that if T : E x F — G is a bounded bilinear map to a Banach
space G, then there is a unique bounded linear map T : EQF — G such that T(z ® y) = T(z,y)
for x € F and y € F. Every member 7 € EQF can be written as an absolutely convergent sum
T =2, % ®y;, for some sequences (z;) C E and (y;) C F.

Let F(FE, F) be the space of finite-rank operators from E to F, and let A(F, F') be the space
of approzimable operators from E to F, the norm closure of F(E, F') in B(E, F'). We can embed
E ® F into F(E', F) by

(i:&@%) :MHi(u,%}yi (neE).

This induces the injective tensor norm || - ||c on F ® F, whose completion is EQF. In particular,
we can identify A(FE, F) with E'QF.
We shall say that norm || - || on E ® F' is a reasonable crossnorm when:

1. [z @yl = ||lz||||ly|| for x € E and y € F;

2. forp € E'and A € F', define u@\ : EQF — Cby (u® X\, z®y) = (i, z)(\, y) and linearity.
Then the norm of p ® A, with respect to || - ||, is || x| A]|-

Suppose that for each pair of Banach spaces (F, F'), we have an assignment of a reasonable cross-
norm || - || on £ ® F. Then this assignment is a uniform crossnorm when given pairs (F1, F}) and
(B2, F») of Banach spaces, for T € B(E, E»), S € B(F1, F»), we have that [T @ S|| < |T[|| S]]
where we treat T'® S as a linear map EiQF, — FEyQF, given by

(TeSroy) =TE)oSy) (teyekboh),

and linearity. Then || - ||, and || - || are uniform crossnorms.

The projective tensor product is projective in the sense that if 7" and S are quotient maps (also
called metric surjections) then so is T'® S : EiQF, — E)QF,. Similarly, the injective tensor
product is injective in that, when T and S are isometries, then sois T ® S : B1®QF, — E,®F,. In
general, the projective tensor norm is not injective, and the injective tensor norm is not projective.
A useful exception to this is that the map kp ®id : EQF — E"®F is always an isometry onto its
range.

We identify the dual of EQF with B(E, F') by

(T,x@y)=(T(x),y) (T €BE,F)reycERF),

and linearity and continuity. In particular, E'QF’ = A(E, F') isometrically embeds into (E®F)’.
When one of E or F is finite-dimensional, we have equality, (FQF) = E'QF".



As the map E®F — E®&F is norm-decreasing with dense range, we see that the adjoint
(EQF) — (E®F) = B(E, F') is norm-decreasing and injective. We hence identify (E&F)" with
a space of operators F — I, the integral operators Z(E, F'), and we give Z(E, F') the dual norm
|- |lz, so that Z(E, F') = (E®QF)’. We have a norm-decreasing map E'QF" — T(E, F'). It is quite
a subtle issue as to when this map is bounded below, an isometry, or when it is surjective. See
[32] or [I1}, Section 16] for further details. However, if one of E or F' is finite-dimensional, then
(EQF) =I(E,F') = E'®F".

We say that a Banach space E has the approzimation property when the canonical map E'QFE —
E'QE = A(E) is injective. See [32, Chapter 4] or [12, Chapter VIII| for further details. For
Banach spaces E and F with the approximation property, we can hence identify E'@F as a space
of operators from E to F, called the nuclear operators, N(E, F'). In general, N (E, F') is merely a
quotient of E'®F, and we always give N(E, F) the quotient norm.

4.1 Ultrapowers

Let M be a finite-dimensional Banach space and let ¢ be an ultrafilter. By taking a basis, it is
easy to see that (M), = M. It is shown in [16, Lemma 7.4], that

(MRE)y = M®(E)y , (M®E)y = M&(E)y

for every Banach space F, and every finite-dimensional M, with equality of norms.

For infinite-dimensional Banach spaces, these equalities are no longer necessarily true. However,
we can make some useful statements.

Let E and F be Banach spaces. There is a canonical map v : (E)y®(F)y — (EQF)y, defined
using the tensorial property of ®@. Firstly we define 1 : (E)y % (F)y — (E®&F)y by

Uolw,y) = @ @y) (o= (@) € By = (13) € (Flu).
Then we have
(s @ i) | = i o @ gill e = Y llllgall = ( Tl ) (inn i) =l ol

so that 9o is well-defined, and is a norm-decreasing bilinear map. Thus o extends to a norm-
decreasing map ¢y : (E)y®(F)y — (EQF)y. For 7 € (E)y ® (F)y, choose a representative

T = 1_, Ty @y Let, for each k, z, = (xﬁ’“’) € (E)y and y, = (yi(k)) € (E)y. Then we see that

— (fok) ® y,(k)> € (E®F)y.
1 i€l

Proposition 4.1. Let E and F be Banach spaces, let U be an ultrafilter on an index set I, and
let T € (EQF)y. Then the following are equivalent:

1. for some sequence (cv,) of positive reals with Y o, < 0o, T = (1;) admits a representation of
the form

Zx 2y e ERF (i€,

where, for each i and k, we have that ka HHy H < s

2. T lies in the image of vy.
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Proof. Suppose that (1) holds. By rescaling, we may suppose that ka | = Hy H < ozk/ for each
1€l and k > 1. For each k > 1, let

v = (") € (B, u= ) € (F)u,

so that ||zg]| < a]1€/2 and |Jyx| < a,i/2. We can hence let
0= 2 @y € (B)u®(Fu,

with 7(0) <>, . Let 0, = > p_, 7 ® Yy s0 that ¢, — ¢ in (E)y®(F)y. Then

lim H@bo (on —TH = lim limHZx ®yk -7

n— 00 n—oo i—U
< lim lim Z 1z 1y < lim Z o =0,
n—oo0 1—
k n+1 k n+1

so that ¥y(0) = 7, as required.
Conversely, suppose that 7 = 1y(c) for

o= Z.fl}'k X Yk € (E)Z,{@(F)th

with > 77 [|k|l|lye]l < oo. Then we let ak | xk|| | ye|| and pick representatives zj, = (:)3,(;)) € (E)y
and y = (yziz)) (E)u, with ||z = ||:17k | and ||yx|| = ||y || for each k and i. For each i € I, let
=3, :c ) ® yk Let 0, = > 1_, Tk @ g, so that 7 = lim,_, 1(0,). Thus, for each n,

Zwk o3| <lim 3 1l = Y o

k=n+1 k=n+1

H( i) — to(on)

Hence, letting n — oo, (7;) = 7 as required. a

Let A be a Banach algebra, and let E be a left-A-module. Then an ultrapower (£) becomes
a left-A-module in the obvious way. When F is a right-A-module, we have that F®F is an
A-bimodule for the module actions

a-(z®y)=a-r2Qy, (TQY) - a=rQY-a (ac Ar®yc EQF).

Hence an ultrapower (E®F), is also an A-bimodule. Similarly, (E)y®(F)y is an A-bimodule. Tt
is a simple check to see that 1y is an A-bimodule homomorphism.

Similarly, it is easily checked that (E)y is a left-(A),-module, (F) is a right-(A),-module, and
both (E®F)y and (E)y®(F)y are (A)y-bimodules. We can check that 1y is also an (A)-bimodule
homomorphism.

In general, it seems that 1) is rarely, if ever, surjective when F and F' are infinite-dimensional.
We now present an argument for Hilbert spaces that is motivated by a counter-example communi-
cated to us by Charles Read. We first recall the Schmidt representation theorem (see, for example,
the treatment given in [20]).
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Theorem 4.2. Let H and K be Hilbert spaces, and T € A(H, K). Then there exist orthonormal
sequences (hy,) and (k,) in H and K, respectively, and a sequence of positive numbers (s,) € co(N)
with s1 > s9 > - -+ such that

T(x) = sl halkn (v € H),

where [-, -] is the inner-product on H.

Here and henceforth, we allow orthonormal sequences to be eventually zero.

For a Hilbert space H and z € H, we define a linear functional z* on H by y — [y,z]. The
Riesz Theorem shows that every linear functional arises in this way. It is clear that if the sequence
(sn) above satisfies ) s, < oo, then T" will be nuclear, and hence identified with a member of
H®K (as H and K have the approximation property) with |7, < 3" s,.

Lemma 4.3. I[f T € HRK, then the sequence (s,) arising from the Schmidt representation of T
satisfies ||T||r = >_,, sn-

Proof. For € > 0, let T' = > ! ® v, with Y ||u,|/[|vn]| < |T']|x + €. Then, by the Schmidt
representation, we have also that T'= )" s,h! ® k,, say. Then

Z Sn = Z[T(hn)a kn] = Z Z[hm um] [Uma kn]
<3 (X ) (o k)

<D lumllllomll < 1Tl +e,
m

1/2

as (hy) and (k,) are orthonormal sequences. As € > 0 was arbitrary, we are done. O

Notice that this proof shows that, for T € HR®K, we have that

IT||~ = sup { Z I[T(en), full : (en) and (f,) are orthonormal sequences in H and K}.
We now recall the notion (see [26, Chapter 11]) of approximation numbers. Let E and F be
Banach spaces, and let T' € B(E, F'). The nth approzimation number of T, for n > 1, is
an(T) =inf{||T"— S| : S € F(E, F),rank(S) < n}.

Proposition 4.4. Let H and K be Hilbert spaces, and let T € A(H, K) have a Schmidt represen-
tation T =) s,hl ® k,. Then, if sy > s9 > ---, then s, = a,(T) for each n > 1.

Proof. See [26], Section 11.3]. O

Proposition 4.5. Let H and K be Hilbert spaces, and let U be a wultrafilter on an index set I.
Then each T € (HRK )y in the image of 1y admits a representation of the form T = (1;) with

Ti:anh;,i@@k‘m e HRK  (iel),

where (s,) is a sequence of positive reals with ) s, < oo and, for each i, (h,;) and (ky;) are
orthonormal sequences in H and K respectively.
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Proof. Let 7 = 1hg(c) where
o= Z Sn€pn @ fu,

where (e,,) and (f,,) are orthonormal sequences in (H ), and (K )y respectively. Pick representatives
€n = (6n,i)iel and fn - (fn,i)iela so that

= lim[en i, €mil = Hm[fos, frni > 1).
6n,m Z,l_{rz}l[en,za 6m,z] Z,l_{rz}l[fn,za fm,z] (7’1,, m = )

For each i, apply the Gram-Schmidt orthonormalisation process to (e,;) to yield (h,;), where we
allow h,; to be zero for sufficiently large n; do the same to (f,;) to yield (k, ;). For each n > 1,
as hy; depends only upon {e,,; : m < n} and {[em, e, ;] : m,r < n}, we can verify that

lin s = end] =0 (n> 1),

and similarly for f,,;. Let h, = (hn:)ier € (H)y and k,, = (kni)icr € (H)y, so that h, = e, and
k, = f,. Thus

T =1(0) = (Z Snhy,; ® kn2> € (H®K)u’

iel
as required. O

Theorem 4.6. Let H and K be Hilbert spaces, and let U be a countably incomplete ultrafilter on
an index set I. Then vy : (H)y®(K)y — (HRK )y does not have dense range.

Proof. We first consider the case when I = N and U is a non-principal ultrafilter on N. Let (e,)
and (f,,) be orthonormal sequences in H and K, respectively. For each n > 1, let

Tn :7’1,_126; ®f] S H@K,
j=1
and let 7 = (1,,) € (H®K )y. Let o € (HRK )y be in the image of ¢/, so that ¢ has a representation
as above,

o= (o) = (anh;k ® k:nk>k . € (HRK)y.

S

Pick € > 0, and choose N such that ) sp, < €. Then

n>N
N
lim 7w(7, — o >lim7r<7‘—§ spht . QK )—e
bid (k k) i k 1n n,k n,k
n=

> ]lim inf {W(Tk —v):v € F(H, K),rank(v) < N} —€

—U

:,li_%mf{ Zam(m —v):v e F(H, K),rank(v) < N} — €,

m>1

by an application of Proposition @4l Now, for v € F(H, K) with rank(v) < N, it is clear that
am(Te — V) > an4m(7), so that

lim 77(1p —op) > lim(k— Nk —e=1—¢
k—U k—U
As € > 0 and o were arbitrary, we see that 7 is distance 1 (as 7(7) = 1) from the image of .
A standard argument allows us to adapt this proof to the case when U is an arbitrary countably

incomplete ultrafilter on an index set I (compare with the proofs of Theorem 6.3 or Proposition 7.1
in [16]). O

13



The above seems to rely very heavily upon certain special features of Hilbert spaces, as did the
original counter-example due to C.J. Read. It would be interesting to know how (E),&(F'), and
(E®QF )y relate for other classes of Banach spaces.

For the following, we refer the reader to [16], Section 9], where Heinrich gives a description of
when (£);; has the approximation property. In particular, the following are equivalent: (£, has
the approximation property for all ¢; E has the uniform approzimation property; (E)y has the
approximation property for some non-principal U on a countable index set. Notice that, by [16],
Theorem 3.3], (LP(v))y has the approximation property for any measure v, 1 < p < oo, and any
Uu.

Proposition 4.7. Let E and F be Banach spaces such that F is super-reflexive. Let U be an
ultrafilter such that (F')y has the approzimation property. Then g : (E)y®@(F)y — (EQF)y is an
1sometry onto its range.

Proof. As (F) is reflexive and (F");, has the approximation property, we have

A((B)u, (F)u) = (E)u@(F ) = T(E)ys (Flu) = (EY@(F)u-

~

See [32, Section 5.3] for details. As the map (g, ®id : (E)y@(F)y — (E)j,&(F)y is an isometry
onto its range, we see that

I7llx = sup{{7, S)] : S € F((E)u, (F ), ISI <1} (7 € (E)u®(F)u).

In the following, for a Banach space X, we write FIN(X) for the collection of finite-dimensional
subspaces of X. Fix 7 € (E)y @ (F)y. Let 7 =Y 1 y®®@2® andlet N =lin{y® : 1 <k <n} €
FIN((E)u). For each k, let y® = (3;”) and 2 = (o) where [ly® ] = |y || and [|s®]] = |||
for each i. Thus

_ _ (k) (k) S
bo(7) = (7) = (;yi ©:") e (BBF.

Choose € > 0 and let S € F((E)y, (F")y) be such that ||S|| < 1 and |(7,S)| > ||7|l« — €. Let
M = S((E)y) € FIN((F")y) have a basis {z()| ... 2™} where 2 = (xz(k)) € (B), = (E)y for
each k. Following the proof of [16, Proposition 6.2}, let M; = lin{xgk) :1 <k <m} e FIN(F') and
T, : M — M; be defined by Tj(z®) = :ng). Then, for some Iy € U, T; is a (1 + €)-isomorphism for
each i € I.

We can write S = >, u® @ 2® for some (u®)m, C (E);;. Let P=1lin{u® : 1<k <m} e
FIN((E)},). By [16, Theorem 7.3], there exists a (1 + ¢€)-isomorphism onto its range T': P — (E')y
such that

(T(u™),2) = (u",2)  (1<k<mz€eN).

For each k, let T(u®)) = (,ugk)) € (E")y. Then let Q = T(P), let Q; = lin{,ul(k) 1< k<m}e
FIN(E') and let R; : Q — Q; be given by R;(T(u*)) = ,ugk). Again, there exists I; € U such that
R; is a (1 + €)-isomorphism for each i € 7.

Foreachi e IoNI €U, let

Si=Y RI(u") @ T,(e™) = (RT®T)S € F '@ E' = F(F,E),
k=1
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so that ||Si|| < |RANTINTNS| < (1 + €)3. Then we have

<T75>:Z< Z (k) Z(j)>
J=1 j=1 k=1
= Z Z <T(/~L(k)>vy(j)> I = Z hm qu 7yl < Z(k)’ Zi(j)>
j=1 k=1 =1 1
=l 33 (RT(:), 4 (L), 27) = Jim (53,7,
o 7=1 k=1 Lans

As 1) is norm-decreasing, we conclude that
Il — € < lim (S, )] < lim [l () < (L € o(r)]| < (1 + Pl

As € > 0 was arbitrary, we conclude that 1), is an isometry onto its range. O

5 Ultra-amenability

Let A be a Banach algebra and F be a Banach A-bimodule. Then a derivation d : A — F is a
linear map such that d(ab) = a - d(b) + d(a) - b for a,b € A. All the derivations which we shall
consider will be continuous. Let = € E and define 6, : A — E by 0,(a) =a-x — x -a. Then ¢, is
a derivation, termed an inner derivation.

A Banach algebra A is contractible or super-amenable if every derivation from A to a Banach
A-bimodule is inner. A contractible Banach algebra is unital, and it is conjectured that a Banach
algebra A is contractible only when A is finite-dimensional. This is true for C*-algebras (indeed,
for closed subalgebras of B(H) for a Hilbert space H, see [25]) and for B(F) when E has, for
example, the approximation property (see [30, Section 4.1]).

A Banach algebra A is amenable if every derivation from A to a dual Banach A-bimodule is
inner. For example, commutative, unital C*-algebras (that is, C'(K) spaces with pointwise product)
are amenable; group algebras L'(G) are amenable if and only if the locally compact group G is
amenable (see [30] for these and further results).

Let A be a Banach algebra, and turn A®A into a Banach A-bimodule by

a-(b®c)=ab®c, (b®c)-a=bRca (a€ Ab®ce ARA),

and linearity and continuity. Define the product map Ay : A®A — A by Ay(a ® b) = ab. The
following result, due to Johnson, can be found in [30} Section 2.2].

Theorem 5.1. Let A be a Banach algebra. Then A is contractible if and only if there exists a
diagonal 7 € ARA; that is, a -7 =7 -a and A4(T)a = a for each a € A.

Similarly, A is amenable if and only if, for some C > 0, for each ¢ > 0 and aq,...,a, € A,
there exists T € ARA such that ||7||x < C, |la; -7 — T - ail|» < € and ||Aa(T)a; — a;]| < € for
1<t <n.

We shall say that A is C'-amenable if the above holds for the constant C' > 0.

We define a Banach algebra A to be ultra-amenable if every ultrapower of A is amenable. It
would be more natural, in light of terms like “super-reflexive”, to call this super-amenable, but
this term is already used by Runde in [30] for contractible algebras (as “contractible” has multiple
meanings as well!) We see immediately that unital, commutative C*-algebras are ultra-amenable.
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Proposition 5.2. Let A be a Banach algebra, and let T be a closed ideal in A. When A is ultra-
amenable, A/Z is ultra-amenable. If T and A/Z are ultra-amenable, then so is A. Furthermore,
when A is ultra-amenable, T is ultra-amenable if and only if T has a bounded approximate identity.

Proof. Let U be an ultrafilter. Then the quotient map A — A/Z induces a quotient map (A)y —
(A/Z)y, and so (A/T)y is amenable by [30, Corollary 2.3.2]. Indeed, as in the Banach space case
(compare [16, Proposition 6.5]), we can identify (A/Z), with (A)y/(Z)y. Hence if (A/T), and
(Z)y are both amenable, then so is (A)y by [30, Theorem 2.3.10].

As (A)y is amenable and (Z)y is an ideal in (A)y, by [30, Theorem 2.3.7], (Z); is amenable
if and only if it has a bounded approximate identity. By Proposition 2.2] this is equivalent to Z
having a bounded approximate identity, as required. O

5.1 Diagonal-like constructions

Instead of working with the definition of amenability, it is common to work with approzimate or
virtual diagonals; see [30), Chapter 2] (and Theorem [E1] above). In this section, we provide a
similar characterisation of ultra-amenability.

Definition 5.3. Let A be a Banach algebra, and let n > 1. Let S,,(A) be the collection of subsets
of size n of the unit sphere of A.

Let C >0,e>0and n > 1. For A C S, (A), we say that A € D, (A, C,¢) when there exists a
sequence of positive reals (ay) with ), o < C, and such that for each F' € A, we have that there
exists

T:Zak@)kaA@A

k=1
with
la-7—7-allz <€, [[Aa(m)a—al|<e (a€F),

and with ||ag||||bx]] < ax for each k.

Proposition 5.4. Let A be a Banach algebra, let U be an ultrafilter on an index set I, and let
C > 0 be a constant. Then the following are equivalent:

1. (A)y is C-amenable;

2. for each n > 1, each € > 0, and each map v : I — S, (A), there exists a sequence of positive
reals (o), with Zj a; < C, and there exists B € U such that for each @ € B, there exists

T=37,b;®c; € ABA with
la-7—7-alz <€ [[Aa(r)a—all <e  (a€nr(i)),
and with ||b;||||lc;|| < oy for 7 > 1.
3. for each n > 1, each € > 0, and each map v : I — S,(A), there exists A € D, (A, C,¢€) with

v HA) eU.
Proof. By definition, (A); is amenable if and only if there exists C > 0 such that, for each € > 0
and each aV),---  a™ € (A)y, there exists 7 € (A)y®(A)y such that

a® -7 = 0¥ < e Ay, (Ma® —a¥ <e 1<k <n),

and with |7, S C Now we may suppose that the a® are distinct, and, by a perturbation
argument, that a ) 4 a ) for each i € I and j # k, while ||a | = |a®| for each i € I. As we are
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free to vary € > 0, it is enough to consider the case when ||a*)|| = 1 for each k. Thus the choice of
the family {a®) : 1 < k < n} corresponds to a choice of a map v : I — S,,(A), together with some
ordering.

As explained before, 1) : (A)y®(A)y — (ARA)y is both an A-bimodule homomorphism, and
an (A)y-bimodule homomorphism. Furthermore, the following diagram commutes

Ay,

(A)u®(A)y

A

(A Ay

(Au

Thus let ¥ (7) = (7;)ier, so that our conditions upon 7 imply that
(k)

lim [|af -7 =70l <l [Aa(n)e” o <e  (1<E<n).

1—>

By definition, this is so if and only if there exists B € U with
la -7 —7-all. <€ |Aa(m)a—al| <e (1 € Bya € v(7)).

With reference to Proposition A1l we have that (1) implies (2).

Conversely, we simply apply Proposition &1l to build 7 € (A)y®(A)y out of the family (7;),
where the condition upon the (7;) implies that we can work in the image of .

Finally, it is easy to see that (2) and (3) are equivalent. O

Corollary 5.5. Let A be a Banach algebra. If A is contractible, then A is ultra-amenable. If A
is ultra-amenable, A is amenable.

By considering commutative C*-algebras, we see that being contractible is strictly stronger than
being ultra-amenable. We shall see below that being ultra-amenable is also strictly stronger than
being amenable.

Theorem 5.6. Let A be a Banach algebra. The following are equivalent:
1. A is ultra-amenable;

2. there exists a constant C' > 0 such that for every n > 1 and € > 0, there exists a finite
partition S,(A) = Ay U ---U Ay with each A; € D, (A, C|e).
3)

Proof. Suppose that ([2) holds. We shall verify condition (3) of Proposition 5.4 which will show
that (1)) holds. If ¢/ is an ultrafilter on an index set I and v : I — S,,(A) is a map, then it is easily
checked that

T (U) = {AC Su(A) : 77(A) € U}

is an ultrafilter on S, (A). Thus there exists some k with A, € v*(U), that is, 7 }(A) € U, as
required.

Suppose that (1) holds. We first introduce a little notation. For an ultrafilter ¢4 on an index
set I, for a property p of elements of I, we write

Vi, p(i) < {iel:p(i) holds } €U.

For each n > 1, let U,, be an ultrafilter on S, (A). For each n, define an arbitrary injection
tn @ Sp(A) — S,11(A). Let I be the collection of sequences (F,,) where F,, € S,(A) for each
n, and for some N > 0 (depending on the sequence), we have that F,.1 = 1,(F,) for n > N.
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Loosely speaking, I is the collection of eventually constant sequences in J, S,(A). Let U be a
non-principal ultrafilter on /. We define an ultrafilter V on I by setting K € V if and only if
VZ,{n, VZ,{lFl, VZ,{ Frm (F17F27"' 7Fn7Fn7'”) € K.

n

It is an easy check that V is an ultrafilter. Suppose that (A)y is C-amenable for some constant
C>0.

Let n > 1, and define a map v : I — S,(A) by v((Fy)) = F, for (F}) € I. Hence by
Proposition [5.4], for each € > 0, there exists A € D, (A, C,¢€) with v71(A4) € V. By the definition
of V, this means that

Yum, Yoy, Fi, - Yy

m

Fm, ’}/(Fl,Fg,"' ,Fm,Fm,"'> EA.
Hence, for some m > n, by the definition of v, we see that
VZ/{1F1> "'\V/MmFma Fn €A>

that is, Vi, F,,, F,, € A, which is simply the statement that A € U,,. In conclusion, for each n > 1
and € > 0, there exists some member of D, (A, C,¢€) in U,.

If condition (2) does not hold, then for some n > 1 and € > 0, we have that there is no finite
cover of S,(A) by members of D,,(A,C,¢). In particular, if F = {S,,(A)\ A: A€ D,(A,C,¢e)}
then, as no finite intersection of members of F is empty, there exists an ultrafilter U, containing
F. However, by the previous paragraph, we know that U, N D,,(A, C, €) is non-empty, which gives
a contradiction, as required. O

5.2 (Cr*-algebras

By throwing a lot of machinery at the problem, we can rather easily settle the question of when a
C*-algebra is ultra-amenable. In [20], there is a throwaway comment in the proof of Theorem 2.5
that, for a C*-algebra A, every ultrapower (A); is amenable if and only if /*°(.A, I) is amenable for
all index sets I. We do not see why this is “obvious” however, as in general (A);, is much smaller
than ¢°(A, I). The following proof avoids this issue, and uses no more machinery than [20] does.

Theorem 5.7. Let A be a C*-algebra. Then the following are equivalent:
1. A is ultra-amenable;
2. A" is amenable;

3. A is the finite-direct sum of algebras of the form Cy(K) ® M, for some integer n and some
locally compact Hausdorff space K.

Proof. By [30, Corollary 6.4.28] and [30, Corollary 6.4.29], we have that when a C*-algebra is
amenable, it has the (metric) approximation property. Hence, if () holds, then for any ultrafilter
U, we have that (A); has the approximation property. For a suitable choice of U, we have that 4"
is isometric to a complemented subspace of (A)y (see [16, Proposition 6.7]). As the approximation
property clearly drops to complemented subspaces, we conclude that A” has the approximation
property. By [30, Theorem 6.1.7] and [30, Remark 6.1.9], this implies that A" is amenable, giving

When (2)) holds, by [30, Theorem 6.1.7], we know that .4” has the form specified in (3]), but with
K compact, and such that Cy(K) = C(K) is a dual space (so that K is actually a hyperstonian
space). Suppose that A” were isomorphic to C'(K) for some hyperstonian compact space X. Then
A is commutative, and so is isomorphic to Cy(L), for some locally compact space L. Then note
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that the bidual of Cy(L) ® M, is isomorphic to C(K) ® M, which is isomorphic to A”. It is now
clear that A must be isomorphic to Cy(L) ® M, showing (3)).
Finally, when (3] holds, it is clear that 4 is ultra-amenable, giving (). O

It seems unlikely that (1) and (2) are equivalent for a general Banach algebra A, but we do
not currently have a counter-example. It would, of course, be nice to be able to prove the above
without using so much machinery, even for certain classes of C*-algebra.

5.3 Group algebras

Let G be a locally compact group, and form the Banach algebra L'(G). See [3] Section 3.3] or [22]
Section 1.9], for example, for details about this class of algebras. We shall make use of the concept
of the almost periodic, or Bohr, compactification for a group GG. However, it makes sense for us to
develop these ideas first for general Banach algebras.

Above, for a Banach algebra A, we defined the space of weakly almost periodic functionals of
A, denoted by WAP(A’). If we insist that the map L,, for p € A,

L,:A—- A a—a-p (a € A),

is compact, and not just weakly-compact, we arrive at the definition of an almost periodic func-
tional, denoted by p € AP(A’). Clearly AP(A’) C WAP(A'), and it is easy to show that AP(A’)
is a closed submodule of A’.
Let A be a Banach algebra, and let U be an ultrafilter. Then we can define
oar : (Au = AP(AY, (oar((@)), ) = lim (pai) (€ AP(A), (a:) € (Au)-
It is clear that oap is norm-decreasing, and for suitable U, oap is a surjection (compare [16, Propo-
sition 6.7]). As remarked upon in [7, Section 5], oap is easily seen to be an algebra homomorphism.

Proposition 5.8. Let A be an ultra-amenable Banach algebra. Then AP(A’) is amenable.

Proof. This is immediate, as AP(A")’ can be identified with a quotient of a suitable ultrapower of

A. O

We note that for some algebras A, AP(A’) can be trivial. For example, let £ be an infinite
dimensional Banach space, and let A = A(F) be the algebra of approximable operators on E.
Then the dual of A(F) is Z(E"), then space of integral operators on E. For U € Z(E'), T € A(F)
and p® z € A(E), we see that

(@) -UT)=UTper) = {UpeT() = Up),T() = (U ,T).

Let U € Z(E') be non-zero, and choose u € E" with ||u|| = 1 and such that A = U(u) is non-zero.
Define a map Ry : E — Z(E') by Ry(x) = A®x, so that R, is an isomorphism onto its range. We
hence have that (u® x) - U = Ry (x) for each x € E. As

[(S-U:ScAB),ISI<1} 2 {Uwee:acE |2 <1} = {Raa) : o]l < 1},

we see if U € AP(A’), then R, is compact, which implies that E is finite-dimensional, a contra-
diction. We conclude that AP(A’) = {0}.
When A = L'(G), however, AP(A’) is often large. We write AP(G) for AP(A). For g € G
define
Ly I¥(G) = L¥(G): L) = u(g™h)  (ne L¥(G).h e q).
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When G is discrete, we see that for y € L, the set {a - p : a € £1(G), |la|| < 1} is contained in
the closure of the absolutely convex hull of the set {L (i) : ¢ € G}. Hence p € AP(G) if and
only if the set of translates {L,(i) : g € G} is relatively compact in L*>°(G). By a more intricate
argument, we can show that this is true for general G' (compare with the argument in [33]).

For more details on AP(G), see for example [22] Section 3.2.16] and [23, Theorem 12.4.15]. We
have that AP(G) is a unital C*-subalgebra of L*(G), so that AP(G) = C'(K), for some compact
space K. We denote K by GAP| so that AP(A’) = M(G"P), the space of measures on GAF.
Each member of G induces a character on AP(G), and this leads to a canonical map G — GAF
which has dense range. We can use this to extend the product on G to a product on GAT, which
turns GAY into a compact group. We can check that the induced product on AP(A’)" agrees with
the convolution product on M(G*F). In fact, GAT has the following universal property. If H is
any compact group, and ¢ : G — H is a continuous homomorphism, then ¢ factors through to
canonical map G — GAT. In this sense, GAT is the maximal compact group which contains a dense
homomorphic image of G.

In general, the canonical map G — GAF need not be an injection. When it is, equivalently,
when AP(G) separates the points of G, we say that G is mazimally almost periodic. Obviously all
compact groups are maximally almost periodic, and abelian groups G are also maximally almost
periodic, which follows as the characters of G separate the points of G. At the other extreme, if
AP(G) is the linear span of the constant function in L>(G), then G is minimally almost periodic.
This is equivalent to the statement that the only continuous homomorphisms from G to a compact
group are trivial.

There exist amenable, minimally almost periodic groups, as the following example, due to
George Willis, shows. Let FSym(N) be the collection of permutations of the natural numbers
which fix all but finitely many elements. Let G = Alt(N) be the index 2 subgroup of even
permutations. The Alt(N) is a simple group (see [13l Corollary 3.3A]) and as it is the direct
limit of finite groups, it is amenable. Suppose that AP(G) is not trivial, so that G admits some
non-trivial homomorphism into a compact group. By the representation theory of compact groups
(essentially, the Peter-Weil theorem), it follows that there is a non-trivial homomorphism of G into
a matrix group GL,(C). As G is simple, such a homomorphism is injective. By a theorem of Tits
(see [24, Theorem 3.10]) it follows that G contains a normal, solvable group of finite index. This
is a contraction, and so we see that AP(G) is trivial.

Theorem 5.9. Let G an infinite compact group, or an infinite abelian locally compact group. Then
LY(G) is amenable, but not ultra-amenable.

Proof. Tt is well know that for such groups G, L'(G) is amenable. Suppose that L'(G) is ultra-
amenable, so by the above proposition, we see that M(GAT) is amenable. By [5], this implies that
GAP is amenable and discrete, but as GAT is compact, we have that GAT is finite. However, we

remarked above that GG is maximally periodic, and so we see that G is also finite, a contradiction.
O

5.4 Discrete Group algebras

We wish to develop a little theory for discrete group algebras. This will motivate some technical and
obtuse constructions below, which will work for many non-compact group. Let G be a discrete
group, and consider the Banach algebra ¢!(G). We write §, for the point mass at g € G, so
every a € £'(G) can be written as a = ) . a0, for some family of scalars (a,)4eq such that
lall = 3=, lag|- Let U be an ultrafilter on an index set I, so we can form the ultrapower (£'(G))y.
We can also form the ultrapower of G, denoted by (G)y. This is the set of all families (g;);e; of
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elements of GG, quotiented by the equivalence relation
(g5) ~(hy) & {iel:g=h}eU.

Then (G)y becomes a (discrete) group for the pointwise product, and we have a canonical map
G — (G)y formed by sending g € G to the constant family (g).
For 1 < p < oo, define a map ¢, : P((G)y) — (¢P(G))y by

Up(0g) = g )ier (9= (9:) € (Chu).
If (g;) ~ (h;) in (G)y then
{iGIZ ||5gz_591|| :O}Z{ielzgi:hi}EZ/L

showing that 1, is well-defined. An analogous calculation shows that if we extend 1, by linearity
and continuity, then v, is an isometry onto its range. Let ¢y : ¢o((G)u) — (co(G))y be the
analogous map. Then it is easy to check that when 1 < p < oo and p~! 4+ p'~! = 1, then @b;, o,
is the identity on (P((G)y). Similarly ¥ o v is the identity on ¢'((G)y), where as usual, we
treat (¢'(Q@))y as a subspace of (co(G)),,. For 1 < p < oo, we can hence identify /7((G)y) with
a l-complemented subspace of (¢*(G))y. This identification respects the identification of /*(G)
in either ?((G)y) or ((G))y. Let I, be the obvious complementary subspace to F((G)y) in
(0P(G))u, that is, I, is the kernel of ¢, or vy, as appropriate.

Lemma 5.10. We may identify I, with the collection of equivalence classes in (¢P(G))y represented
by sequences (x;)ieny with 1im;_y ||2;]|cc = 0. Furthermore, I, is an ideal in the algebra ((1(G))y.

Proof. Suppose that (z;) € (/?(G))y is such that lim; . ||7;]|s > 0. For each i, let x; = (xé,))geg €
(?(G). Hence there exists 6 > 0 and U € Y with a function k : U — G such that |xk( | > ¢ for
1 € U. Extend k to I in an arbitrary way, so we see that

lin ({69 )] > 6,

and so (x;) does not annihilate (Jx;)) € ¢#((G)y). Hence (x;) & I, as required.
Now suppose that (z;) € (/?(G))y is such that lim; . ||z;||cc = 0. For any map k : I — G, we
see that
; LN < i | —
i [{0y), i) | < i [25]]o = O,

so that (x;) annihilates (Jx¢;)) € #P((G)y). By linearity and continuity, (z;) € I,,, as required.
Finally, consider (x;) € I; and let (a;) € (¢*(@))y, so that

< hmsupZ|ah [E3

hm |la;xi|| o = hm sup ) Zah SL’h 1
Sy

< lim IIxiHooHaiHl =0,
i—U

so that (a;x;) € I;. Hence [; is a left-ideal, and similarly I; is a right-ideal. O

Theorem 5.11. Let G be an infinite discrete group, and let U be a countably incomplete ultrafilter.
Then (0*(GQ))y is not amenable. In particular, (*(G) is not ultra-amenable.

Proof. As U is countably incomplete, we may suppose that U is an ultrafilter on N (compare
with the proofs of Theorem 6.3 or Proposition 7.1 in [16]). Suppose that (¢*(G))y is amenable.
Then [; is a complemented ideal in an amenable Banach algebra, and so I; is amenable (see [30,
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Theorem 2.3.7]). In particular, I; has a bounded approximate identity. We shall show that this
leads to contradiction, as required.

Let H be a countably infinite subgroup of G, and choose a sequence (g,) in H as follows. Let
g1 be arbitrary. Suppose we have chosen ¢y, -- -, g,. Consider the set

B, = (gi)i= U (gigj_lgk)lgi,j,kgn,

which is finite. We simply choose ¢,41 € H \ B,.

Let ec be the unit of G, and let ¢ € H with g # eq. Suppose that g;g = g, for some ¢, 5 > 1.
Let ¢ > 1 be minimal such that, for some m > 1, we have that ¢ = g; 'g,, or ¢ = ¢g-'g;. By
minimality, t < m, and so g;g € B,, for 1 <i < m. Thus g, # g;g, equivalently g # g; 'g,, for any
n >m and i < m. Similarly, g;g~* € B,, for i <m, and so g # g, 'g; for n > m and i < m.

Suppose that ¢ = g; 'gm, and let 7,5 > 1 be such that g = g-'g, and (r,5) # (t,m). If r =t
then g = g; 'gm = g; 'gs so that g,, = g, that is, m = s, a contradiction. Similarly m # s. By
minimality, r,s > t, so actually » > t. By the above, r,s < m, so actually s < m. If r < m
then ¢,g € B,,_1 and so g, # .9, a contradiction. Hence r = m and 80 ¢ = g; "gm = 9:.'Gs, 50
that gs = gmg; "gm, and hence s must be unique. A similar argument works when g = g-'g,. We
conclude that

Hk:zl:gkg:gmforsomemzl}}§2 (g€ H,g # eq).

Set & = X{gpmeny € *(G), so that ||z|| = 1. For each n € N, let

1 n
a, = E Zé‘gl € gl(G),
i=1

so that [|a,||1 = 1. We have that

n

1
(@ - ap, bey) = - Z (x,04,) = 1.

i=1
Now let g € H with g # eg. Then, by the above,
I 1 _ 2
(z - an,0,)] = ﬁz<x,5gig> = E}{l <i<mn:gyg= g for some k > 1}} <
i=1

n

If g € G\ H, then clearly (z,d,,) =0, as g;g € H, for any i > 1. Let a = (a,) € (¢*(G))u, so
clearly a € I, and we see that = - a = e., in ({>°(G))y. Here e, refers to the point mass at eg,
namely the same function as d.., but now treated as a member of ¢o(G) C £*(G).

By assumption, I; has a bounded approximate identity, so in particular, there exists b = (b,) €
I, with ||a — ab|| < 1/2. Hence |(z - a, 0, — b)| = |(x,a — ab)| < 1/2, as ||z||«~ = 1. However, from
the above, (2 - a,dc, — b) = (€cy,0c — b) = 1 —lim;_y (€c,, b;) = 1, as b € I;. This contradiction
completes the proof. O

5.5 General groups

We start by making some observations about quotients of groups.

Proposition 5.12. Let G be a locally compact group such that L'(G) is ultra-amenable, and let
H be a closed normal subgroup of G. If G/H is compact, abelian or discrete, then G/H 1is finite.
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Proof. As detailed in [22 Section 1.9.12], we have a surjective algebra homomorphism L'(G) —
L'(G/H). By Proposition 5.2, we see that L'(G/H) is ultra-amenable. The result now follows
from Theorem and Theorem [5.11] O

In particular, by considering the modular function of the Haar measure on G (see [22 Sec-
tion 1.9] or [3], Section 3.3]), we see that if L'(G) is ultra-amenable, then G is unimodular, as oth-
erwise, a quotient of G would be isomorphic to an infinite subgroup of (R.g, x), which is abelian.
Similarly, if L'(G) is ultra-amenable, then the derived subgroup G’ of G (see [23, Section 12.1])
must be “large”, in the sense that G/G’ is finite.

We now wish to generalise the arguments used above for discrete groups. Let G be a locally
compact group, and let I be an ultrafilter on an index set I. Let I; C (L'(G))y be the collection
of elements z € (L*(G))y such that x has a representation of the form (x;);c; where z; € Cy(G)
for each i, and lim; .y ||7;|lec = 0. Tt is easy to verify that I; is a subspace of (L'(G))y, and as
Co(G) N LY(@G) is dense in L'(G), it follows that I; is closed.

Lemma 5.13. With not