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COMPLETELY POSITIVE DEFINITE FUNCTIONS AND

BOCHNER’S THEOREM FOR LOCALLY COMPACT QUANTUM

GROUPS

MATTHEW DAWS AND PEKKA SALMI

Abstract. We prove two versions of Bochner’s theorem for locally compact
quantum groups. First, every completely positive definite “function” on a
locally compact quantum group G arises as a transform of a positive func-

tional on the universal C*-algebra Cu
0

(Ĝ) of the dual quantum group. Second,
when G is coamenable, complete positive definiteness may be replaced with
the weaker notion of positive definiteness, which models the classical notion.
A counterexample is given to show that the latter result is not true in general.
To prove these results, we show two auxiliary results of independent interest:
products are linearly dense in L1

♯ (G), and when G is coamenable, the Banach

∗-algebra L1

♯ (G) has a contractive bounded approximate identity.

Keywords: Quantum group, positive definite function, Bochner’s Therorem.
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1. Introduction

Bochner’s theorem (as generalised by Weil) tells us that any positive definite
function on a locally compact abelian group G is the Fourier–Stieltjes transform
of a positive measure on the dual group Ĝ. In non-abelian harmonic analysis, we
can replace the algebra C0(Ĝ) by the group C∗-algebra C∗(G), and hence replace

positive measures on Ĝ by positive functionals on C∗(G). Viewing C∗(G)∗ as
B(G), the Fourier–Stieltjes algebra, Bochner’s theorem essentially says that positive
definitive functions are precisely the positive elements of B(G) (this viewpoint is
taken in [14, Définition 2.2]).

For a locally compact quantum group G, we replace functions on groups by ele-
ments of von Neumann (or C∗-) algebras, which come equipped with extra structure
reminiscent of an algebra which really arises from a group. GivenG, we can form the
universal dual algebraCu

0 (Ĝ), which generalises the passage fromG to the full group

C∗-algebra C∗(G) (see the next section for further details on Cu
0 (Ĝ) and so forth).

Letting W ∈ M(C0(G)⊗Cu
0 (Ĝ)) be the maximal unitary corepresentation of G, we

have an algebra homomorphism Cu
0 (Ĝ)∗ → M(C0(G)) ⊆ L∞(G); µ̂ 7→ (id⊗µ̂)(W∗).

In the commutative case, the image is precisely the Fourier–Stieltjes algebra (we
remark that it is slightly a matter of convention if one uses W or W∗ here). Moti-
vated by this, there are perhaps two obvious notions for what a “positive definite”
element of L∞(G) should be; here we introduce some of our own terminology:

(1) A positive definite function is x ∈ L∞(G) with 〈x∗, ω ⋆ ω♯〉 ≥ 0 for all ω ∈
L1
♯ (G).
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(2) A Fourier–Stieltjes transform of a positive measure is x ∈ L∞(G) such that

there exists µ̂ ∈ Cu
0 (Ĝ)∗+ with x = (id⊗ µ̂)(W∗).

It seems that definition (2) is a better fit with the current literature, although the
term “positive definite function” is not commonly used in this context (for exam-

ples where positive functionals in µ̂ ∈ Cu
0 (Ĝ)∗+, or their transforms, are used in

place of positive definite functions (from the classical case), see [17] which stud-
ies Markov operators, [4, Section 4] and [3] which study various approximation
properties for von Neumann algebras over quantum groups, or [24] and [25] which
study property (T ) for quantum groups; the latter reference actually uses the term
“positive definite function” in an offhand way). Definition (1) is the most natural
as it directly generalises the notion of a positive definite function on L1(G), see
for example [11, Theorem 13.4.5]. This definition is rather briefly studied for Kac
algebras in [13, Section 1.3]; however, it is mainly (2), in various guises, which is
used in [13]. Indeed, we show in Example 17 below that even in the cocommutative
case, definition (1) is problematic without some sort of amenability assumption – to
be precise, that G is coamenable. Even when G is coamenable, we are required to
deal with the unbounded antipode S, and our techniques are necessarily different
from those used for Kac algebras. We remark that it is easy to see that always
(2) =⇒ (1), see Lemma 1 below.

Definition (2) applied in the cocommutative case suggests that a “positive defi-
nite” element of VN (G) should come from a positive measure in M(G) = C0(G)∗ =
ML1(G), the multiplier algebra of L1(G). On the dual side, De Cannière and
Haagerup showed in [10] that completely positive multipliers of A(G) coincide with
positive definite functions on G. This suggests the following notions:

(3) A completely positive multiplier is x ∈ L∞(G) such that there exists a com-

pletely positive left multiplier Lx : L
1(Ĝ) → L1(Ĝ) with xλ̂(ω̂) = λ̂(Lx(ω̂)) for

every ω̂ ∈ L1(Ĝ). Here λ̂ denotes the map ω̂ 7→ (id ⊗ ω̂)(W ∗) = (ω̂ ⊗ id)(Ŵ )

where W ∈ M(C0(G)⊗ C0(Ĝ)) is the left multiplicative unitary of G.
(4) A completely positive definite function is x ∈ L∞(G) such that there exists a

normal completely positive map Φ: B(L2(G)) → B(L2(G)) with

〈x∗, ωξ,α ⋆ ω♯
η,β〉 = (Φ(θξ,η)β | α)

for every ξ, η ∈ D(P 1/2) and α, β ∈ D(P−1/2). Here P is a densely defined,
positive, injective operator on L2(G) implementing the scaling group of G.

The first named author showed in [7] that (3) and (2) are equivalent notions, and
that they imply (4). We note that while (2) is the notion mostly adopted in the
literature (see above), it is actually the map Lx (or its adjoint) which is of interest
(the point being that the implication (2) =⇒ (3) is very easy to establish). Let
us motivate (4) a little more. The unbounded involution ♯ on L1(G) is given by
ω♯ = ω∗ ◦S, where this is bounded. Normal completely positive maps on B(L2(G))
biject with the positive part of the extended (or weak∗) Haagerup tensor product

B(L2(G))
eh
⊗ B(L2(G)) (see [2, 12]), where a⊗ b is associated to Φ with

Φ(θ) = aθb ⇔ (Φ(θξ,η)β | α) = 〈a, ωξ,α〉〈b, ωβ,η〉.

Hence (4) is equivalent to the existence of a positive u ∈ B(L2(G))
eh
⊗B(L2(G)) with

〈∆(x∗), ω1 ⊗ ω∗
2 ◦ S〉 = 〈u, ω1 ⊗ ω∗

2〉.
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Hence, informally, this is equivalent to (id ⊗ S)∆(x∗) being a positive member of

B(L2(G))
eh
⊗ B(L2(G)). In the commutative case, x∗ = F ∈ L∞(G) say, and this

says that the function (s, t) 7→ F (st−1) is, in some sense, a “positive kernel”, i.e.
that F is positive definite. So (4) says that x∗ defines a non-commutative, positive
definite kernel.

We remark that as the “inverse” operator onG (the antipode S) and the adjoint ∗
on L∞(G) do not commute, we have to be a little careful about using x or x∗ in
the above definitions.

The principle results of this paper are:

• For any G, we have that (4) is equivalent to (3) and hence equivalent to
(2).

• When G is coamenable (as is true in the commutative case!) all four con-
ditions are equivalent.

Both these results may be interpreted as versions of Bochner’s theorem for locally
compact quantum groups. When given a condition like (1) the obvious thing to try
is a GNS construction, in this case applied to the ∗-algebra L1

♯ (G). In general, this
algebra does not have an approximate identity, so we first show in Section 3 that
products are always linearly dense in L1

♯ (G), which enables a suitable GNS con-
struction. In Section 4 we apply this, together with techniques similar to those used
in [7] to show that (4) =⇒ (3). One can take as a definition that G is coamenable if
and only if L1(G) has a bounded approximate identity. In Section 5 we show that
in this case, also L1

♯ (G) has a (contractive) approximate identity. Indeed, we prove
a slightly more general statement, adapting ideas of J. Kustermans, A. Van Daele
and J. Verding from [19] (we wish to approximate the counit ǫ, which is invariant
for the scaling group, and it is this invariance which is key; the argument in [19] is
for multiplier algebras of C∗-algebras and modular automorphism groups, and to
our mind, works because the unit of M(A) is invariant for the modular automor-
phism group). We suspect that the ideas of Sections 3 and 5 will prove to be useful
in other contexts. In Section 6 we apply this to condition (1). In the final section
we consider n-positive multipliers.

2. Preliminaries

Throughout the paper G denotes a locally compact quantum group [21, 22,
23]. Its comultiplication ∆ is implemented by the left multiplicative unitary W ∈
B(L2(G)⊗ L2(G)):

∆(x) = W ∗(1⊗ x)W (x ∈ L∞(G)).

The reduced C*-algebra C0(G) is the norm closure of

{ (id⊗ ω)W : ω ∈ B(L2(G))∗ }.
On the other hand, the norm closure of

{ (ω ⊗ id)W : ω ∈ B(L2(G))∗ }
gives the reduced C*-algebra C0(Ĝ) of the dual quantum group Ĝ. The left mul-

tiplicative unitary of the dual quantum group is just Ŵ = σW ∗σ where σ is the
flip map on L2(G) ⊗ L2(G). The associated von Neumann algebras L∞(G) and

L∞(Ĝ) are the weak∗-closures of the respective C*-algebras C0(G) and C0(Ĝ).
The predual L1(G) of L∞(G) is a Banach algebra under the convolution product
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ω ⋆ τ = (ω ⊗ τ)∆. Given ξ, η ∈ L2(G), let ωξ,η ∈ L1(G) be the normal functional
x 7→ (xξ | η). As L∞(G) is in standard position on L2(G), every member of L1(G)
arises in this way.

The scaling group (τt) of G is implemented by a positive, injective, densely de-
fined operator P on L2(G): we have τt(x) = P itxP−it. Then the antipode S of G
has a polar decomposition S = Rτ−i/2, where R is the unitary antipode. In partic-
ular ∆R = (R⊗R)σ∆, where σ denotes the flip map, now on L∞(G)⊗L∞(G).

We follow [20, Section 3] to define the ∗-algebra L1
♯ (G). Recall that ω ∈ L1(G)

is a member of L1
♯ (G) if and only if there exists ω♯ ∈ L1(G) such that

〈x, ω♯〉 = 〈S(x)∗, ω〉 (x ∈ D(S))

where D(S) denotes the domain of S. Then L1
♯ (G) is a dense subalgebra of L1(G).

The natural norm of L1
♯ (G) is ‖ω‖♯ = max(‖ω‖, ‖ω♯‖), and with ♯ as the involution,

L1
♯(G) is a Banach ∗-algebra. For ω ∈ L1(G), let ω∗ ∈ L1(G) be the functional

〈x, ω∗〉 = 〈x∗, ω〉. Thus ω ∈ L1
♯ (G) if and only if w∗ ◦ S is bounded. Notice that

as ∆ is a ∗-homomorphism, the map ω 7→ ω∗ is an anti-linear homomorphism on
L1(G), while ω 7→ ω♯ is an anti-linear anti-homomorphism on L1

♯ (G).

The universal C*-algebra Cu
0 (Ĝ) associated to Ĝ is the universal C*-comple-

tion of L1
♯ (G) (see [20] for details). The natural map (i.e. the universal repre-

sentation) λu : L
1
♯ (G) → Cu

0 (Ĝ) is implemented as λu(ω) = (ω ⊗ id)(W) where

W ∈ M(C0(G) ⊗ Cu
0 (Ĝ)) is the maximal unitary corepresentation of G (which is

denoted by V̂ in [20, Proposition 4.2]).

Lemma 1. Let x = (id⊗ µ̂)(W∗) for some µ̂ ∈ Cu
0 (Ĝ)∗+. Then 〈x∗, ω ⋆ ω♯〉 ≥ 0 for

every ω ∈ L1
♯ (G).

Proof. Simply note that

〈x∗, ω ⋆ ω♯〉 = 〈(∆⊗ id)W , ω ⊗ ω♯ ⊗ µ̂〉 = 〈W13W23, ω ⊗ ω♯ ⊗ µ̂〉
= 〈µ̂, λu(ω)λu(ω

♯)〉 = 〈µ̂, λu(ω)λu(ω)
∗〉 ≥ 0,

as required. �

Similarly to [18], we say that x ∈ M(C0(G)) is a left multiplier of L1(Ĝ) if

xλ̂(ω̂) ∈ λ̂
(
L1(Ĝ)

)
whenever ω̂ ∈ L1(Ĝ),

where

λ̂ : C0(Ĝ)∗ → M(C0(G)), λ̂(µ̂) = (µ̂⊗ id)(Ŵ ) = (id⊗ µ̂)(W ∗).

In this case we can define Lx : L
1(Ĝ) → L1(Ĝ) by

λ̂(Lx(ω̂)) = xλ̂(ω̂)

because λ̂ is injective. We see immediately that Lx is a left multiplier (often termed
a “left centraliser” in the literature) in the usual sense, that is, Lx(ω̂ ⋆τ̂) = Lx(ω̂)⋆τ̂

for every ω̂, τ̂ ∈ L1(Ĝ). The following lemma is shown for Kac algebras in [18], but
since we need the (short) argument once more, we include a proof.

Lemma 2. Let x ∈ M(C0(G)) be a left multiplier of L1(Ĝ). Then Lx : L
1(Ĝ) →

L1(Ĝ) is bounded.
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Proof. We apply the closed graph theorem. Suppose that ω̂n → ω̂ and Lx(ω̂n) → τ̂

in L1(Ĝ). Then

‖λ̂(Lx(ω̂))− λ̂(τ̂ )‖ ≤ ‖xλ̂(ω̂)− xλ̂(ω̂n)‖+ ‖λ̂(Lx(ω̂n))− λ̂(τ̂ )‖
≤ ‖x‖‖ω̂ − ω̂n‖+ ‖Lx(ω̂n)− τ̂‖ → 0

as n → ∞. Since λ̂ is injective, we have Lx(ω̂) = τ̂ and by the closed graph theorem,
Lx is bounded. �

We say that x ∈ M(C0(G)) is an n-positive multiplier if it is a left multiplier

of L1(G) and the map L∗
x : L

∞(Ĝ) → L∞(Ĝ) is n-positive. We shall consider n-
positive multipliers more carefully in Section 7, but the main interest of the paper
shall be the completely positive multipliers: that is, x ∈ M(C0(G)) that are n-
positive multipliers for every n ∈ N. When x is a completely positive multiplier,
L∗
x extends to a normal, completely positive map Φ: B(L2(G)) → B(L2(G)) (see

[16, Proposition 4.3] or [7, Proposition 3.3]). Moreover, by [7, Proposition 6.1],

〈x∗, ωξ,α ⋆ ω♯
η,β〉 = (Φ(θξ,η)β | α)

for every ξ, η ∈ D(P 1/2) and α, β ∈ D(P−1/2), so x is completely positive definite.
We shall prove the converse in Section 4, but first we need a bit of groundwork.

The following is similar to known results about cores for analytic generators
(compare [29, Theorem X.49] for example) but we give the short proof for com-
pleteness. Let us just remark that as S = Rτ−i/2 and τt(x) = P itxP−it for all t,

the functional ωξ,α is in L1
♯ (G) whenever ξ ∈ D(P 1/2) and α ∈ D(P−1/2), and in

this case ω♯
ξ,α = R∗(ωP−1/2α,P 1/2ξ) = ωĴP 1/2ξ,ĴP−1/2α; see [7, Section 6].

Lemma 3. The set

D = {ωξ,α : ξ ∈ D(P 1/2), α ∈ D(P−1/2) }
is dense in L1

♯(G) with respect to its natural norm (i.e. D is a core for ω 7→ ω♯).

Proof. For ω ∈ L1(G), r > 0, define

ω(r) =
r√
π

∫ ∞

−∞

e−r2t2ω ◦ τt dt.

See also Section 5 below. Since the modular group (τt) is implemented by P , it
follows that D is invariant under (τt). On the other hand, since R commutes with
(τt) and S = Rτ−i/2, we have (ω ◦ τt)

♯ = ω♯ ◦ τt for every ω ∈ L1
♯ (G), and so

t 7→ ω ◦τt is continuous with respect to the norm of L1
♯(G). Consequently, if ω ∈ D,

then ω(r) is in the L1
♯(G)-closure of D for every r > 0.

Given ω ∈ L1
♯ (G), there exists (ωn) ⊆ D such that ωn → ω in L1(G), because

L∞(G) is in standard form on L2(G) and the domains of P 1/2 and P−1/2 are dense
in L2(G). By the beginning of the proof, ωn(r) is in the L1

♯ (G)-closure of D. A
simple calculation shows that

‖ω(r)− ωn(r)‖♯ ≤ er
2/4‖ω − ωn‖,

and so ω(r) is in the L1
♯ (G)-closure of D. As r → ∞, we have ω(r) → ω and

ω(r)♯ = ω♯(r) → ω♯ (since ω ∈ L1
♯ (G)). Therefore ω is in the L1

♯ (G)-closure of D,
as claimed. �
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3. Density of products in L1
♯(G)

The main result of this section is that, in analogy to L1(G), the convolution
products are linearly dense in L1

♯ (G) with respect to its natural norm. We shall

prove this result based on two (closely related) lemmas, the first of which is from
[5, Proposition A.1].

Lemma 4. Let x, y ∈ L∞(G) satisfy 〈y, ω♯〉 = 〈x∗, ω∗〉 for all ω ∈ L1
♯ (G). Then

y ∈ D(S) and S(y) = x∗.

Lemma 5. Let x, y ∈ L∞(G) satisfy 〈y, (ω1 ⋆ ω2)
♯〉 = 〈x∗, ω∗

1 ⋆ ω
∗
2〉 for all ω1, ω2 ∈

L1
♯(G). Then y ∈ D(S) with S(y) = x∗.

Proof. For n ∈ N define the smear

y(n) =
n√
π

∫ ∞

−∞

e−n2t2τt(y) dt

where (τt) is the scaling group. Define x(n) similarly using x∗.
As R commutes with (τt) and S = Rτ−i/2, it follows that ω

♯ ◦ τt = (ω ◦ τt)♯ for

ω ∈ L1
♯(G). Using that ∆ ◦ τt = (τt ⊗ τt) ◦∆ we find that for ω1, ω2 ∈ L1

♯ (G)

〈∆(y(n)), ω♯
2 ⊗ ω♯

1〉 =
n√
π

∫ ∞

−∞

e−n2t2〈∆(τt(y)), ω
♯
2 ⊗ ω♯

1〉 dt

=
n√
π

∫ ∞

−∞

e−n2t2〈∆(y), (ω2 ◦ τt)♯ ⊗ (ω1 ◦ τt)♯〉 dt

=
n√
π

∫ ∞

−∞

e−n2t2〈∆(x∗), (ω1 ◦ τt)∗ ⊗ (ω2 ◦ τt)∗〉 dt

= 〈∆(x(n)), ω∗
1 ⊗ ω∗

2〉.
As y(n) ∈ D(S) the von Neumann algebraic version of [23, Lemma 5.25] shows that

〈∆(y(n)), ω♯
2 ⊗ ω♯

1〉 = 〈∆(S(y(n))), ω∗
1 ⊗ ω∗

2〉.
Thus ∆(S(y(n))) = ∆(x(n)), and as ∆ is injective, S(y(n)) = x(n). Now y(n) → y
in the σ-weak topology, and x(n) → x∗. As S is a σ-weakly closed operator, it
follows that y ∈ D(S) with S(y) = x∗, as required. �

Theorem 6. Let G be a locally compact quantum group. Then the set {ω ⋆ τ :
ω, τ ∈ L1

♯ (G) } is linearly dense in L1
♯ (G) in its natural norm.

Proof. For a Banach space E, let E be the conjugate space to E. For x ∈ E let

x ∈ E be the image of x, so x + y = x+ y and tx = tx for x, y ∈ E, t ∈ C. We

identify (E)∗ with E∗ via 〈µ, x〉 = 〈µ, x〉.
Then the map

L1
♯ (G) → L1(G)⊕∞ L1(G), ω 7→ (ω, ω♯)

is a linear isometry. Thus the adjoint L∞(G) ⊕1 L∞(G) → L1
♯ (G)∗ is a quotient

map. So any member of L1
♯ (G)∗ is induced by a pair (x, y) with x, y ∈ L∞(G), and

the dual pairing is

〈(x, y), ω〉 = 〈x, ω〉+ 〈y, ω♯〉 = 〈x, ω〉+ 〈y, ω♯〉.
Firstly, (x, y) = 0 if and only if 〈−x∗, ω∗〉 = 〈y, ω♯〉 for all ω ∈ L1

♯(G) if and only

if, by Lemma 4, y ∈ D(S) with S(y) = −x∗.
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Now let (x, y) annihilate all elements of the form ω ⋆ τ , with ω, τ ∈ L1
♯ (G). Then

0 = 〈x, ω ⋆ τ 〉+ 〈y, τ ♯ ⋆ ω♯〉 =⇒ 〈−x∗, ω∗ ⋆ τ∗〉 = 〈y, τ ♯ ⋆ ω♯〉.
By Lemma 5, y ∈ D(S) with S(y) = −x∗. That is, (x, y) = 0. So by the Hahn–
Banach theorem, the result follows. �

4. Completely positive definite functions

The definition of completely positive definite functions on a locally compact
quantum group G was proposed by the first named author in [7], and in this section
we show that, as conjectured in [7], such elements are precisely the completely
positive multipliers. This result may be viewed as a version of Bochner’s theorem
because the completely positive multipliers are known by [7] to be of the form

(id⊗ µ̂)(W∗), with µ̂ ∈ Cu
0 (Ĝ)∗+.

We begin with a preliminary result, also of independent interest.

Proposition 7. Let x ∈ L∞(G) be completely positive definite. Then x∗ ∈ D(S)
and S(x∗) = x.

Proof. For every ξ, η ∈ D(P 1/2) and α, β ∈ D(P−1/2)

〈x∗, ωξ,α ⋆ ω♯
η,β〉 = 〈Φ(θξ,η), ωβ,α〉 = 〈Φ(θ∗ξ,η), ω∗

β,α〉 = 〈Φ(θη,ξ), ωα,β〉

= 〈x∗, ωη,β ⋆ ω♯
ξ,α〉 = 〈x, ω∗

η,β ⋆ ω♯∗
ξ,α〉 = 〈x, (ωξ,α ⋆ ω♯

η,β)
♯∗〉.

It follows from Theorem 6 and Lemma 3 that

〈x∗, ω〉 = 〈x, ω♯∗〉
for every ω ∈ L1

♯ (G). Then it follows from Lemma 4 that x∗ ∈ D(S) and S(x∗) =
x. �

The following lemma shows that a GNS-type construction works for positive
definite functions. Compare with [11, Proposition 2.4.4], but note that L1

♯ (G) does
not necessarily have a bounded approximate identity, the lack of which is remedied
by the density of products in L1

♯ (G) (Theorem 6).

Lemma 8. Let x ∈ L∞(G) be positive definite. Then

(ω | τ) = 〈x∗, τ ♯ ⋆ ω〉
defines a pre-inner-product on L1

♯ (G); let Λ: L1
♯ (G) → H be the associated map to

the Hilbert space H obtained by completion. Then,

π(ω)Λ(τ) = Λ(ω ⋆ τ)

defines a non-degenerate ∗-representation π of L1
♯ (G) on H.

Proof. Such GNS-type results are usually stated for algebras with an approximate
identity (see for example [6, Section 3.1] or [11, Section 2.4]) so for completeness, we
give the details in this slightly more general setting. When x ∈ L∞(G) is positive
definite,

(ω | τ) = 〈x∗, τ ♯ ⋆ ω〉.
defines a positive sesquilinear form on L1

♯(G). As in the statement, let H be the

Hilbert space completion of L1
♯ (G)/N , where N denotes the associated null space,
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and let Λ: L1
♯(G) → H be the map taking ω ∈ L1

♯(G) to the image of ω +N in H .
We are left to show that

π(ω)Λ(τ) = Λ(ω ⋆ τ)

defines a non-degenerate ∗-representation of L1
♯ (G) on H . If we can show that π(ω)

is well-defined and bounded, then it follows easily that π is a ∗-homomorphism.
Let r denote the spectral radius on L1

♯ (G). By [6, Corollary 3.1.6],

‖π(ω)Λ(τ)‖2 = 〈x∗, τ ♯ ⋆ ω♯ ⋆ ω ⋆ τ 〉 ≤ r(ω♯ ⋆ ω)〈x∗, τ ♯ ⋆ τ 〉 = r(ω♯ ⋆ ω)‖Λ(τ)‖2.
This shows that π(ω) maps N to N and hence is well-defined. Moreover, we see
that π(ω) defines a bounded operator on H .

Finally, since L1
♯(G) is the closed linear span of L1

♯ (G) ⋆ L1
♯ (G) by Theorem 6

and Λ is continuous, the ∗-representation π is non-degenerate. �

Theorem 9. An element x ∈ L∞(G) is completely positive definite if and only if it
is a completely positive multiplier. In particular, every completely positive definite
x ∈ L∞(G) is in M(C0(G)).

Proof. As already noted, the “if” part is proved in [7], so we let x ∈ L∞(G)
be completely positive definite. Let Φ: B(L2(G)) → B(L2(G)) be the associated
completely positive map such that

〈x∗, ωξ,α ⋆ ω♯
η,β〉 = (Φ(θξ,η)β | α)

whenever ξ, η ∈ D(P 1/2) and α, β ∈ D(P−1/2). Then Φ has a Stinespring dilation
of the form

Φ(θ) = V ∗(θ ⊗ 1)V (θ ∈ B0(L
2(G))),

where V : L2(G) → L2(G)⊗K is a bounded map for some Hilbert space K (see [7,
Section 5] for details). Letting (ei) be an orthonormal basis of K, we can define a
family (ai) in B(L2(G)) with

∑
i a

∗
i ai < ∞ such that

V ξ =
∑

i

aiξ ⊗ ei

and hence

Φ(θ) =
∑

i

a∗i θai.

We may also take the Stinespring dilation to be minimal so that

{ (θ ⊗ id)V ξ : ξ ∈ L2(G), θ ∈ B0(L
2(G)) }

is linearly dense in L2(G)⊗K. This is equivalent to vectors of the form
∑

i

〈ai, ω〉η ⊗ ei (ω ∈ B(L2(G))∗, η ∈ L2(G))

being linearly dense; equivalently that vectors of the form
∑

i〈ai, ω〉ei are dense in
K as ω ∈ B(L2(G))∗ varies.

Let (Λ, π,H) be the GNS construction for x from Lemma 8. Then, for ξ, η ∈
D(P 1/2) and α, β ∈ D(P−1/2),

(
Λ(ω♯

ξ,α)
∣∣ Λ(ω♯

η,β)
)
H

= 〈x∗, ωη,β ⋆ ω♯
ξ,α〉 = (Φ(θη,ξ)α | β)

=
∑

i

(ai(α) | ξ)(ai(β) | η).



COMPLETELY POSITIVE DEFINITE FUNCTIONS AND BOCHNER’S THEOREM 9

Let q : B(L2(G))∗ → L1(G) be the quotient map. Since the functionals of the form

ω♯
ξ,α are dense in L1

♯ (G) by Lemma 3, it follows that there is an isometry

v : H → K; Λ(q(ω)♯) 7→
∑

i

〈ai, ω∗〉ei (ω ∈ B(L2(G))∗, q(ω) ∈ L1
♯ (G))

(note that ‖∑i〈ai, ω∗〉ei‖2 ≤ ∑
i |〈ai, ω∗〉|2 ≤ ‖ω‖2‖∑i a

∗
i ai‖). As we have a

minimal Stinespring dilation, v has dense range and is hence unitary. A corollary
of v even being well-defined is that for each i and each ω ∈ B(L2(G))∗, the value
of 〈ai, ω〉 depends only on the value q(ω). Hence ai ∈ L∞(G) for each i.

Consider now the non-degenerate ∗-representation of L1
♯ (G) on K given by

vπ(·)v∗. By Kustermans [20, Corollary 4.3], there is an associated unitary corep-
resentation U of G; so U ∈ L∞(G)⊗B(K) and vπ(ω)v∗ = (ω ⊗ id)(U). As U is a
unitary corepresentation, we know that (ω♯⊗id)(U) = (ω⊗id)(U)∗ = (ω∗⊗id)(U∗).
If ω∗ ∈ L1

♯ (G), it follows that (ω ⊗ id)(U∗) = vπ(ω∗♯)v∗, and thus

(
U∗

(
ξ ⊗

∑

i

〈ai, ω〉ei
) ∣∣∣ α⊗ ej

)
=

(
(ωξ,α ⊗ id)(U∗)

∑

i

〈ai, ω〉ei
∣∣∣ ej

)

=
(
vπ(ω♯

α,ξ)v
∗
∑

i

〈ai, ω〉ei
∣∣∣ ej

)
=

(
vπ(ω♯

α,ξ)Λ(ω
∗♯)

∣∣∣ ej
)

=
(
vΛ(ω♯

α,ξ ⋆ ω
∗♯)

∣∣ ej
)
= 〈aj , (ω∗ ⋆ ωα,ξ)

∗〉 = 〈aj , ω ⋆ ωξ,α〉

=
(∑

i

(ω ⊗ id)∆(ai)ξ ⊗ ei

∣∣∣ α⊗ ej

)

whenever ξ ∈ D(P 1/2), α ∈ D(P−1/2). As an aside, we note that this is precisely
the way in which U∗ is defined in [7, Proposition 5.2]. Thus, perhaps as expected, if
x comes from a completely positive multiplier, then the two approaches to forming
representations agree.

Since U is unitary, we have, for every ξ, η ∈ D(P 1/2) and ω1, ω2 ∈ L1
♯ (G)∗,

(ξ | η)
∑

i

〈ai, ω1〉〈ai, ω2〉 =
(
U∗

(
ξ ⊗

∑

i

〈ai, ω1〉ei
) ∣∣∣ U∗

(
η ⊗

∑

i

〈ai, ω2〉ei
))

=
(∑

i

(ω1 ⊗ id)∆(ai)ξ ⊗ ei

∣∣∣
∑

i

(ω2 ⊗ id)∆(ai)η ⊗ ei

)

=
∑

i

(
(ω2 ⊗ id)∆(ai)

∗(ω1 ⊗ id)∆(ai)ξ
∣∣ η

)
.

It follows that

∑

i

〈a∗i ⊗ ai ⊗ 1, ω∗
2 ⊗ ω1 ⊗ ωξ,η〉 =

∑

i

〈∆(a∗i )13∆(ai)23, ω
∗
2 ⊗ ω1 ⊗ ωξ,η〉.

As this holds for a dense collection of ω1, ω2, ξ, η it follows that

∑

i

a∗i ⊗ ai ⊗ 1 =
∑

i

∆(a∗i )13∆(ai)23
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(recall that
∑

i a
∗
i ai < ∞ so the sums on both sides do converge σ-weakly.). Then,

for θξ,η ∈ B0(L
2(G)) and α, β ∈ L2(G),

(Φ(θξ,η)β | α)1 =
∑

i

(a∗i θξ,ηaiβ | α)1 =
∑

i

(a∗i ξ | α)(aiβ | η)1

=
∑

i

(ωξ,α ⊗ ωβ,η ⊗ id)(a∗i ⊗ ai ⊗ 1)

=
∑

i

(ωξ,α ⊗ ωβ,η ⊗ id)∆(a∗i )13∆(ai)23

=
∑

i

(ωξ,α ⊗ id)∆(a∗i )(ωβ,η ⊗ id)∆(ai)

=
∑

i

(ωβ,α ⊗ id)
(
∆(a∗i )(θξ,η ⊗ 1)∆(ai)

)
.

It follows that

Φ(θ)⊗ 1 =
∑

i

∆(a∗i )(θ ⊗ 1)∆(ai) (θ ∈ B0(L
2(G))).

By normality, and using that ∆(·) = W ∗(1⊗ ·)W , we see that for y ∈ B(L2(G)),

Φ(y)⊗ 1 =
∑

i

W ∗(1⊗ a∗i )W (y ⊗ 1)W ∗(1⊗ ai)W

and hence

1⊗ Φ(y) =
∑

i

Ŵ (a∗i ⊗ 1)Ŵ ∗(1 ⊗ y)Ŵ (ai ⊗ 1)Ŵ ∗

= Ŵ
(
(Φ⊗ id)(Ŵ ∗(1⊗ y)Ŵ )

)
Ŵ ∗.

(1)

In particular, for x̂ ∈ L∞(Ĝ),

Ŵ ∗(1⊗ Φ(x̂))Ŵ = (Φ⊗ id)∆̂(x̂).

Now, the left-hand-side is a member of L∞(Ĝ)⊗B(L2(G)), and the right-hand-side

is a member of B(L2(G))⊗L∞(Ĝ), and so both sides are really in L∞(Ĝ)⊗L∞(Ĝ)
(by taking bicommutants for example). Then

(Φ⊗ id)
(
∆̂(x̂)(1⊗ ŷ)

)
=

(
(Φ⊗ id)∆̂(x̂)

)
(1 ⊗ ŷ) ∈ L∞(Ĝ)⊗L∞(Ĝ),

and so, as { ∆̂(x̂)(1 ⊗ ŷ) : x̂, ŷ ∈ L∞(Ĝ) } is a σ-weakly, linearly dense subset of

L∞(Ĝ)⊗L∞(Ĝ), it follows that Φ maps L∞(Ĝ) to L∞(Ĝ). (We remark that

the fact that { ∆̂(x̂)(1⊗ ŷ) : x̂, ŷ ∈ L∞(Ĝ) } is linearly σ-weakly dense is shown
directly in the remark after [32, Proposition 1.21]. One can prove this by noting
that D(S) is σ-weakly dense, and then using the von Neumann algebraic version of
the characterisation of S given by [23, Corollary 5.34].)

Let L be the restriction of Φ to L∞(Ĝ). Then the calculation above shows that

∆̂L = (L⊗ id)∆̂,

and so L is the adjoint of a completely positive left multiplier on L1(Ĝ). Comparing
(1) with [7, Proposition 3.3] we see that Φ coincides with the extension of L used
in [7, 16]. In particular, by [7, Propositions 3.2] there is x0 ∈ M(C0(G)) such that

(x0 ⊗ 1)W ∗ = (id⊗ L)(W ∗) = (id⊗ Φ)(W ∗).
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Equivalently,

x0 ⊗ 1 =
∑

i

(1⊗ a∗i )∆(ai).

Moreover, by [7, Proposition 6.1], x0 satisfies

〈x0, ωα,η ⋆ ω
♯∗
ξ,β〉 = (Φ(θξ,η)α | β) = 〈x∗, ωξ,β ⋆ ω♯

η,α〉 = 〈S(x∗), ωα,η ⋆ ω
♯∗
ξ,β〉

for every ξ, η ∈ D(P 1/2) and α, β ∈ D(P−1/2) because x∗ ∈ D(S) and S(x∗) = x
by Proposition 7. It follows, by density of such ξ, η, α, β, that x0 = x. In particular,
x is a completely positive multiplier. �

Two immediate corollaries of the proof are the following.

Corollary 10. Let x be completely positive definite, this being witnessed by the

completely positive map Φ. Then Φ restricted to L∞(Ĝ) is the adjoint of a com-

pletely bounded left multiplier L of L1(Ĝ), and Φ is the canonical extension of L∗.

Corollary 11. Let x be positive definite, with GNS construction (H,Λ, π), and let
(fi) be an orthonormal basis of H. Suppose there is a dense subset D ⊆ L1

♯(G) and

a family (ai) in B(L2(G)) with (Λ(ω♯) | fi)H = 〈ai, ω∗〉 for all ω ∈ D and all i. If∑
i a

∗
i ai < ∞, then x is a completely positive multiplier.

Supposing that L1
♯ (G) is separable, the Gram–Schmidt process allows us to find

an orthonormal basis of the form fi = Λ(τi) for some sequence (τi) ⊆ L1
♯ (G). Then

(fi | Λ(ω♯))H = 〈x∗, ω ⋆ τi〉 = 〈(id ⊗ τi)∆(x∗), ω〉,
and so we may set a∗i = τi ⋆ x

∗ := (id⊗ τi)∆(x∗). Thus the existence of (ai) is not
the key fact; rather whether

∑
i a

∗
i ai converges is the key issue. Below we shall see

that when G is coamenable, this is automatic, while Example 17 shows that the
condition does not always hold.

5. Bounded approximate identity for L1
♯ (G)

To prove an analogue of Bochner’s theorem for coamenable locally compact quan-
tum groups, we shall need a bounded approximate identity for L1

♯ (G). In this section

we show that when G is coamenable, L1
♯(G) has a bounded approximate identity in

its natural norm – in fact a contractive one. (The converse is obviously true.) The
proof is inspired by Propositions 2.25 and 2.26 in Kustermans’s paper [19], where
the proof of the latter proposition is credited to A. Van Daele and J. Verding. We
prove a more general fact which is inspired by the underlying idea in the proof (as
we see it).

For ω ∈ L1(G), z ∈ C and r > 0, let

ω(r, z) =
r√
π

∫ ∞

−∞

e−r2(t−z)2ω ◦ τt dt.

The integral converges in norm, as the function t 7→ ω ◦ τt is norm-continuous. A
little calculation, and some complex analysis, shows that

ω(r, z) ∈ L1
♯ (G), ω(r, z)♯ = ω∗(r, z − i/2) ◦R.

See [21, Section 5] for example. Notice that

‖ω(r, z)♯‖ ≤ r√
π

∫ ∞

−∞

∣∣e−r2(t−z+i/2)2
∣∣ ‖ω‖ dt = er

2(ℑ(z)−1/2)2‖ω‖.(2)
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By analogy with the definition of L1
♯(G), define M♯(G) to be the collection of

those µ ∈ M(G) such that there is µ♯ ∈ M(G) with

〈µ, S(a)∗〉 = 〈µ♯, a〉 (a ∈ D(S) ⊆ C0(G)).

As S ◦ ∗ ◦S ◦ ∗ = id, it is easy to show that µ 7→ µ♯ defines an involution on M♯(G).
Set ‖µ‖♯ = max(‖µ‖, ‖µ♯‖) for µ ∈ M♯(G).

In the next theorem, we look at µ ∈ M(G) such that µ ◦ τt = µ for all t. Then
the constant function F : C → M(G); z 7→ µ is holomorphic and satisfies that
F (t) = µ ◦ τt for all t ∈ R. Hence µ is invariant for the analytic continuation of the
group (τt). In particular, µ ∈ M♯(G) and µ♯ = µ∗ ◦R.

Theorem 12. Let µ ∈ M(G) with µ ◦ τt = µ for all t. There is a net (ωα) in
L1
♯(G) such that ‖ωα‖♯ ≤ ‖µ‖ for all α, and for every x ∈ M(C0(G)),

〈ωα, x〉 → 〈µ, x〉 and 〈ω♯
α, x〉 → 〈µ♯, x〉 = 〈µ,R(x)∗〉.

Proof. Assume without loss of generality that ‖µ‖ = 1. Let F be the collection of
finite subsets of M(C0(G)), and turn Λ = F × N into a directed set for the order
(F1, n1) ≤ (F2, n2) if and only if F1 ⊆ F2 and n1 ≤ n2. For each α = (F, n) ∈ Λ

choose r > 0 so that 1− e−r2/4 < 1/n. Choose N so that

(3)
r√
π

∫ −N

−∞

e−r2t2 dt =
r√
π

∫ ∞

N

e−r2t2 dt ≤ 1

n
.

By the Cohen Factorisation Theorem, there are a ∈ C0(G) and ν ∈ C0(G)∗ such
that ‖a‖ ≤ 1, ‖µ− ν‖ ≤ 1/n and µ = νa, where νa(b) = ν(ab) for b ∈ C0(G) (see,
for example, [27, Proposition A2]). By the Hahn–Banach and Goldstine Theorems,
we can find a net (σi)i∈I in L1(G) converging weak∗ to ν in M(G), and with
‖σi‖ ≤ ‖ν‖ for each i.

As the interval [−N,N ] is compact and the map t 7→ aτt(x) is norm continuous
for any x ∈ F (since t 7→ τt(x) is strictly continuous), it follows that we can find
i ∈ I with

(4)
∣∣〈µ, τt(x)〉 − 〈σia, τt(x)〉

∣∣ =
∣∣〈ν, aτt(x)〉 − 〈σi, aτt(x)〉

∣∣ ≤ ‖x‖
n

whenever t ∈ [−N,N ] and x ∈ F . Set

ωα =
e−r2/4

1 + 1
n

(σia)(r, 0).

Since ‖σia‖ ≤ ‖ν‖ ≤ (1 + 1/n)‖µ‖, we have ‖ωα‖ ≤ e−r2/4‖µ‖ ≤ 1 and also
‖ω♯

α‖ ≤ 1 by (2).
Now given ǫ > 0 and x ∈ M(C0(G)), choose α0 = (F, n0) such that {x,R(x)∗} ⊆

F and n0 ≥ 1 + 7‖x‖/ǫ. Since µ ◦ τt = µ for all t, we have for every α ≥ α0 that

∣∣〈µ, x〉 − 〈ωα, x〉
∣∣ =

∣∣∣
r√
π

∫ ∞

−∞

e−r2t2
(
〈µ, τt(x)〉 −

e−r2/4

1 + 1
n

〈σia, τt(x)〉
)
dt
∣∣∣

≤ 4‖x‖
n

+
r√
π

∫ N

−N

e−r2t2
∣∣〈µ, τt(x)〉 − 〈σia, τt(x)〉

∣∣ dt

+
r√
π

∫ N

−N

e−r2t2
(
1− e−r2/4

1 + 1
n

)
|〈σia, τt(x)〉| dt

(5)
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by (3). Now
(
1− e−r2/4

1 + 1
n

)
|〈σia, τt(x)〉| ≤ (1 +

1

n
− e−r2/4)‖x‖ ≤ 2‖x‖

n

by the choice of r. Continuing from (5) and applying also (4), we have

∣∣〈µ, x〉 − 〈ωα, x〉
∣∣ ≤ 4‖x‖

n
+

‖x‖
n

+
2‖x‖
n

< ǫ.

Now consider µ♯ = µ∗ ◦ R. Using the extension of µ to a strictly continuous
functional on M(C0(G)), we can form µ(r, z) by an integral which converges weakly
when measured against elements in M(C0(G)). As µ ◦ τt = µ for all t, it follows
that µ(r, 0) = µ, and so

µ♯ = µ(r, 0)♯ = µ∗(r,−i/2) ◦R =
r√
π

∫ ∞

−∞

e−r2(t+i/2)2µ∗ ◦ τt ◦R dt.

Thus, by a similar calculation to the above,
∣∣〈µ♯, x〉 − 〈ω♯

α, x〉
∣∣

=
∣∣∣
r√
π

∫ ∞

−∞

e−r2(t+i/2)2
(
〈µ, τt(R(x)∗)〉 − e−r2/4

1 + 1
n

〈σia, τt(R(x)∗)〉
)
dt
∣∣∣

≤ 4‖x‖
n

er
2/4 +

r√
π

∫ N

−N

e−r2t2er
2/4

∣∣〈µ, τt(R(x)∗)〉 − 〈σia, τt(R(x)∗)〉
∣∣ dt

+
r√
π

∫ N

−N

e−r2t2er
2/4

(
1− e−r2/4

1 + 1
n

)
|〈σia, τt(R(x)∗)〉| dt

≤ 7‖x‖
n

er
2/4 ≤ 7‖x‖

n− 1
< ǫ.

Hence ω♯
α → µ♯ weak∗ in M(C0(G))∗. �

We remark that a standard technique would allow us, in the case when C0(G) is
separable, to replace the net (ωα) by a sequence in the above.

Theorem 13. Let G be coamenable. Then L1
♯ (G) has a contractive approximate

identity, in its natural norm.

Proof. Recall that G is coamenable if and only if there is a state ǫ ∈ M(G) with
(id ⊗ ǫ)∆ = (ǫ ⊗ id)∆ = id; see [1, Section 3]. It is easy to see that ǫ must be
unique. For each t, as τt is a ∗-homomorphism which intertwines the coproduct, it
follows by uniqueness that ǫ◦τt = ǫ. As above, then ǫ ∈ M♯(G) with ǫ♯ = ǫ∗ ◦R = ǫ
(again by uniqueness). Thus we can apply the previous theorem to find a net (ωα)
in L1

♯ (G) such that ‖ωα‖♯ ≤ 1 for every α, and for every x ∈ M(C0(G)),

〈ωα, x〉 → 〈ǫ, x〉 and 〈ω♯
α, x〉 → 〈ǫ, x〉.

Now for every ω ∈ L1(G) and y ∈ L∞(G)

〈ωα ⋆ ω, y〉 = 〈ωα, (id⊗ ω)∆(y)〉 → 〈ǫ, (id⊗ ω)∆(y)〉
because (id ⊗ ω)∆(y) ∈ M(C0(G)) (see [31, Lemma 5.2] or [30, Theorem 2.3]).
Indeed, asW ∈ M

(
C0(G)⊗K(L2(G))

)
, where K(L2(G)) is the collection of compact

operators on L2(G), we see that

∆(y) = W ∗(1 ⊗ y)W ∈ M
(
C0(G)⊗K(L2(G))

)
∩ L∞(G)⊗L∞(G),
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thinking of both algebras concretely acting on L2(G) ⊗ L2(G). In particular, if
τ ∈ K(L2(G))∗ is any functional which, when restricted to L∞(G), agrees with ω,
then

(id⊗ ω)∆(y) = (id⊗ τ)(W ∗(1⊗ y)W ) ∈ M(C0(G)).

Moreover, arguing using the strict topology, for ω1, ω2 ∈ L1(G),

〈ǫ, (id⊗ (ω1 ⋆ ω2))∆(y)〉 = 〈ǫ, (id⊗ ω1)∆((id⊗ ω2)∆(y))〉
= 〈ǫ ⋆ ω1, (id⊗ ω2)∆(y)〉 = 〈ω1 ⋆ ω2, y〉,

and as convolutions are linearly dense in L1(G) (due to ∆ being injective), we have

〈ǫ, (id⊗ ω)∆(y)〉 = 〈ω, y〉.
So ωα ⋆ ω → ω weakly, and similarly ω ⋆ ωα → ω, ω♯

α ⋆ ω → ω and ω ⋆ ω♯
α → ω,

all in the weak topology. Now we apply a standard convexity argument to obtain a
contractive approximate identity in L1

♯ (G). We give a short sketch of the argument;

for more details, see for example Day [9, pages 523–524]. First, we obtain a bounded
left approximate identity (τβ) consisting of convex combinations of elements in (ωα).
Since the convex combinations are taken from elements further and further along
the net (ωα), we have ω ⋆ τβ → ω weakly. Thus we can iterate the construction and
obtain a two-sided approximate identity (σγ), still consisting of convex combinations
of elements in (ωα). Repeating this process twice more, we obtain a net (eδ) such

that both (eδ) and (e♯δ) are a two-sided approximate identities in L1(G). Then (eδ)
is a contractive approximate identity in L1

♯(G) since for example

‖eδ ⋆ ω − ω‖♯ = max(‖eδ ⋆ ω − ω‖, ‖ω♯ ⋆ e♯δ − ω♯‖) → 0

for every ω ∈ L1
♯ (G). �

Proposition 14. Let G be coamenable. For any µ ∈ M♯(G), there is a net (ωα)
in L1

♯ (G) which converges weak∗ to µ in M(G), and with ‖ωα‖♯ ≤ ‖µ‖♯ for all α.

Proof. Let (τα) be a contractive approximate identity in L1
♯(G). We know from

[23, pages 913–914] that L1(G) is a two-sided ideal in M(G). Thus we can set
ωα = µ ⋆ τα, and we have that (ωα) is a net in L1(G), bounded by ‖µ‖. As
µ ∈ M♯(G) and τα ∈ L1

♯ (G), it is easy to see that ωα ∈ L1
♯ (G) with ω♯

α = τ ♯α ⋆ µ♯,

and so ‖ω♯
α‖ ≤ ‖µ♯‖.

For a ∈ C0(G) and λ ∈ M(G), both (λ⊗ id)∆(a) and (id⊗λ)∆(a) are members
of C0(G) (since λ = λ′b for some λ′ ∈ M(G), b ∈ C0(G) and both (b⊗ 1)∆(a) and
(1⊗ b)∆(a) are in C0(G)⊗ C0(G)). Hence for a ∈ C0(G),

lim
α
〈ωα, a〉 = lim

α
〈τα, (µ⊗ id)∆(a)〉 = 〈ǫ, (µ⊗ id)∆(a)〉 = 〈µ, a〉,

as required. �

We do not see why the conclusions of this proposition require that G be coa-
menable; however, a proof in the general case has eluded us.

6. Bochner’s theorem in the coamenable case

The following is an analogue of Bochner’s theorem for coamenable locally com-
pact quantum groups.
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Theorem 15. Suppose that G is a coamenable locally compact quantum group.
Then x ∈ L∞(G) is positive definite if and only if there is a positive functional

µ̂ ∈ Cu
0 (Ĝ)∗ such that x = (id⊗ µ̂)(W∗).

Proof. As we have already noted that the converse holds, we only need to show
that a positive definite x ∈ L∞(G) is of the form (id⊗ µ̂)(W∗).

Let (Λ, H, π) be as in Lemma 8, applied to x. By Theorem 13, there is a con-
tractive approximate identity (eα) in L1

♯ (G). As ‖Λ(eα)‖ ≤ ‖x‖1/2 for all α, the net
Λ(eα) clusters weakly at some ξ ∈ H . Observe that then π(ω)ξ = Λ(ω) for every
ω ∈ L1

♯(G).

Define µ̂ ∈ Cu
0 (G)∗+ by µ̂ ◦ λu = ωξ,ξ ◦ π where λu : L

1
♯ (G) → Cu

0 (Ĝ) is the

universal representation defined by λu(ω) = (ω ⊗ id)(W). Then µ̂ is well-defined
because λu is injective and bounded due to the universality of λu. Moreover, for
every ω ∈ L1

♯ (G),

〈(id⊗ µ̂)(W∗)∗, ω〉 = 〈µ̂, λu(ω)〉 = (π(ω)ξ | ξ) = (Λ(ω) | ξ) = 〈x∗, ω〉.
�

Remark 16. An alternative (and much less direct) way to prove this result is to
use Corollary 11. Indeed, as π(ω)ξ = Λ(ω), and by [20] there is a unitary corepre-
sentation U such that π(ω) = (ω ⊗ id)(U), it follows that (Λ(ω♯) | fi) = (π(ω)∗ξ |
fi) = (ξ | (ω ⊗ id)(U)fi) = 〈a∗i , ω〉 with a∗i = (id ⊗ ωfi,ξ)(U). However, then∑

i a
∗
i ai =

∑
i(id ⊗ ωfi,ξ)(U)(id ⊗ ωξ,fi)(U

∗) = (id ⊗ ωξ,ξ)(UU∗) = ‖ξ‖2 < ∞, as
required to invoke Corollary 11.

The following example shows that without coamenability, positive definiteness
is not enough for a Bochner type representation.

Example 17. Let F2 be the free group on two generators and let G be the dual of F2

(so that L∞(G) = VN (F2), the group von Neumann algebra, and L1(G) = L1
♯ (G) =

A(F2), the Fourier algebra). There exists an infinite subset E ⊆ F2 such that the
map given by restriction of functions induces a surjection θ : A(F2) → ℓ2(E), see
[26, equation (2.1)]. The adjoint θ∗ : ℓ2(E) → VN (F2) is hence an isomorphism
onto its range. Let x′ ∈ ℓ2(E) and set x = θ∗(x′). As the involution on A(F2) is
pointwise conjugation of functions, it follows that x is positive definite if and only
if x′ is pointwise non-negative.

For a, b ∈ A(F2), we have that

(Λ(a) | Λ(b))H = 〈x, b♯ ⋆ a〉 = 〈x′, θ(b♯)θ(a)〉 =
∑

s∈E

x′(s)a(s)b(s).

It follows that we have an isomorphism

H → ℓ2(E); Λ(a) 7→
(
a(s)x′(s)1/2

)
s∈E

.

The action π of A(F2) on H ∼= ℓ2(E) is just multiplication of functions. It follows
that the set of coefficient functionals of π is precisely ℓ1(E), and we can hence
recover x if and only if x′ ∈ ℓ1(E) ⊆ ℓ2(E). This immediately tells us that the
method of the proof of Theorem 15 fails for any x′ ∈ ℓ2(E) \ ℓ1(E).

Furthermore, we claim that there is no (positive) functional in Cu
0 (Ĝ)∗ = ℓ1(F2)

which gives a Bochner type representation for such x (arising from x′ ∈ ℓ2(E) \
ℓ1(E)). Indeed, suppose towards a contradiction that µ̂ ∈ ℓ1(F2) is such that x =
(id⊗ µ̂)(W∗) (i.e. that x is the “Fourier–Stieltjes transform of a positive measure”
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µ̂). In this setting Cu
0 (Ĝ) = C0(Ĝ) = c0(F2) and W∗ = W ∗ ∈ B(ℓ2(F2)⊗ ℓ2(F2)) is

the operator

W ∗(es ⊗ et) = ets ⊗ et,

where (et)t∈F2
is the canonical orthonormal basis of ℓ2(F2). Let a = ωξ,η ∈ A(F2)

where ξ = (ξs), η = (ηt) are in ℓ2(F2). Then

〈x, a〉 =
(
x(ξ)

∣∣ η
)
=

∑

t

µ̂t

(
W ∗(ξ ⊗ et)

∣∣ η ⊗ et
)

=
∑

t,s,r

µ̂tξsηr
(
W ∗(es ⊗ et)

∣∣ er ⊗ et
)
=

∑

t,s

µ̂tξsηts =
∑

t,r

µ̂tξt−1rηr.

On the other hand, if we view A(F2) as a space of functions on F2 via the embedding
A(F2) → c0(F2);ωξ,η 7→ (ωξ,η ⊗ id)(W ) then that x = θ∗(x′) means that

〈x, a〉 =
∑

t∈E

x′(t)〈(ωξ,η ⊗ id)(W ), ωet,et〉

=
∑

t∈E

∑

s∈F2

x′(s)ξsηt−1s =
∑

t∈E

∑

r∈F2

x′(s)ξtrηr.

If this is true for all ξ, η, it follows that µ̂t = x′(t−1) for all t−1 ∈ E and µ̂t = 0
otherwise, which is a contradiction, as x′ ∈ ℓ2(E) \ ℓ1(E). (We remark that [14]
uses the embedding A(F2) → c0(F2);ωξ,η 7→ (ωξ,η ⊗ id)(W ∗) but this also leads to
exactly the same contradiction.)

7. n-positive multipliers

The main result of this section is a characterisation of n-positive multipliers
on coamenable locally compact quantum groups. The proof relies on Bochner’s
theorem from the previous section. The present section is inspired by the work of
De Cannière and Haagerup [10], and the results are extensions of theirs concerning
the commutative case when G = G is a locally compact group.

Recall that

λ̂ : C0(Ĝ)∗ → M(C0(G)), λ̂(µ̂) = (µ̂⊗ id)(Ŵ ) = (id⊗ µ̂)(W ∗).

The one-sided universal analogue of this is

λ̂u : Cu
0 (Ĝ)∗ → M(C0(G)), λ̂u(µ̂) = (id⊗ µ̂)(W∗).

Lemma 18. Let x ∈ M(C0(G)) be such that xλ̂(ω̂) ∈ λ̂u
(
Cu

0 (Ĝ)∗
)
for every ω̂ ∈

L1(Ĝ). Then x is a left multiplier of L1(Ĝ).

Proof. Let π̂ : Cu
0 (Ĝ) → C0(Ĝ) denote the canonical quotient map. Note that

λ̂(ω̂) = λ̂u(ω̂ ◦ π̂) for every ω̂ ∈ L1(Ĝ). Define L̃x : L
1(Ĝ) → Cu

0 (Ĝ)∗ by

λ̂u(L̃x(ω̂)) = xλ̂(ω̂).

Since λ̂u is injective (because left slices of W∗ are dense in Cu
0 (Ĝ)) L̃x is well-

defined. The proof of Lemma 2 also works in this universal setting, and so L̃x is
bounded.

By hypothesis, for ω̂, τ̂ ∈ L1(Ĝ),

xλ̂(ω̂ ⋆ τ̂ ) =
(
xλ̂(ω̂)

)
λ̂(τ̂ ) ∈ λ̂

(
L1(Ĝ)

)
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because L1(Ĝ) ◦ π̂ is an ideal in Cu
0 (Ĝ)∗, see for example [8, Proposition 8.3].

Since convolution products are linearly dense in L1(Ĝ), the above shows that for

every ω̂ ∈ L1(Ĝ) there is a sequence (ω̂n) ⊆ L1(Ĝ) such that ω̂n → ω̂ in norm

and xλ̂(ω̂n) ∈ λ̂
(
L1(Ĝ)

)
. Since L̃x is bounded, L̃x(ω̂n) → L̃x(ω̂) in Cu

0 (Ĝ)∗. As

π̂ is a metric surjection, L1(Ĝ) ◦ π̂ is isometrically isomorphic to L1(Ĝ), and so

L̃x(ω̂) ∈ L1(Ĝ) ◦ π̂. Hence xλ̂(ω̂) ∈ λ̂
(
L1(Ĝ)

)
as claimed. �

The following result extends Proposition 4.3 of [10].

Proposition 19. Suppose that G is coamenable. The following are equivalent for
x ∈ M(C0(G))

(1) x is an n-positive multiplier
(2) for every (αi)

n
i=1 ∈ L2(G)n and (ωi)

n
i=1 ∈ L1

♯ (G)n

〈
x∗,

n∑

i,j=0

(ωj ⋆ ω
♯
i ) · λ̂(ωαj ,αi)

∗

〉
≥ 0.

Here · denotes the action of L∞(G) on L1(G).

Proof. Suppose that x is an n-positive multiplier. Let (ωi)
n
i=1 ∈ L1

♯ (G)n, and note

that [λ(ωi ⋆ ω
♯
j)] ≥ 0 in Mn(C0(Ĝ)) ⊆ B(L2(G)n). Since L∗

x is n-positive, we have

for every (αi)
n
i=1 ∈ L2(G)n

0 ≤
n∑

i,j=1

(L∗
x((λ(ωi ⋆ ω

♯
j)))αj | αi) =

n∑

i,j=1

〈λ(ωi ⋆ ω
♯
j), Lx(ωαj ,αi)〉

=
n∑

i,j=1

(
(ωi ⋆ ω

♯
j)⊗ Lx(ωαj ,αi)

)
(W ) =

n∑

i,j=1

(
(ωi ⋆ ω

♯
j)

♯∗ ⊗ Lx(ωαj ,αi)
)
(W ∗)

=

n∑

i,j=1

〈λ̂
(
Lx(ωαj ,αi)

)
, (ωj ⋆ ω

♯
i )

∗〉 =
n∑

i,j=1

〈xλ̂
(
ωαj,αi

)
, (ωj ⋆ ω

♯
i )

∗〉

=
〈
x∗,

n∑

i,j=0

(ωj ⋆ ω
♯
i) · λ̂(ωαj ,αi)

∗

〉
,

where we used the fact that S
(
(id ⊗ τ)(W )) = (id ⊗ τ)(W ∗) for τ ∈ B(L2(G))∗.

The calculation shows that (2) holds.

Conversely, suppose that (2) holds. For every x ∈ Mn(L
∞(Ĝ))+, there is a net

(aα) ∈ Mn(C0(Ĝ))+ converging weak* to x, and by [28, Lemma 3.13], every aα is a

sum of n matrices of the form [bib
∗
j ]

n
i,j=1 with (bi)

n
i=1 ∈ C0(Ĝ)n. Hence the density

of L1
♯ (G) in L1(G) implies that the linear span of matrices of the form [λ(ωi ⋆ ω

♯
j)]

with (ωi)
n
i=1 ∈ L1

♯(G)n is weak*-dense in Mn(L
∞(Ĝ))+. Therefore the calculation

in the first part of the proof shows that Lx is n-positive, assuming that x is a

left multiplier of L1(Ĝ). We shall show that x is indeed a multiplier by applying

Lemma 18. For α ∈ L2(G), write ωα = ωα,α. Since x is 1-positive, each xλ̂(ωα) is

positive definite. Hence, by Theorem 15, xλ̂(ωα) ∈ λ̂u(C
u
0 (Ĝ)∗). But since L1(Ĝ)

is spanned by elements of the form ωα, an application of Lemma 18 implies that x

is a left multiplier of L1(Ĝ). �

The following result extends Corollary 4.4 of [10].
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Proposition 20. Suppose that Ĝ is coamenable. Every n-positive multiplier x ∈
M(C0(G)) is positive definite.

Proof. Since x is, in particular, a 1-positive multiplier,
〈
x∗, (ω ⋆ ω♯) · λ̂(ωα)

∗

〉
≥ 0

for every α ∈ L2(G) and ω ∈ L1
♯ (G) (by Proposition 19; this part does not rely on

coamenability). That is, xλ̂(ωα) is positive definite. By coamenability of Ĝ, there
exists a net (αi) of unit vectors in L2(G) such that

‖W ∗(ξ ⊗ αi)− (ξ ⊗ αi)‖ → 0

for every ξ ∈ L2(G) ([1, Theorem 3.1], recall that Ŵ = σW ∗σ). For every ξ, η ∈
L2(G), we have

|〈λ̂(ωαi), ωξ,η〉 − 〈1, ωξ,η〉| = |(W ∗(ξ ⊗ αi)− (ξ ⊗ αi) | η ⊗ αi)|,
and so λ̂(ωαi) → 1 weak* in L∞(G). Since xλ̂(ωαi) is positive definite and positive
definiteness is preserved by weak* limits, it follows that x is positive definite. �

Corollary 21. Suppose that both G and Ĝ are coamenable. Then the following are
equivalent for x ∈ M(C0(G)).

(1) x is positive definite.
(2) x is an n-positive multiplier for some natural number n.
(3) x is completely positive definite.

Even without the assumptions on coamenability, a completely positive definite
function is always positive definite and an n-positive multiplier. However, we have
the following counterexamples:

• Example 17 shows that, in general, a positive define function need not be
an n-positive multiplier for every n. In this example G is not coamenable
but Ĝ is.

• De Cannière and Haagerup showed in [10, Corollary 4.8], that if G is the
free group FN on N ≥ 2 generators and n ≥ 1, then there exist n-positive

multipliers of L1(Ĝ) which are not positive definite. In this example G is

coamenable but Ĝ is not.
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(2000) 837–934.
[24] D. Kyed, A cohomological description of property (T) for quantum groups, J. Funct. Anal.

261 (2011) 1469–1493.
[25] D. Kyed, P. So ltan, Property (T) and exotic quantum group norms, J. Noncommut. Geom.

6 (2012) 773–800.
[26] M. Leinert, Faltungsoperatoren auf gewissen diskreten Gruppen, Studia Math. 52 (1974)

149–158.
[27] T. Masuda, Y. Nakagami, S. L. Woronowicz, A C∗-algebraic framework for quantum groups,

Internat. J. Math. 14 (2003) 903–1001.
[28] V. Paulsen, Completely bounded maps and operator algebras, Cambridge University Press,

Cambridge, 2002.
[29] M. Reed, B. Simon, Methods of modern mathematical physics. II. Fourier analysis, self-

adjointness, Academic Press, New York-London, 1975.
[30] V. Runde, Uniform continuity over locally compact quantum groups, J. Lond. Math. Soc. 80

(2009) 55–71.
[31] P. Salmi, Quantum semigroup compactifications and uniform continuity on locally compact

quantum groups, Illinois J. Math. 54 (2010) 469–483.
[32] A. Van Daele, Locally compact quantum groups. A von Neumann algebra approach, preprint,

arXiv:math/0602212.

School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom

E-mail address: matt.daws@cantab.net

http://arxiv.org/abs/1107.5244
http://arxiv.org/abs/1111.5828
http://arxiv.org/abs/funct-an/9707009
http://arxiv.org/abs/math/0602212


20 MATTHEW DAWS AND PEKKA SALMI

Department of Mathematical Sciences, University of Oulu, PL 3000, FI-90014 Oulun

yliopisto, Finland

E-mail address: pekka.salmi@iki.fi


	author_accepted_version_article_.pdf
	1210.5231v2.pdf
	1. Introduction
	2. Preliminaries
	3. Density of products in L1(G)
	4. Completely positive definite functions
	5. Bounded approximate identity for L1(G)
	6. Bochner's theorem in the coamenable case
	7. n-positive multipliers
	Acknowledgments

	References


