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Abstract 

Despite the importance of river nutrient retention in regulating downstream water quality, and the 

potential alterations to nutrient fluxes associated with climate-induced changes in Arctic hydrology, 

current understanding of nutrient cycling in Arctic river systems is limited. This study adopted an 

experimental approach to quantify conceptual water source contributions (meltwater, groundwater), 

environmental conditions and uptake of NO3
-
, NH4

+
, PO4

3-
 and acetate at twelve headwater rivers in 

Svalbard and so determine the role of changing hydrology on nutrient uptake in these Arctic river 

systems. Most rivers exhibited low demand for NO3
-
 and PO4

3-
, but demand for NH4

+
 and acetate was 

more variable and in several rivers comparable to that measured in sub-Arctic regions. The proportion 

of meltwater contributing to river flow was not significantly related to nutrient uptake. However, 

NH4
+
 uptake was associated positively with algal biomass, water temperature and transient storage 

area, while acetate uptake was associated positively with more stable river channels. Mean demand 

for NH4
+
 increased when added with acetate, suggesting NH4

+
 retention may be facilitated by labile 

DOC availability in these rivers. Consequently, nutrient export from Arctic river systems could be 

influenced in future by changes in hydrological and environmental process interactions associated 

with forecasted climate warming. 

 

 

Introduction 

Climate warming in Arctic regions throughout the 21
st
 Century will be associated with reductions in 

glacier mass and alterations to the structure and extent of permafrost systems (Holland and Bitz, 2003; 

Anisimov et al., 2007). In response, it is hypothesised that meltwater flow contributions to rivers will 

peak initially and then decline, while relative contributions of groundwater will increase in the long-

term (Aðalgeirsdóttir et al., 2006; Walvoord and Streigl, 2007). Although uncertainty remains, there 

is evidence to suggest these changes in high-latitude hydrology may increase the fraction of labile 

dissolved organic carbon (DOC) delivered to some Arctic rivers (Frey and McClelland, 2009; 

O’Donnell et al., 2010). Warming is also likely to stimulate mineralization of nitrogen in soils (Jones 

et al., 2005) and deeper seasonal active layers will increase the pool of nutrients that could be flushed 

potentially into rivers (Petrone et al., 2006; Frey and McClelland, 2009). 

Increased riverine nutrient fluxes are likely to be associated with higher biological activity in Arctic 

rivers (Lock et al., 1990; Hershey et al., 1997). This could be enhanced further by a shift towards 

groundwater-dominated rivers, characterised by less variable hydrological regimes, warm water 

temperature and stable channel morphologies (Walvoord and Striegl, 2007; Parker and Huryn, 2011; 



Blaen et al., 2012), which represent more suitable habitat conditions for biological growth and 

development than meltwater-dominated systems. Furthermore, warming may enlarge thaw bulbs and 

transient storage zones below river channels, thought to be important hotspots of biogeochemical 

processing (Zarnetske et al., 2007; Merck et al., 2012).  

Climate-induced alterations to hydrology, nutrient availability and habitat conditions may impact 

particular ecosystem processes associated with autotrophic and heterotrophic activity in high-latitude 

rivers (Lecerf and Richardson, 2010). Notably, variation in nutrient uptake has important management 

implications for reducing nutrient loading and so regulating water quality downstream (Alexander et 

al., 2007). While there are few studies on nutrient uptake in headwater Arctic rivers (but see 

Wollheim et al., 2001), the environmental conditions that characterise many meltwater-dominated 

high-latitude rivers suggest that rates of nutrient uptake may be low in these environments (Scott et 

al., 2010). In the context of future warming in at high latitudes, increased biological activity may lead 

to an increase in nutrient uptake in Arctic rivers relative to contemporary conditions (Rasmussen et 

al., 2011). However, there is currently a paucity of information regarding controls on nutrient cycling 

in these systems and thus the evidence base for projection of future changes in nutrient uptake 

remains uncertain.  

This paper addresses this major research gap by reporting on a study conducted in Svalbard. The aim 

was to characterise environmental conditions and rates of nutrient retention across a gradient of 

meltwater to groundwater influence as an analogue to understand how changing hydrology and 

environmental conditions may alter nutrient cycling in high-latitude regions. We hypothesised that:  

1. decreased meltwater flow contributions associated with warmer and more stable 

channels and higher transient storage will support higher autotrophic and 

heterotrophic activity (Zarnetske et al., 2007; Parker and Huryn, 2011);  

2. decreased meltwater flow contributions and associated changes in environmental 

conditions will increase nutrient uptake velocities and rates of retention 

(Rasmussen et al., 2011); and  

3. the addition of labile DOC will stimulate N uptake by releasing N assimilation 

from C limitation (Johnson et al., 2009).  

 

 

 

 



Methodology 

Study sites 

The research was undertaken near Ny-Ålesund (79º N, 12º E) in north-west Svalbard. Twelve first-

order rivers were chosen to represent a gradient of water source inputs from meltwater and shallow 

hillslope groundwater reservoirs (Figure 1). Sites A1-A6 were studied in 2011 and sites B1-B6 were 

studied in 2012. Canopy cover and associated shading were absent at all sites. Study reaches in each 

river were 60-70 m long, confined to a single channel with no tributary inputs, and selected to 

minimise longitudinal variation in gradient and river discharge.  

 

Sampling framework 

Conceptual water source contributions to river flow, transient storage metrics and environmental 

habitat conditions were quantified at each study site. These data were combined with data from short-

term nutrient uptake experiments to understand the major controls on nutrient cycling in these Arctic 

river systems. 

 

Water source quantification 

A two-component end-member mixing model was used to separate river discharge into two 

conceptual water source components: (i) meltwater derived from snow and glacial ice melt, and (ii) 

shallow hillslope groundwater transmitted to the river channel primarily via subsurface flow through 

the active layer (Christophersen and Hooper, 1992). River water samples for each sampling reach 

were filtered through Whatman GF/F 0.7 µm papers and frozen within 6 h of collection. Snow, ice 

and hillslope groundwater samples were collected in the basin above each selected study reach and 

processed in the same manner. Dissolved Si concentrations were determined by the molybdosilic acid 

method (APHA, 1995). Si concentrations were used to proportion river discharge into meltwater and 

groundwater components, with meltwater characterised by low Si concentration (<0.01 mg l
-1

) and 

groundwater by high Si concentration (0.4-2.4 mg l
-1

). For more details on water source quantification 

see Blaen et al. (2013). 

 

Nutrient uptake experiments 

Nutrient uptake was measured in each river during July / early August 2011 or July 2012. River levels 

were stable on each sampling day. Water samples were collected at 10 m intervals along each study 



reach prior to experimentation to characterise ambient solute concentrations. Short-term additions of 

nitrogen (as NH4
+
 and NO3

-
), phosphate (PO4

3-
) and acetate, plus a conservative tracer (NaCl) were 

used to measure gross nutrient retention rates resulting from the interaction of physical and biological 

processes following standard methods (Tank et al., 2006). Target enrichment levels above ambient 

concentrations were 15 µg l
-1

 NH4
+
, 20 µg l

-1
 NO3

-
, 30 µg l

-1
 PO4

3-
 and 100 µg l

-1
 acetate. The target 

increase in electrical conductivity (EC) was 5-20 µS cm
-1

. It is recognised that raising nutrient levels 

above ambient conditions can result in overestimation of uptake lengths (Mulholland et al., 2002). 

However, the modest enrichment factors employed in this study suggest that measured uptake lengths 

are unlikely to deviate substantially from ambient lengths (Payn et al., 2005; Rasmussen et al., 2011). 

Five nutrient additions were performed at each site: NO3
-
, NH4

+
, PO4

3-
 and acetate were initially added 

separately prior to a further addition of NH4
+
 and acetate in unison. A solution containing either 

NH4Cl, NaNO3, Na2HPO4, CH3COONa, or NH4Cl and CH3COONa, plus NaCl as a conservative 

tracer, was pumped continuously into a well-mixed area at the upper end of each reach using a 

Watson-Marlow peristaltic pump with a flow rate of 0.12 l min
-1

. EC values were used to calculate 

river discharge during nutrient release and assess the time for nutrient concentrations to stabilise. 

Water samples were collected at 10 m intervals along each study reach once EC had reached 

asymptote. Samples were filtered in the field using Whatman GF/F 0.7 µm filter papers and frozen 

within 6 h.  

NO3
-
 and NH4

+
 were determined using an AutoAnalyzer 3 (Bran + Luebbe) with a 1 µg l

-1
 detection 

limit. Acetate and Cl
-
 were determined using a Dionex ICS-2000 with detection limits of 2 and 5 µg l

-

1
, respectively. PO4

3-
 was determined by the ascorbic acid method (APHA, 1995) using a Helios 

Gamma spectrophotometer (Thermo Fisher Scientific) with a detection limit of 5 µg l
-1

. Analytical 

precision was <5% for all determinands and deionised water blanks showed no detectable 

contamination from filter papers.  

Uptake parameters were based on the longitudinal decrease in nutrient concentration through each 

study reach. Nutrient concentrations were divided by Cl
-
 to correct for minor changes in river 

discharge throughout the study reach. The relationship between background- and discharge-corrected 

nutrient concentration to distance downstream of the injection point was calculated as:   

lnNx = lnN0 - kx 

where N0 is nutrient concentration at the addition site, Nx is nutrient concentration at x meters 

downstream of the addition site, and k is the per-meter uptake rate. From k, nutrient uptake length (Sw, 

m), velocity (Vf, m min
-1

) and areal uptake rate (U, mg m
-2

 min
-1

) were calculated using standard 

protocols (Tank et al., 2006).  



 

Solute transport modelling  

Transient storage parameters were estimated for rivers from EC data using a one-dimensional 

advection-dispersion model (OTIS-P) to provide an integrated measure of hydrological retention in 

each reach (Runkel, 1998). Given a suite of initial boundary conditions for the head of each reach, the 

model adjusts parameters iteratively to produce a least-squares best fit to the downstream conservative 

tracer breakthrough curve measured as EC in the field (Figure 2). OTIS-P models were assessed for 

reliability by calculating Damkohler I (DaI) numbers (Edwardson et al., 2003). Model outputs were 

used to calculate the ratio of the storage zone cross-sectional area to the main channel cross-sectional 

area (As/A) and the mean hydraulic residence time in the storage zone (Tstor) (Edwardson et al., 2003). 

 

Environmental variables 

Several key ancillary variables for each study reach were recorded to examine potential environmental 

controls driving nutrient demand. Mean water temperature was calculated from measurements at the 

lower end of each reach every 15 min using Tinytag Underwater dataloggers (Gemini Data Loggers 

UK Ltd.). Incoming short-wave radiation was measured using a Kipp & Zonen CMP11 pyranometer 

in Ny Ålesund every 15 min. Suspended sediment concentration, SSC, was calculated from manual 

samples (500 ml) collected after nutrient injections. Samples were filtered onto pre-weighed papers, 

dried at 60 ºC for 48 h, and reweighed. Channel stability was assessed using the bottom component of 

the Pfankuch Index (Pfankuch, 1975), where lower values represent greater stability. 

Two measures of river ecosystem metabolism were used to assess benthic activity in the study 

reaches. Firstly, five replicate samples of periphyton were scrubbed from cobbles, filtered onto papers 

and frozen until laboratory analysis. Cobbles were photographed in the field and cobble area was 

quantified using ImageJ software (Rasband, 2012). Chlorophyll a (mg m
-2

) was determined using 

following standard methods (Steinman et al., 2006). Secondly, rates of sediment respiration by 

microbial communities were determined as the change in dissolved oxygen (DO) over time. 

Following removal of the upper 5 cm of bed sediment, five 1 L HDPE bottles were half-filled with 

sediment and then topped up with river water. Sediments were sieved to exclude particles > 8 mm. 

Bottles were inverted to remove trapped air and DO was measured using a YSI 95 meter calibrated in 

the field. Bottles were sealed and buried in the bed for approximately 24 hours before DO was 

remeasured. Sediments were subsequently dried at 60 ºC for 48 h and weighed. Sediment respiration 

rates were normalised by sediment weight and reported as μg O2 h
-1

 kg
-1

 sediment (Logue et al., 

2004). 



 

Data analysis 

Differences in nutrient concentration between meltwater and groundwater samples for each study 

river were assessed using independent sample t-tests. Potential associations between water source 

contributions, environmental variables and uptake parameters (Vf and U) were assessed using 

Spearman’s rank correlation analysis due to the relatively small size of the dataset and the potential 

for non-linear relationships. Differences in Vf between nutrient types were tested for by one-way 

ANOVA followed by Tukey’s post-hoc comparisons test. To assess the influence of DOC on NH4
+
 

uptake and vice versa, demand ratios were calculated as the ratio of Vf during the simultaneous release 

of NH4
+
 and acetate to the Vf of each nutrient during individual releases. A ratio >1 indicates that Vf 

during the simultaneous release was greater than during the individual release, a ratio=1 indicates no 

difference in Vf, and a ratio <1 indicates a decrease in Vf for the simultaneous release relative to the 

individual release (Johnson et al., 2009). Differences in Vf between individual and simultaneous 

uptake were compared using paired t-tests for each nutrient separately and then in unison. All data 

analyses, including regressions for nutrient uptake length calculations, were performed using SPSS 

version 19.0 (SPSS Inc., Chicago IL). 

 

Results 

Hydrological and environmental data are used to assess the influence of water source on river habitat 

conditions. These data are combined with results from nutrient uptake experiments to characterise 

nutrient cycling parameters and understand drivers of nutrient uptake in rivers in north-west Svalbard.  

 

River hydrology and environmental variables 

River discharge ranged from 5 to 240 l s
-1

 (Table 1) and was representative of the small rivers found 

in this area of Svalbard during summer (Blaen et al., 2013). There was no evidence of substantial 

hillslope groundwater inflow throughout the study reaches. Ambient concentrations of NH4
+
, PO4

3-
 

and acetate were very low at all sites. Ambient NO3
-
 concentration was more variable, ranging from 7 

to 85 μg l
-1

 (Table 1). Ambient nutrient concentrations were not correlated with any measured 

environmental variables. End-member mixing analysis indicated that meltwater accounted for 

between 0% and 74% of total river discharge in the selected study reaches (Table 1). Meltwater 

relative contribution was not associated significantly with environmental variables. Correlation 

analyses showed significant relationships between water temperature and incoming short wave 



radiation (r=0.61, p<0.05), chlorophyll a concentration (r=0.65, p<0.05) and river discharge (r=0.62, 

p<0.05), and between SSC and Pfankuch index (r=0.76, p<0.01; Table 2). 

Concentrations of NO3
-
 and NH4

+
 in meltwater and groundwater samples were <100 µg l

-1
 and there 

were no significant differences in nutrient concentrations between sample types for any river basins 

(p>0.05 by t-test). Acetate was normally below detectable limits in all samples. However, PO4
3-

 

concentration was significantly higher in groundwater samples (mean±SD: 88±15 µg l
-1

) than 

meltwater samples (mean±SD: 46±13 µg l
-1

) at all sites (t=2.82-9.15, p<0.05). Mean water 

temperature ranged from 2.1 to 11.4 ºC. Chlorophyll a concentration ranged from 0 to 9.01 mg m
-2

 

and rates of sediment respiration ranged from 0 to 157.1 μg O2 h
-1

 kg
-1

 (Table 1). Transient storage 

area (As/A) ranged from 0.14 at site A4 to 3.08 at site B2 (Table 3). DaI numbers were within a range 

acceptable for reliable parameter estimation (Edwardson et al., 2003). Mean storage zone residence 

times were related closely to transient storage area (r=0.90, p<0.01) and ranged from <1 min to 22 

min. The proportion of river discharge comprised of meltwater was not significantly correlated with 

ambient nutrient concentrations, environmental variables or transient storage parameters (Table 2; 

p>0.05). 

 

Nutrient uptake  

At many sites there was no statistically significant downstream change in nutrient concentration 

during each short-term release (p>0.05). In rivers where significant changes in concentration 

occurred, uptake length (Sw) for all nutrients was <130 m (Table 4). Only two sites (A3 and B2) 

exhibited significant NO3
-
 uptake, although NO3

-
 uptake velocity (Vf) was generally higher than for 

other nutrients (Figure 3). Significant NH4
+
 uptake occurred at three sites (A1, A3 and B2) when 

added singularly. However, when added in conjunction with acetate five sites displayed significant 

NH4
+
 uptake (Table 3). Mean Sw for NH4

+
 shortened by 47 m when added in conjunction with acetate 

and Vf and U both increased. Similarly, acetate uptake was significant at three sites during individual 

injections, but at five sites during the simultaneous injection with NH4
+
. Individual injection acetate 

Sw (41-47 m) was lower consistently than individual injection NH4
+
 Sw (64-123 m). The mean NH4

+
 

demand ratio was 3.2±1.2 (Figure 4), indicating demand for NH4
+
 increased when added in 

conjunction with acetate. In contrast, the mean demand ratio for acetate was 1.1±0.4, indicating that 

simultaneous addition of NH4
+
 had little influence on acetate uptake. However, paired t-tests showed 

no significant difference in Vf between individual and dual additions for both NH4
+
 (t=1.14, p=0.37) 

and acetate (t=0.25, p=0.82). 

Correlation analyses between NH4
+
 and acetate uptake parameters and environmental variables were 

conducted only for dual additions due to a limited number of cases for single nutrient injections. For 



NH4
+
, significant positive relationships were observed between Vf and water temperature (r=0.84, 

p<0.05), Vf and transient storage area (r=0.90, p<0.05), and U and chlorophyll a concentration 

(r=0.81, p<0.05) (Table 5). For acetate, Vf was negatively related to discharge (r=-0.90, p<0.05) and 

Pfankuch Index (r=-0.99, p<0.01) and U was negatively related to water temperature (r=-0.99, 

p<0.01).  

 

Discussion 

This study offers new insights into potential changes in riverine nutrient cycling that may occur with 

future climatic warming in Arctic regions. Demand for NH4
+
 was greater in warmer rivers with larger 

transient storage areas, and those with more algal biomass were associated with higher NH4
+
 uptake. 

Furthermore, the addition of a labile form of DOC stimulated NH4
+
 demand, indicating labile DOC 

availability may limit some freshwater biotic process rates in this region of Svalbard. The following 

section discusses firstly the influence of changing hydrology on environmental conditions and nutrient 

uptake in Arctic river systems. The section then considers potential drivers of nutrient uptake and 

assesses the role of DOC availability in controlling NH4
+
 cycling. 

 

Environmental habitat quality along a water source gradient 

Our first hypothesis, that a decrease in meltwater contribution would be associated with warmer and 

more stable channels and higher transient storage that support higher autotrophic and heterotrophic 

activity, was rejected because no significant relationships were observed between meltwater 

contribution and any measured environmental variables. However, the significant relationship 

between water temperature and chlorophyll a concentration suggested warmer rivers were associated 

with greater algal growth, as observed previously in Icelandic rivers (Gíslason et al., 2000). Low 

water temperatures observed in all study rivers (maximum: 11.4 ºC) reflected the reduced magnitude 

of atmospheric energy inputs at high latitudes, runoff interactions with cold permafrost, and glaciers 

and snowpacks as a primary source of river discharge, while strong associations between water 

temperature and incoming shortwave radiation suggested the latter was a principal driver of thermal 

variability in these Arctic rivers (Blaen et al., 2012). Interestingly, solute modelling indicated that the 

relative size of transient storage areas were comparable to those in Alaskan Arctic tundra systems and 

headwater rivers in temperate regions (Edwardson et al., 2003; Zarnetske et al., 2007; Scordo and 

Moore, 2009), suggesting sub-channel permafrost had little effect on transient storage in these high-

latitude river systems. 

 



Nutrient uptake along a water source gradient 

Most rivers showed no response to additions of NO3
-
 and PO4

3-
, and for four rivers (A5, A6, B3 and 

B6) there were no significant downstream changes in concentration of any nutrients during the 

injection experiments. This was unlikely due to saturation of biotic demand because ambient nutrient 

concentrations were low in all study rivers (Hoellein et al., 2007). Instead, low chlorophyll a 

concentrations relative to other Arctic and sub-Arctic rivers (Gudmundsdottir et al., 2011; Parker and 

Huryn, 2011) suggested that algal capacity for nutrient uptake was almost nonexistent at many sites. 

Flashy river flow regimes associated with Arctic meltwater systems (Hodgkins et al., 2009) can scour 

bed sediments, thus destabilising channels and eroding biofilms responsible for nutrient uptake 

(Aldridge et al., 2010), while high sediment loads in glacier-fed channels (e.g. Hodson et al., 1998) 

may limit light availability to biofilms. Interestingly, while P availability limits biological activity in 

some Arctic freshwater systems (Lock et al., 1990; Säwström et al., 2007), the lack of response to 

PO4
3-

 injections indicates that this may not be the case for rivers in this region of Svalbard. 

Where significant declines in nutrient concentration occurred, short uptake lengths (often <100 m) 

indicated high retention efficiency (Dodds et al., 2004). In contrast to NO3
-
, significant NH4

+
 uptake 

was observed at three sites when added singularly and at six sites when added in conjunction with 

acetate. Due to the nature of the methodology employed, measured declines in nutrient concentration 

can only be quantified as gross retention and more detailed information on the specific mechanisms 

involved are absent (Ye et al., 2012). However, we suggest that the difference in response between 

different forms of N may be due to lower energy costs associated with NH4
+
 uptake resulting in 

preferential assimilation of this nutrient (Newbold et al., 2006). Hodson et al. (2005) noted that NH4
+
 

in rivers on the Brøgger Peninsula was less conservative than other species of N and suggested 

significant retention of this nutrient is common in Svalbard.  

Our second hypothesis, that decreased meltwater flow contributions will increase nutrient uptake, was 

rejected because no significant relationship was observed between meltwater flow contribution and 

nutrient uptake metrics, nor did meltwater contribution appear to influence environmental conditions 

(above). Previous studies have suggested that nutrient concentrations in Arctic rivers are enhanced by 

leaching of groundwater from proglacial soils, although this is often most evident towards the end of 

the ablation season when soil nitrification rates are highest (Gersper et al., 1980; Hodson et al., 2002) 

and senescence of tundra vegetation reduces demand for nutrients (Tye and Heaton, 2008). Our study 

was conducted primarily in mid-July when high demand for nutrients by plants may have resulted in 

rapid terrestrial uptake (Keuper et al., 2012), thus reducing the flux of nutrients to river channels and 

explaining the lack of significant differences in most nutrient concentrations between meltwater and 

groundwater end-members. Given that Arctic tundra ecosystems are often N-limited (Madan et al., 



2007; Kelley and Epstein, 2009), this may explain the surplus of PO4
3-

 observed in groundwater end-

members relative to meltwater.  

 

Drivers of nutrient uptake in Arctic river systems 

Uptake velocity for NH4
+
 was positively related to water temperature, suggesting low water 

temperature may act as a driving factor of river ecosystem metabolism in this region of Svalbard (cf. 

Rasmussen et al., 2011). River metabolism is considered to be highly temperature-dependent (Yvon-

Durocher et al., 2012) with warmer temperature associated with increased photosynthesis, enzymatic 

and microbial activity, and nutrient uptake (Rasmussen et al., 2011). Demand (Vf) for NH4
+
 was 

comparable to demand in lower-latitude Arctic, sub-Arctic and temperate headwater rivers (Figure 5; 

Ensign and Doyle, 2006; Rasmussen et al., 2011). In contrast, areal-based uptake rates (U) were 

extremely low, most likely because rivers in Svalbard contain no macrophytes and the surface area for 

nutrient uptake by algal communities is relatively small (cf. Rasmussen et al., 2011). However, the 

positive relationship between NH4
+
 U and chlorophyll a concentration suggests that biotic 

assimilation by autotrophs played a role in NH4
+
 uptake (Hall and Tank, 2003). In contrast, demand 

for acetate was not related significantly to chlorophyll a concentration, although this was not 

altogether unexpected because aquatic autotrophs obtain carbon predominantly through CO2 and 

HCO3
-
 (Allen and Spence, 1981) whereas uptake of dissolved organic carbon is controlled to a large 

extent by heterotrophic activity (Marti et al., 2009). 

The positive relationship between NH4
+
 uptake velocity and transient storage zone area indicates that 

increased hydraulic retention was associated with greater nutrient uptake capacity in these rivers. 

Conclusions of previous studies relating transient storage to nutrient uptake have been equivocal 

(Mulholland et al., 1997; Hall et al., 2002; Gücker and Boechat, 2004), but these results suggest 

temporary detainment of waters increased residence times and the contact of solutes with sediment 

biofilms (Merck et al., 2012), thus increasing the potential for biogeochemical transformation. 

Interestingly, the lack of significant association between acetate retention and sediment respiration 

suggests microbial communities in hyporheic zones may not play as important a role in DOC 

processing in these Arctic rivers as in lower-latitude areas (e.g. Newbold et al., 2006; Johnson et al., 

2009). The negative relationship between acetate U and water temperature is unclear. However, the 

negative relationship between acetate demand and the Pfankuch Index may be explained by more 

stable river channels promoting the growth and activity of heterotrophic organisms. Given that the 

Pfankuch Index is a relatively coarse device, we suggest future studies may benefit from a more 

detailed examination of the role of channel morphology in determining rates of nutrient retention in 

these rivers.   



 

Regulation of NH4
+
 uptake by DOC availability 

Our third hypothesis was that the presence of a labile source of DOC would stimulate NH4
+
 uptake by 

releasing N assimilation from C limitation in heterotrophic microbial communities. Taken alone, 

significant acetate uptake at only three sites suggested low demand for labile DOC. However, the 

observed increase in demand for NH4
+
 when added in conjunction with acetate suggests labile DOC 

availability does facilitate N retention in these rivers. It was less clear whether DOC uptake was 

influenced by NH4
+
 availability because demand ratios showed no clear pattern in relation to those of 

NH4
+
. The limited number of cases meant that these differences in nutrient demand were not 

statistically significant between single and dual additions, although it should be noted that the test did 

not account for rivers where uptake only occurred during the simultaneous additions. A previous 

study from Svalbard concluded that DOC availability regulated heterotrophic bacterial activity in 

lentic freshwaters in the Kongsfjorden area (Säwström et al., 2007). Other studies have also 

established close links between the supply of DOC and demand for nitrogen in aquatic systems 

(Dodds et al., 2004; Johnson et al., 2009). In light of these results we neither reject nor accept our 

third hypothesis, but suggest further work is now needed to substantiate these findings. In particular, 

the application of stable isotope tracers may assist in understanding the relative roles of physical and 

biological retention in controlling downstream nutrient export (Tank et al., 2006). 

 

Conclusions and implications for nutrient cycling in Arctic rivers under a warming climate 

This study investigated rates of nutrient uptake and links to controlling factors across a gradient of 

Arctic river types. The proportion of river discharge derived from meltwater was not significantly 

related to measured environmental variables (Hypothesis 1). A lack of significant removal of nutrients 

from the water column at several sites was attributed to cold water temperature, very low ambient 

nutrient concentrations, and low channel stability which together limited biotic growth and thus the 

capacity for nutrient uptake. However, nutrient retention variability was high between study rivers. 

Where significant retention occurred, short uptake lengths and high uptake velocities indicated high 

demand for nutrients. Uptake velocities for NH4
+
 were comparable to those in lower-latitude rivers, 

although areal-based uptake rates were low and limited probably by low algal biomass. Uptake of 

NH4
+
 was associated with warmer water temperature, algal growth and larger transient storage zones, 

while acetate uptake was associated with more stable river channels. The proportion of river discharge 

comprised of meltwater was not related to nutrient uptake (Hypothesis 2). Some evidence suggested 

NH4
+
 assimilation by heterotrophic communities was mediated by labile DOC availability 

(Hypothesis 3), although further work is required to explore more fully this potential relationship. 



In the context of future warming in Arctic regions, shrinking glaciers and increased permafrost 

wasting are expected to result in an initial peak in meltwater generation followed by a shift towards 

groundwater-dominated river systems in the long term (Smith et al., 2007; Walvoord and Streigl, 

2007), which could increase nutrient loading in high-latitude rivers (Petrone et al., 2006; Frey and 

McClelland, 2009). Moreover, there is growing concern over episodic atmospheric N deposition in 

the High Arctic (Kühnel et al., 2011). Together, these factors could introduce substantial variation in 

nutrient fluxes and availability into historically sensitive and nutrient-limited environments (Shaver 

and Chapin, 1980). A combination of warmer water temperature, more stable river channels and 

increased nutrient availability is likely to increase freshwater biotic activity. The results of this study 

suggest that this may enhance retention of nutrients in some Arctic rivers. A concurrent increase in C 

supply linked to permafrost degradation (O’Donnell et al., 2010) may enhance the capacity of these 

systems to process nutrients. Ultimately, future nutrient yields from high-latitude river systems will be 

determined by changes in nutrient loading versus the degree to which aquatic autotrophs and 

heterotrophs can assimilate and process these nutrients in a changed riverine environment. 
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Figures 

Figure 1 – Map of study area showing sampling sites, approximate river courses, relief (shaded), spot 

height measurements in meters asl, and glacier cover (dashed areas). 

 

 

  



Figure 2 – Solute concentration curves as measured by electrical conductivity and OTIS-P model 

outputs for the main channel and transient storage zone for site B4 

 

 

  



Figure 3 – Nutrient uptake velocity (Vf) for nitrate, ammonium, acetate and phosphate for single 

nutrient releases in the study rivers. 

 

 

  



Figure 4 – Mean (±SE) ratios of simultaneous to individual nutrient uptake velocity (Vf) for 

ammonium and acetate. Nutrient uptake velocity was measured individually and then compared to 

when solutes were released together (i.e. NH4
+
 +acetate Vf : NH4

+
 Vf) 

 

 

  



Figure 5 – Global nutrient uptake velocity (Vf) for ammonium using data from the present study 

(single additions only), Ensign and Doyle (2006) and Rasmussen et al. (2011). Rivers employed in 

this study are highlighted by open symbols. 

 

 

  



Tables 

Table 1 – Descriptions, background nutrient concentrations and environmental characteristics of the 

study rivers  
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Table 2 – Spearman correlation coefficients for relationships between meltwater flow contributions 

and environmental habitat variables 

 

 

  

% Meltwater

Discharge -0.29 Discharge

Pfankuch Index 0.11 0.52 Pfankuch Index

EC -0.27 -0.08 0.22 EC

SW radiation -0.26 0.53 0.14 -0.02 SW radiation

Water temperature -0.42 0.62 * -0.11 0.26 0.61 * Water temperature

SSC 0.57 0.27 0.76 ** -0.12 -0.20 -0.31 SSC

Chlorophyll a -0.21 0.25 0.23 -0.07 0.60 0.65 * -0.51 Chlorophyll a

A s /A -0.12 -0.50 -0.28 -0.32 -0.38 -0.18 -.200 -0.22 A s /A

T stor -0.03 -0.20 -0.13 -0.67 -0.37 -0.14 .090 -0.42 0.90 **

* and ** denote p<0.05 and p<0.01, respectively.        n=12 except for A s /A and T stor  where n=8



Table 3 – Optimised output parameters and Damkohler numbers from OTIS-P model simulations for 

the study rivers  

 

 

  

Site
Relative storage zone 

area, A s /A

Storage zone exchange 

coefficient, α

Mean storage zone 

residence time, T stor

DaI

s
-1

min

A1 1.0 0.0026 6.3 1.7

A2 - - - -

A3 1.3 0.0014 15.5 0.7

A4 0.1 0.0005 4.4 2.6

A5 - - - -

A6 - - - -

B1 - - - -

B2 3.1 0.0023 22.4 1.1

B3 0.9 0.0036 4.3 1.1

B4 0.5 0.0034 2.3 4.4

B5 3.0 0.0034 14.8 2.3

B6 0.8 0.0024 5.7 1.5

Sites where storage exchange parameters could not be estimated reliably are indicated by -



Table 4 – Nutrient uptake parameters for the study rivers. Sw is reported in m, Vf in m hr
-1

, and U in μg 

m
-2

 hr
-1 

 

 

  

A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6

S w - - 16.29 - - - - 47.70 - - - -

V f - - 6.12 - - - - 1.62 - - - -

U - - 83.95 - - - - 113.2 - - - -

S w 123.5 - 64.94 - - - - 102.3 - - - -

V f 0.07 1.27 - - - - 0.75 - - - -

U 0.02 - 17.18 - - - - 7.54 - - - -

S w 80.65 90.39 51.40 50.51 - - - 19.13 - - 13.35 -

V f 0.22 0.54 1.41 0.55 - - - 4.03 - - 3.90 -

U 0.07 4.11 19.20 9.15 - - - 72.02 - - 175.7 -

S w - 41.20 - - - - - 44.74 - - 46.50 -

V f - 1.21 - - - - - 1.72 - - 1.12 -

U - 12.09 - - - - - 1.72 - - 8.79 -

S w - 40.10 - - - - 65.20 61.13 - 25.25 28.24 -

V f - 1.23 - - - - 1.07 1.26 - 1.81 1.84 -

U - 12.56 - - - - 1.08 6.31 - 8.40 11.5 -

S w - - - - - - - - - - 15.71 -

V f - - - - - - - - - - 3.32 -

U - - - - - - - - - - 8.29 -

 - denotes no significant change in nutrient concentration throughout the study reach

Site

PO 4
3-

Addition

NO 3
-

NH 4
+

NH 4
+

 (+ Acetate)

Acetate (+NH4+)

Acetate



Table 5 – Significant (p<0.05) spearman correlation coefficients for nutrient uptake parameter 

relationships with environmental variables 

 

n

V f 6 0.49 0.84 * -0.58 0.64 0.90 *

U 6 0.37 0.75 -0.70 0.81 * 0.80

V f 5 -0.90 * -0.40 -0.99 ** 0.60 0.40

U 5 -0.80 -0.99 ** -0.40 -0.20 0.20

* and ** denote p<0.05 and p<0.01, respectively ^ indicates n=5 

NH 4
+

 (+ Acetate)

Acetate (+ NH 4
+

)

Water 

temperature
Pfankuch Index A s /A ^Discharge Chlorophyll  a


