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Abstract

We describe a novel coarse-grained simulation method for modelling the dy-
namics of globular macromolecules, such as proteins. The macromolecule is
treated as a continuum that is subject to thermal fluctuations. The model
includes a non-linear treatment of elasticity and viscosity with thermal noise
that is solved using finite element analysis. We have validated the method
by demonstrating that the model provides average kinetic and potential en-
ergies that are in agreement with the classical equipartition theorem red and
that the nodal velocities have the correct Gaussian distribution. In addition,
we have performed Fourier analysis on the simulation trajectories obtained
for a series of linear beams to confirm that the correct average energies are
present in the first two Fourier bending modes redand that the probabil-
ity distribution of the amplitudes of the first two Fourier modes match the
theoretical results. redWe demonstrate spatial convergence of the model by
showing that the anisotropy of the inertia tensor for a cubic mesh converges
as a function of the mesh resolution. We have then used the new modelling
method to simulate the thermal fluctuations of a representative protein over
500ns timescales. Using reasonable parameters for the material properties,
we have demonstrated that the overall deformation of the biomolecule is
consistent with the results obtained for proteins in general from atomistic
molecular dynamics simulations.
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1. Introduction

The conformational dynamics of biological macromolecules poses a unique
challenge to computational physicists. Proteins are chemically inhomoge-
neous and aperiodic. Even small proteins can contain many thousands of
atoms whereas molecular motors, such as the ribosome, contain many hun-
dreds of thousands of atoms [1]. Many active biological structures, such as the
transcriptional machinery, are large protein complexes made up from numer-
ous (of order 10) separate proteins loosely bound by non-covalent interactions
[2]. Biomolecules are soft nanoscale objects. They exhibit large conforma-
tional changes both due to thermal fluctuations and interactions with other
biomolecules, which are often critical to their function [3]. Most remarkably,
motor proteins are capable of exerting mechanical force to produce motility
both at the level of individual molecules, or, when acting co-operatively, at
the macroscopic level [4]. Biomolecular dynamics spans an enormous range
of timescales, from the vibration of individual atoms or groups of atoms over
picosecond timescales to the action of a molecular motor, which may require
milliseconds.

As a result of this complexity, computer simulation studies of the confor-
mational dynamics of biomolecules and the interactions within biomolecular
complexes are invaluable for interpreting experimental data and for probing
the physical mechanisms used by proteins to perform their function. How-
ever, even with the advent of parallel supercomputing, the most established
techniques for simulating biomolecular dynamics are limited by their compu-
tational expense. Calculations at the fully quantum mechanical level, which
are capable of resolving electronic structure, are generally limited to static
fragments of individual proteins [5]. Simulations in which proteins and their
solvent environment are described in atomistic detail have reached timescales
in excess of 1 microsecond [6], which is sufficient to capture vital biological
processes such as the folding of small proteins. For larger biomacromolecules,
such as the ribosome, accessible simulation timescales are reduced to nanosec-
onds [7], which is considerably shorter than the millisecond timescales over
which the molecular motor operates. Moreover, molecular biology occurs in
a cellular environment that is densely packed with proteins and membrane
surfaces enclosing higher order cellular structures. If computer models are
to be used in a truly in vivo context then, we will need to move beyond
computer models that consider only fragments of proteins or single proteins.

Strategies for reducing the computational cost of protein dynamics sim-
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ulations include simplifying the force-field to exclude anharmonic terms (so
that the conformational fluctuations of the protein can be calculated by nor-
mal mode analysis), reducing the number of particle interactions that need
to be considered by coarse-graining a subset of atoms into one entity, or a
combination of these approaches. A comprehensive review of coarse-grained
protein modelling has recently been published by Tozzini [8]. Using these
lower resolution coarse-grained techniques, simulation time and length scales
have been extended when compared with fully atomistic molecular dynamics.
Most notably, McGuffie and Elcock were recently able to simulate the bac-
terial cytoplasmic environment using Brownian dynamics simulations and a
rigid protein model [9]. The simulation contained over 1000 proteins, and
captured 20 µs of dynamics.

The majority of computer simulation studies of conformational change
in proteins consider the macromolecule to be constructed from discrete par-
ticles, where a particle may represent one (as in atomistic simulation) or
more atoms. Although a ‘particle’ description is appropriate for atomically
detailed calculations, at the coarse-grained level the particle size and the
number of atoms that they represent become arbitrary, and are typically
chosen for computational convenience. At the mesoscale (length scales from
hundreds of nanometers to microns), hybrid fluid mechanics/solid mechanics
techniques, such as the Immersed Boundary Method (IBM) [10] [11] and the
Immersed Finite Element Method (IFEM) [12, 13] have been developed to
model how the shapes or positions of objects change in response to hydrody-
namic fluctuations and fluid flow [14]. These techniques have been used, for
example, to study the stochastic desorption of rigid nanoparticles from mem-
brane surfaces under shear flows [15], the Brownian motion of nanoparticles
in a Newtonian fluid due to thermally induced hydrodynamic fluctuations
[16, 17] and the deformation of vesicle being dragged by a Brownian ratchet
model of a biological motor protein [18]. The IBM treats an object immersed
in a fluid as a series of particles that interact with both with one another
and the background fluid, which is placed on a grid [10]. In IFEM, both
the object and the fluid are represented on two separate meshes which are
superimposed. Thermal fluctuations are introduced by subjecting the mesh
to a fluctuating stress using the appropriate Langevin equations [13].

Here we describe a continuum model for globular macromolecules which
is designed to model the conformational dynamics individual large proteins
and biomolecular complexes about. Since it is a continuum model, it cannot
provide atomic resolution information, which places a lower bound on the
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molecular sizes that it can consider. However, it has no upper size limit,
meaning that it is capable of taking biomolecular simulation from the atom-
istic into the mesoscale. The viscoelastic nature of biological matter at the
mesoscale was recently demonstrated experimentally [19]. Therefore, rather
than using discrete inter-particle potentials to represent interactions within
the biomolecule, our new algorithm uses material quantities, namely the den-
sity, bulk/shear moduli and bulk/shear viscosities to describe the mechan-
ics of the protein, and evolves the shape of the biomolecule in response to
stress using FEA. redThis continuum method is appropriate for simulating
the range of motion explored by large globular proteins about their average
structures, but it will not describe conformational changes that are so large
that the secondary structure of the protein is perturbed, as for example,
occur during protein unfolding by an external force, as the nature of such
changes is governed by the atomistic structure of the biomolecule.

We have developed a numerical scheme that includes a locally calculated
fluctuating stress to account for thermal noise; we refer to this new scheme
as Fluctuating Finite Element Analysis (FFEA). The concept of a fluctu-
ating stress is not in itself new. It was first proposed by Landau [20] and
has subsequently been utilised by Sharma and Patankar [21] to solve for the
Brownian motion of particles by including a fluctuating stress in the fluid.
In FFEA, we incorporate the fluctuating stress tensor directly into the bio-
logical material which then deforms due to thermal agitation. The technique
has the additional advantage over particle-based simulation methods that
it does not require an atomically detailed experimental structure as input
to the calculations. Rather, the continuum model can use lower resolution
structural data, so long as the overall shape of the protein is known.

We present the mathematical background to FFEA in Section 2, and
demonstrate its consistency with the Fluctuation Dissipation Theorem. In
Section 3, we validate FFEA by simulating the deformation of a simple rod
and comparing with the expected analytical result. In Section 4, we demon-
strate the application of FFEA to model a protein for which only low reso-
lution structural data exists.

2. Mathematical Background

2.1. The Continuum Model

Fluctuating Finite Element Analysis (FFEA) treats a macromolecule as a
continuous medium of density ρ subject to thermal noise, viscous dissipation
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and elasticity. redIn a recent paper Wang and Zocchi [19] have shown that a
folded protein behaves as a viscoelastic solid with an elastic modulus of the
order of 10 MPa and a relaxation time of order 10−2 s. At the timescales
of interest to molecular biology (nanoseconds to microseconds) the effects of
this relaxation are negligible and therefore we shall model the protein using
a Kelvin-Voigt model, in which this elastic stress acts in parallel with a high
frequency viscosity associated with short-range molecular friction. redWe in-
clude the thermal fluctuations associated with these internal hydrodynamic
interactions. However, we shall neglect the effects of hydrodynamic inter-
actions mediated through the surrounding solvent. The equation of motion
connecting the velocity ui to the stress σij at all points in the material can be
represented by continuum fields. Using indices to refer to spatial direction,
the equation of motion is then:

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
=

∂σij
∂xj

(1)

where
(
∂ui
∂t

+ uj
∂ui
∂xj

)
is the total time derivative of the velocity vector field

in the Lagrangian frame of the material. The stress σij can be subdivided
into three contributions:

σij = σvij + σeij + σtij (2)

σvij, σ
e
ij and σtij are the stresses due to non-conservative friction, elastic con-

servative forces and thermal fluctuations respectively. Although we use a
Kelvin-Voigt material model for deriving these stresses in the current work,
our method is not limited to this treatment; more sophisticated (and more
realistic) material models could be incorporated without altering the basic
structure of the method. However, for material models with fading memory
ensuring that the thermal noise derived in Section 2.3.1 and 2.3.2 correctly
obeys the fluctuation-dissipation theorem is more complex. We now describe
the form of the three elastic stress terms we have used (Section 2.1.1-2.1.3)
and the nature of the finite element approximation employed (in Section 2.2).
Finally, in Section 2.3 we provide additional details of the thermal noise term
σtij and demonstrate the compliance of the fluctuating finite element scheme
with the fluctuation-dissipation theorem.
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2.1.1. Viscous Stress

The material is assumed to have an isotropic linear viscous stress σvij
which can be written as:

σvij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ λ

∂um
∂xm

δij, (3)

where µ is the shear viscosity and λ is the second coefficient of viscosity,
giving a bulk viscosity µbulk = λ+ 2

3
µ.

2.1.2. Elastic Stress

In our model, we consider the simple case where the material described is
hyperelastic, so that the elastic stress σeij can be derived from a strain energy
density functional. This is written in terms of the deformation gradient
tensor F (defined as Fij = ∂xi

∂Xj
where x(X, t)) is the current position of

material initially located at X. Hence the local volume change is given by
V
V0

= det(F ). We use a formulation which includes classical rubber elasticity
and a volumetric spring that acts as a source of pressure. The strain energy
density per unit current volume is written as:

W =
G

2det(F )
tr(FF T ) +

B

2det(F )
(det(F )− α)2

− 3G

2det(F )
− B

2det(F )

(
G

B

)2

. (4)

Here G is the shear modulus, B − G
3

is the bulk modulus K, F is the de-
formation gradient tensor and α is a constant used to impose zero isotropic
stress at zero deformation, requiring that α = 1 + G

B
. From the bulk and

shear moduli, the Young’s Modulus of the material is given by E = 9KG
3K+G

.
The stress can be calculated by considering the the change in energy when

a small strain εij is applied to a portion of material, giving the stress tensor:

σeij =
1

det(F )

∂(Wdet(F ))

∂εij

=
G

det(F )
FikF

T
kj +B(det(F )− α)δij. (5)
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We have assumed that the effect of the thermal noise on the elasticity
of the material is small compared to the uncertainty in the known elastic
moduli for biomaterials (see Section 4). In general, small length scale ther-
mal fluctuations will indeed affect the effective elasticity over larger length
scales in the non-linear elastic regime. In principle, this effect should be ac-
counted for when coarse-graining if the dimensions of the finite elements are
significantly increased.

2.1.3. Thermal Stress

In particle based simulation techniques such as Molecular Dynamics or
Brownian Dynamics (BD) thermal fluctuations are included by adding a
random force to each particle in the simulation. In our method, thermal
forces are introduced via a fluctuating stress tensor σtij. Unlike the elastic
and viscous contributions, this thermal stress term is stochastic in both space
and time, with statistics chosen to balance the viscous energy dissipation.
The advantage of this approach is that in a finite element approximation the
fluctuating stress can be calculated entirely locally for the viscous stress and
still yield the correct thermal physics. In Section 2.3 we derive the fluctuation
dissipation relation for this model and show that at equilibrium the input
of energy into the system by the noise and the reduction of energy from the
viscous terms do indeed balance appropriately, and consequently that the
fluctuation dissipation theorem is satisfied.

2.2. Finite Element Approximation

In order to construct a finite element discretisation, we seek a weak form
of Equation (1) by performing a volume integral with the weight function
w(x) to give:

∫
V

ρw(x)
∂ui
∂t
dV = −

∫
V

∂w(x)

∂xj
σijdV +

∫
S

fiw(x)dS. (6)

where fi are the external surface fraction forces. This corresponds to the
standard application of the finite element method [22]. The second integral
in Equation (6) can now be evaluated by substituting in the components of
the stress.
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∫
V

∂w(x)

∂xj
σijdV =

∫
V

(
µ
∂w(x)

∂xj

∂ui
∂xj

+ µ
∂w(x)

∂xj

∂uj
∂xi

+ λ
∂w(x)

∂xi

∂uj
∂xj

)
dV

+

∫
V

∂w(x)

∂xj
σeijdV

+

∫
V

∂w(x)

∂xj
σtijdV. (7)

Equation (7) contains first order derivatives of both the velocity vector
ui and the the weight function w(x). Thus, both the functions ui and w(x)
must be differentiable over the domain of the differential equation and square
integrable. Therefore, a suitable space is such that ui, w(x) ∈ H1

0 (ω) where
ω is the domain of the differential equation in 3-space, while the tensors σeij
and σtij can be defined as σeij, σ

t
ij ∈ L2.

With the solution space now defined, we subdivide the domain ω of the
differential equation into finite elements with nodes that are fixed in the
Lagrangian frame of the material so that the velocity is expressed in the
form ui =

∑
α viαφα where φα are base vectors that span the subspace of

H1
0 (ω) so that,

Dui
Dt

=
∑
α

∂viα
∂t

φα. (8)

So, Equation(6) becomes:

Mpq
∂vq
∂t

+Kpqvq = Ep +Np, (9)

where Mp(i,β)q(j,α), Kp(i,β)q(j,α), Ep(i,β) and Np(i,β) are defined below. This
treatment corresponds to the Galerkin formulation [22] of finite element anal-
ysis where the weight functions w(x) are chosen to be the same as the basis
functions φα. We have also introduced the indices p and q as counting in-
dexes for the full dimension of the finite element system such that p can be
written as p(i, β) and q can be written as q(j, α). This gives:
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Mp(i,β)q(j,α) = δij

(∫
V

ρφαφβdV

)
, (10)

Kp(i,β)q(j,α) =

∫
V

µ
∂φβ
∂xc

∂φα
∂xc

δij + µ
∂φβ
∂xj

∂φα
∂xi

+ λ
∂φβ
∂xi

∂φα
∂xj

dV, (11)

Ep(i,β) = −
∫
V

∂φβ
∂xj

σeijdV, (12)

Np(i,β) = −
∫
V

∂φβ
∂xj

σtijdV. (13)

Equation (9) describes a linear system of Langevin equations that can be
solved for ∂vq

∂t
by inverting the the mass matrix Mpq. Physically, the different

matrices presented in Equation (9) describe each of the particular processes
that govern the behaviour of a macromolecule in FFEA. The mass matrix
Mpq describes how mass is distributed throughout the finite elements, Kpq

describes how the model dissipates energy through viscosities, Ep is an elastic
force vector and Np is a thermal force vector.

2.3. Thermal Noise

The remaining undefined quantity in Equation (9) is the fluctuating stress
tensor σtij. To derive the form of σtij we first derive the fluctuation dissipation
relation for this system.

For the case of a Kelvin-Voigt material, the derivation of the fluctuation-
dissipation theorem is simplified because the elastic stress in the model is
derived from a strain energy that depends only upon the instantaneous de-
formation of the system. Consequently, the elastic terms in this model are
conservative and the energy stored during a structural distortion is not dissi-
pated by the material. By contrast, in material models with fading memory
(such as the Maxwell model), the viscoelastic stress is dependent on the strain
history of the material. In such cases, there will be additional dissipation of
energy due to memory effects within the material, and the derivation of the
corresponding fluctuation-dissipation theorem is less straightforward.

2.3.1. Fluctuation Dissipation Theorem

The overall equation of motion of the macromolecule is comprised of a
linear system of Langevin equations. Deriving the fluctuation dissipation
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relation for this specific system is necessary to provide the statistics of Np.
We can re-write Equation (9) as:

Mpα
∂vα
∂t

= Np −Kpγvγ −∇pU(x). (14)

where the elastic vector Ep has been re-written in the form Ep = −∇pU(x),
such that the potential U is the strain energy. We have relabeled the dummy
indices from q to α and γ for clarity. We use the summation convention in
Equation (14) throughout this section.

The derivation of the fluctuation dissipation theorem first considers the
total kinetic energy Ek of the system:

Ek =
vαMαβvβ

2
. (15)

Equation (15) is exact within the discretised finite element framework. The
probability of finding the system with a given given kinetic energy is therefore
proportional to:

P ∼ exp(−vαMαβvβ
2kBT

). (16)

Since this is a generalised normal distribution, it follows that the second
moment average of the node velocities must, at equilibrium, be:

Qpq = 〈vpvq〉 = kbTM
−1
pq , (17)

which is the equipartition theorem for this system. Equation (17) is exact
within the discretised finite element framework, so the fluctuation dissipa-
tion theorem derived from it is also exact. However, in practice numerical
errors will occur due to the numerical integrator, as is discussed in Section
3.1.1. The derivation of the fluctuation dissipation relation for this system
follows by analyzing fluctuations in the energy variable Qpq, considering its
change ∆Qpq during time step ∆t (with the intention of letting ∆t become
infinitesimally small) such that:

∆Qpq = 〈∆vpvq + vp∆vq + ∆vp∆vq〉 = 0, (18)

where from Equation (14):

∆vp = ∆tM−1
pα (Nα −Kαγvγ +∇αU(x)). (19)

Thus, the terms on the right hand side of Equation (18) are given by:
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∆vpvq = ∆tM−1
pα (Nα −Kαγvγ +∇αU(x))vq, (20)

vp∆vq = vp∆tM
−1
qδ (Nδ −Kδεvε +∇δU(x)), (21)

and finally:

∆vp∆vq = ∆t2M−1
pα (Nα−Kαγvγ+∇αU(x))M−1

qδ (Nδ−Kδεvε+∇δU(x)). (22)

To evaluate the ensemble averages of Equations (20), (21) and (22) to
order ∆t we note 〈vp〉 = 0, and that:

〈M−1
pα∇αUvq +M−1

qδ ∇δUvp〉 = 0. (23)

Because at equilibrium the total energy of the system is simply the sum
of the kinetic and potential energies, the probability of finding the system
in any given microstate is also the product of the probability distributions
describing the range of potential and kinetic energies the system can adopt.
Therefore, the potential and velocity terms are uncorrelated at equilibrium.
Since the kinetic energy contains only terms quadratic in vp, it follows that
〈vp〉 = 0, so Equation (23) must hold. Equations (20)-(22) then simplify to:

〈∆vpvq〉 = −∆tM−1
pαKαγ〈vγvq〉

= −∆tkBTM
−1
pαM

−1
γq Kαγ, (24)

〈vp∆vq〉 = −∆tM−1
pδ Kδε〈vpvε〉

= −∆tkBTM
−1
qδ M

−1
pε Kδε, (25)

〈∆vp∆vq〉 = ∆t2M−1
pαM

−1
qδ 〈NαNδ〉. (26)

Direct substitution of Equations (24)-(26) into (18) leads to the following,

∆t2〈M−1
pα NαM

−1
qδ Nδ〉 = ∆tkBT (M−1

pαKαγM
−1
γq +M−1

qδ KδεM
−1
pε ). (27)
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Multiplying through by the mass matrix gives:

∆t2〈δpαNαδqδNδ〉 = ∆tkBT (δpαδγqKαγ + δqδδpεKδε), (28)

and so,

〈NpNq〉 =
kBT

∆t
(Kpq +Kqp) (29)

which is the fluctuation dissipation relation for the equation of motion in
Equation (14).

redAs a further check on this result, we note that equation (14) can be
cast as a stochastic differential equation:

reddvp = −M−1
pαKαβvβdt−M−1

pα∇αU (x) dt+BpαdWα (30)

redwhere the dWα are increments in a set of independent Weiner processes.
Our derived fluctuation-dissipation relation (29) is equivalent to

redDpq = BpαB
T
αq = kBTM

−1
pαM

−1
qβ (Kαβ +Kβα) . (31)

redThe node velocities are coupled to the node positions via

reddxp = vpdt. (32)

redIt can be shown [23, equation 3.79] that the coupled stochastic differ-
ential equations (30) and (32) are equivalent to the Fokker-Planck equation
for evolution of the probability distribtion ψ (x,v) of the position and veloc-
ity vectors:

red
∂ψ

∂t
=

∂

∂vp

[(
M−1

pαKαβvβ +M−1
pα

∂U (x)

∂xα

)
ψ

]
− ∂

∂xp
(vpψ) +

1

2

∂

∂vp

∂

∂vq
(Dpqψ) .

(33)
redIt is a straightforward, if lengthy, exercise to demonstrate that the

steady state of (33) is

redψ (x,v) = A exp

(
−U (x)

kBT
− vpMpqvq

2kBT

)
(34)

redwhich is the expected Boltzmann distribution.
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2.3.2. Fluctuation Dissipation Relation for Linear Elements

In order to solve Equation (29) and derive the nature of the thermal stress
tensor σtij, we must choose a set of basis functions φα. The simplest choice
of basis functions are those of a linear tetrahedron. Equation (11) provides
an explicit expression for the viscous matrix Kpq:

Kpq =

∫
V

µ
∂φβ
∂xc

∂φα
∂xc

δij + µ
∂φβ
∂xj

∂φα
∂xi

+ λ
∂φβ
∂xi

∂φα
∂xj

dV. (35)

In the case of linear elements the derivatives of the basis functions are
constants and Equation (29) can easily be simplified. In order to satisfy the
fluctuation dissipation relation, we must assign an appropriate form to the
fluctuating stress tensor σtij that is δ-correlated in space and time. Firstly,
σtij must be symmetric such that σtij = σtji and must consist of at least 7
independent stochastic processes. The solution we have found has a total of
7 distinct stochastic processes and is of the following form:

σtij =

(
2kBT

V∆t

) 1
2 (
µ

1
2Xij + λ

1
2X0δij

)
. (36)

where Xij is a stochastic tensor containing 6 independent stochastic processes
such that Xij = Xji and X0 is a stochastic variable independent of any
variable in Xij such that:

〈Xij〉 = 0, (37)

〈X0〉 = 0, (38)

〈XijXkl〉 = δikδjl + δilδjk, (39)

〈X0X0〉 = 1, (40)

〈XpXij〉 = 0. (41)

Note that the correlation function for the shear noise in Equation (39) is
equivalent to that used by Sharma and Patankar [21].

The thermal stress tensor is δ-correlated in both space and time.The spa-
tial δ-correlation is ensured by the finite element discretisation of the system,
which guarantees that each element is independent of all the others. Since
the viscous dissipation within a single element depends only upon the instan-
taneous deformation rate, there is no dependence on history of deformation
and the fluctuations must also be δ-correlated in time.
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We now show that this choice satisfies Equation (29) and thus verify that
for this Kelvin-Voigt material model the fluctuation dissipation theorem is
obeyed. Note that we also convert from the p and q notation back to i, β
and j, α so that the resulting matrices from Equation (29) can be directly
compared.

〈Np(i,β)Nq(j,α)〉 = 〈
∫
V

∂φβ
∂xc

σticdV

∫
V

∂φα
∂xd

σtjddV 〉 (42)

= V 2∂φβ
∂xc

∂φα
∂xd
〈σticσtjd〉 (43)

We now substitute Equation (36) into Equation (43), also using Equations
(37)-(41), to yield the following:

〈NpNq〉 =

(
2kBTV

∆t

)(
µ
∂φβ
∂xc

∂φα
∂xc

δij + µ
∂φβ
∂xj

∂φα
∂xi

+ λ
∂φβ
∂xi

∂φα
∂xj

)
=

(
kBT

∆t

)∫
V

2µ
∂φβ
∂xc

∂φα
∂xc

δij + 2µ
∂φβ
∂xj

∂φα
∂xi

+ 2λ
∂φβ
∂xi

∂φα
∂xj

dV

=

(
kBT

∆t

)
(Kpq +Kqp) (44)

where the factor of two arises because the viscosity matrix Kpq is symmetric.
This simple solution for the thermal stress tensor is valid only for linear ele-
ments because is assumes that the compression across an element is uniform.

For second (and higher) order elements, we have found it significantly less
straightforward to obtain fluctuating stress terms satisfying the fluctuation
dissipation relation. The difficulty arises because the derivatives of the basis
functions are no longer constant, so the simple rearrangements in Equation
(42) to (44), where the integrals are trivial, are no longer possible. In general,
the fluctuating stress terms for second (and higher) order elements depend in
a non-trivial manner on the shape of the element, making them impractical
for our computational scheme. In Section 3.1.5 below we present a simple
scheme which allows elastic contributions to the stress to be treated using
second-order elements, whilst retaining a first-order scheme for viscous and
thermal stresses.
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3. The Numerical Method and its Validation

As discussed in Section 2 the finite element treatment of the stresses
shown in Equation (2) results in an equation of motion for the system that
is a linear system of Langevin equations:

Mpq
∂vq
∂t

= Kpqvq + Ep +Np. (45)

Equation (45) can then be numerically integrated using a standard time
integrator such as Runge-Kutta (RK), velocity Verlet or Euler. An example
of a simple loop to iteratively perform a time step is given below.

1. Characterise the initial conditions such as starting position and struc-
ture of the finite element mesh.

2. Calculate Mpq, Kpq, Ep, Np and M−1
pq .

3. Evaluate the new velocity vector and node positions using a time inte-
grator.

The computational bottleneck in this loop is the calculation of the re-
quired matrices and vectors. However, that part of the algorithm can easily
be parallelised. The matrices are symmetric which reduces the computational
load. Since the the mass matrix and its inverse remain constant through the
simulation, they only need to be calculated once at the start of the simula-
tion.

3.1. Validation of the Continuum Model

To validate the results derived in Section 2 and to demonstrate that the
numerical algorithm reproduces the thermal physics of the system correctly,
we have tested that the average kinetic and average potential energies con-
verge to values required by the classical equipartition theorem for sufficiently
small integration timesteps red(Section 3.1.1) redand that the Gaussian nodal
velocity distributions match the theoretical result (Section 3.1.2). To show
that the method gives the expected changes in conformation of a thermally
fluctuating mesoscopic object, we have used Euler Beam Theory to show
that the average amount of potential energy found in the first two Fourier
modes of a long beam also agrees with the equipartition value red(Section
3.1.3-3.1.4) redand that the distribution of the fourier amplitudes matches
the theoretical distribution (Section 3.1.5). redFinally, we have tested that
that the anisotropy of the inertia tensor converges as the mesh resolution
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is increased to demonstrate spatial convergence of the new method (Section
3.1.8).

3.1.1. Testing the Average Potential and Kinetic Energies

The average potential and kinetic energy depends on the number of de-
grees of freedom the system possesses. As this model only includes internal
forces there is no solid body rotation or translation, effectively freezing out
six degrees of freedom. Thus if n is the number of nodes in the system, the
total number of kinetic and potential degrees of freedom is 3n−6. Therefore,
from equipartition the average kinetic energy is given by:

〈Ekin〉 =
(3n− 6)kBT

2
. (46)

If deformations are small then only harmonic terms in the elastic energy
are important and the average potential energy becomes:

〈Epot〉 =
(3n− 6)kBT

2
. (47)

The kinetic energy and potential energy for the system are then defined
as follows:

Ekin =
vpMpqvq

2
, (48)

U =
∑
γ

∫
V0

G

2
tr(FF T )γ +

B

2
(det(F γ)− α)2 dV0

+
∑
γ

∫
V0

−3G

2
− B

2

(
G

B

)2

dV0. (49)

Here the sum over γ represents a sum over all the elements in the system
and V0 is the rest volume of each individual element.

Dimensionless systems were considered, in which the density, viscosities,
µ and λ and elastic moduli G and B were set to unity throughout, with
kBT = 0.0001 to ensure small deformations. To test that the kinetic and po-
tential energies comply with equipartition, we performed a simulation of a 54
element cylindrically meshed beam, which was constructed using the GMSH
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Figure 1: Convergence of the kinetic and potential energy averages as a function of the
time step of a 54 element cylindrical mesh, where the unit time step is ∆t0=0.0001. This
graph displays that as the time step decreases the error in the average energy in each
quadratic degree of freedom tends to zero.

package [24]. The finite element mesh was firstly equilibrated from the ini-
tial configuration, and then the average kinetic and potential energies were
calculated. The simulation was performed using 4 different time integrators;
Euler, velocity Verlet, second order Runge-Kutta (R2) and forth order Runge
Kutta (R4). Figure 1 shows the percentage error in the energies as a func-
tion of the integration time step. The simulations were continued until the
sampling errors in the average kinetic and potential energies were sufficiently
small that the trends in Figure 1 could be clearly observed (this required 4
million timesteps for equilibration, and 20 million timesteps production run).
The simulation performed with all four integrators gives the correct equipar-
tition value for short integration timesteps, indicating that the inclusion of
thermal fluctuations into FEA provides the expected equipartition values for
the kinetic and potential energy associated with the thermal fluctuations of
the mesoscale beam.

When longer time steps are considered, R2 and R4 reproduce the kinetic
energy reasonably accurately over all time steps considered and all four inte-
grators reproduce the potential energy to within 1%. While R2 and R4 are
more accurate than the Euler and Verlet algorithms, they also require more
CPU time per time step; to perform a single time step using R4 requires that
the viscosity matrix Kpq and elasticity vector Ep be recalculated 4 times. In
practise, the Euler integrator often offers the best accuracy to computational
expense ratio, since an error of 1% is tolerable for most applications.

3.1.2. redNodal Velocity Distributions

redThe total kinetic energy of the system is defined in Equation (48),
which shows that the kinetic energy is quadratic in the nodal velocities of
the system. As discussed in Section (2.3.1) the distribution of the kinetic
energy is a generalised Gaussian, as shown in Equation (16). Thus, the
second moment average of the nodal velocities at equilibrium must be:
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Figure 2: redSimulated velocity distribution functions of the x, y and z components of a
representative node within a cylindrical beam, plotted against the distributions expected
theoretically. The velocities have been made dimensionless and scaled by a velocity vc =(
kBT
m

)0.5
where m is the average mass on an element in the simulation.

redQpq = 〈vpvq〉 = kbTM
−1
pq . (50)

redFrom equations (16) and (50) the distribution of the velocity in each
kinetic degree of freedom must be Gaussian with a variance given by Equa-
tion (50). In order to test this prediction we ran long timescale simulations of
a cylindrical beam, and measured the velocity distributions of nodes through-
out the system. The results for a representative node are shown in Figure
2. The agreement between the theoretical and simulated results shows that
the numerical solution to the equation of motion (1) preserves the correct
statistical physics of the system.

3.1.3. Euler Beam Theory

The energy convergence tests in Section 3.1 show that the fluctuation
dissipation relation derived in Section 2 is obeyed and that the correct the-
oretical averages for the kinetic and potential energies are obtained. These
tests do not on their own show that the set of deformations predicted by the
model are statistically correct. In order to test the conformational dynamics
predicted by the FFEA model we consider the flexing of a thin rod due to
thermal fluctuations, and compare the vibrational modes this system sus-
tains from those derived from Euler Beam Theory [25]. For a classical beam
undergoing pure bending, the equilibrium deflection h due to an external
torque τ is given by:

d2h(x)

dx2
=
τ(x)

EI
, (51)

where E is the Young’s Modulus and I is the second moment of inertia of
the area. The product EI is the flexural rigidity. Equation (51) holds for
thin beams when the deflection h(x) is small relative to the length. For a
uniform torque τ(x) the solution to Equation (51) with boundary conditions
h(0) = 0 and h(L) = 0 (where L is the beam length):
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h(x) =
τx(L− x)

2EI
. (52)

Since Equation (52) provides the solution of Equation (51) for beam un-
dergoing bending due to an external torque, we can obtain the flexural rigid-
ity EI by applying an external torque to a beam with the thermal noise
turned off in the model. The amount of work required to bend a beam
according to the function h(x) is given by:

W =
EI

2

∫ L

0

(
∂2h(x)

∂x2

)2

dx. (53)

If τ = 0 at both ends of the beam so that ∂2h
∂x2

= 0, h(x) can be expressed as
a Fourier sine series:

h(x) =
∑
p

hp sin
(pπx
L

)
. (54)

Substituting Equation (54) into (53) gives the amount of work done in each
of the mutually orthogonal Fourier modes that correspond to a degree of
freedom of the system, so that:

W =
∑
p

Wp, (55)

where:

Wp = h2p

(
EI

4

)(pπ
L

)4
L. (56)

Therefore, from equipartition of energy it follows that if the beam is subject
to thermal fluctuations then:

〈Wp〉 =
kBT

2
. (57)

3.1.4. Numerical Calculations for Beam Bending

We tested a total of eight finite element meshes; three have a hexagonal
cross-section, four octagonal and one square (See Figure 3). The hexagonal
and octagonal beams have a maximum radius of 10nm, the square beam
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Figure 3: The eight beam meshes used to test configurational fluctuations in FFEA. Only
the surface meshes of Hex2 and Hex3 are the same, internally the element structure is
different. Similarly, for Oct2 and Oct3 the internal nodes are placed slightly differently
to ensure the the results obtained are independent of the arrangement of finite elements.
Oct4 is the beam mesh used to perform the fine grained calculations in Section 3.2.3 and
the square beam mesh is used in the second order element scheme described in Section
3.2.4. For the square beam mesh, all the linear elements in the system within the second
order element structure are shown.

has sides of length 10nm and all beams have a total length L of 160nm. In
all simulations the viscosities were set to 3 times that of water, the elastic
moduli G and B were set to 10MPa, giving a Young’s modulus of 20MPa
and the density used was that of water. Thus, these simulations reproduce
the thermal fluctuations of a hypothetical ”nanogel” beam. The numerical
tests are divided into two sections. First, we determine the flexural rigidity
EI of the beams. This tests the influence of the mesh resolution, and in
addition investigates the effect of different finite element meshes. Secondly,
we obtain the average energies in the first and second Fourier modes to
confirm that the deformations of the beams obey the correct statistics.
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To determine the flexural rigidity an external torque τ was applied to the
end of each beam and the thermal noise term was switched off. Prior to finite
element discretisation, the governing continuum equation for this system is:

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
=
∂σvij
∂xj

+
∂σeij
∂xj

+ τi. (58)

To impose a torsional stress on each beam, a torque τ of magnitude τ =
5x · 10−20Nm (where x is the linear distance from the central axis of the
beam) was applied to the end faces only. Stress free boundary conditions
were used elsewhere. The results of these eight calculations are presented in
Table 1.

Table 1: Flexural Rigidity Results for Different Meshes

Beam (EIx)Simulated

(EIx)Theory

(EIy)Simulated

(EIy)Theory

Hex1 1.70 1.70
Hex2 1.60 1.60
Hex3 1.82 1.75
Oct1 1.61 1.50
Oct2 1.48 1.48
Oct3 1.48 1.48
Oct4 1.30 1.26

Square 1.00 1.00

For linear finite elements the flexural rigidity of the long thin beams is
larger than predicted theoretically. This is a consequence of there being
only a small number of linear elements across each cross-section, which arti-
ficially stiffens the rods. We have devised two solutions to correct this over
estimation of the flexural rigidity for linear finite elements. One solution
(discussed in Section 3.1.6) utilises a refined linear mesh with more finite el-
ements spanning the diameter of the beam thus improving the interpolation
of displacements. The second (discussed in Section 3.1.7) uses second order
elements to describe the displacements and elastic stresses.

Now that the flexural rigidity of each beam has been obtained (see Ta-
ble 1), the thermal noise is reintroduced so that the Fourier modes can be
extracted. The temperature of the system was set to be 300K. To maintain
small deformations, kBTL

EI
is set to be approximately 10−3. With stress free
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boundary conditions everywhere, the governing equation for this simulation
prior to finite element discretisation is now given by:

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
=
∂σvij
∂xj

+
∂σeij
∂xj

+
∂σtij
∂xj

. (59)

For the Hex1-3 and Oct1-3 beams, a total of 21 independent repeat sim-
ulations were performed. This ensured sufficient sampling of the first and
second Fourier modes in the x and y directions perpendicular to the beam
axis. There are two important timescales in this system; the oscillatory
timescale for the first harmonic and the decay time of these oscillations. The
longest oscillatory time scales for the Hex1-3 and Oct1-3 beams are of order
10ns; the longest decay time scale for these oscillations was measured to be
around 10ns. Since the total simulation time was 1.5µs, both of these im-
portant time scales were adequately sampled. Each Fourier amplitude was
then averaged, the variance of the distribution obtained; substitution into
Equation (56) then provides the average energy of that particular Fourier
mode (see Table 2).

Table 2: Average energies in the first and second Fourier modes normalised by kBT
2 (so

that the correct theoretical answer is 1). FM1X and FM1Y denote the average energy in
the first and second Fourier modes in the X direction directions respectively, while FM2X
and FM2Y refer to the average energy in the second Fourier modes. Where the error is
given by the standard deviation of the resultant distribution of energies from each of the
21 different simulations.

Beam FM1X
(

2〈Wp〉
kBT

)
FM1Y

(
2〈Wp〉
kBT

)
FM2X

(
2〈Wp〉
kBT

)
FM2Y

(
2〈Wp〉
kBT

)
Hex1 1.014 ± 0.068 1.058 ± 0.038 1.000 ± 0.034 1.024 ± 0.032
Hex2 0.940 ± 0.064 0.982 ± 0.056 0.960 ± 0.034 0.966 ± 0.030
Hex3 0.976 ± 0.044 1.004 ± 0.062 0.910 ± 0.028 0.924 ± 0.024
Oct1 0.984 ± 0.048 0.928 ± 0.052 1.022 ± 0.030 1.052 ± 0.028
Oct2 1.026 ± 0.082 0.982 ± 0.062 1.046 ± 0.036 1.064 ± 0.042
Oct3 1.010 ± 0.076 0.906 ± 0.070 0.974 ± 0.044 0.980 ± 0.034

The results for the different meshes using the flexural rigidities from Table
1 all show good agreement with the theoretical prediction for the average
energy in the first and second Fourier bending modes. The results agree
with the theoretical average energy predicted by the equipartition theorem
within the calculated sampling error.
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Figure 4: Four different conformations adopted by the Hex1 beam due to thermal noise.

The boundary condition of no external torque ∂2h
∂x2 = 0 enables the deformations h(x) to

be measured relative to the positions of stationary beam ends.

Figure 4 shows four representative conformations of the beams sampled
from the FFEA simulations. These were obtained by plotting the centre of
mass of different sub-sections of the beam along its length relative to the
beam ends to represent the instantaneous configuration (consequently the
ends of the beams always have a total displacement of zero). Furthermore, the
deflections of each centre of mass of the beam follow a Gaussian distribution
as expected for a beam subject to thermal noise.
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Figure 5: redThe simulated Second Fourier modes are shown in green and red and the an-
alytic distribution is shown in blue. The orange and cyan lines represent ±1% error in the
analytic standard deviation of the distributions. The Fourier amplitudes are normalised
against the the second moment average of the analytic distribution, as given in Equation
(60).

From the calculation of the flexural rigidities from the finite element
meshes of the eight beams (Table 1), and the calculation of the average en-
ergies in the first two Fourier modes, we conclude that the average energies
obtained from FFEA are in agreement with theoretical predictions. However,
the linear approximation for the elements can lead to an over-estimation of
the flexural rigidity when the mesh contains too few elements. To demon-
strate that this can be corrected, we have firstly performed simulations which
retain linear elements but which employ a finer mesh, and secondly we have
derived a second order element scheme for the elasticity.

3.1.5. redDistribution of the Fourier Amplitudes

redThe Fourier amplitudes are quadratic degrees of freedom (as shown in
Equation (56)). Therefore, the distribution of the Fourier amplitudes must be
Gaussian. The variance of the distribution of each of the Fourier amplitiudes
is given by:

red〈h2p〉 =

(
kBT

2L

)(
EI

4

)−1 (pπ
L

)−4
. (60)

redFor the Oct2 beam, we computed the distribution of the Fourier am-
plitudes by running long timescale FFEA simulations and comparing the
results with Equation (60), as shown in Figure 5. The agreement between
the theoretical and experimental curves confirms that the thermal statistics
of the model are correct and consistent with the results derived in Section 2.

3.1.6. Fine Grained Mesh

To capture the bending of the beams more accurately we calculated the
flexural rigidity using an octagonal mesh with four elements across the di-
ameter of the beam (Oct 4) compared to the two used in Oct1, 2 and 3.
The same viscosities, elastic moduli and density were used as previously. As
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shown in Table 2, improving the mesh resolution halves the error in the flex-
ural rigidity measured. However, this solution is more numerically costly as
there are approximately 8 times as many elements to be considered in this
finer grained mesh.

3.1.7. Second Order Element Solution

As expected, increasing the mesh resolution does indeed improve the flex-
ural rigidity. An alternative method is to modify the FE algorithm to give
a more accurate treatment of the elasticity by including quadratic terms in
the interpolation of displacements. This requires a solution of Equation (9)
in which the elastic terms and the mass matrix are solved using second order
elements [26]. The elastic stress is calculated using 10 node isoparametric
tetrahedral elements from which Equation (12) can be solved using second
order shape functions. In general, this integral cannot be performed ana-
lytically since in the second order regime the local compression within an
element is not isotropic. Thus, the integrals need to be performed numeri-
cally using Gaussian quadrature. As discussed in Section 2.3.2, it is much
more difficult to include viscous and thermal noise terms for a second order
finite element mesh. We therefore retain a linear solution for the thermal
and viscosity terms by subdividing each quadratic element into 8 linear el-
ements, and using these sub-elements to calculate the viscous and thermal
noise terms. The viscosity matrix and thermal force vector are calculated
by subdividing each isoparametric tetrahedron into linear elements and then
performing the integrals in Equations (11) and (13) for each of the linear
sub-elements.

To test the quadratic element solution, we repeated the beam bending cal-
culations and obtained the flexural rigidity for a simple square cross-section
beam with side length 1. As shown in Table 1, the second order elements give
the expected flexural rigidity for a square cross-section to within the accu-
racy of our measurements. The use of second order elements provides a more
accurate solution than the increasing the number of linear elements, even
when the linear mesh resolution is improved by a factor of 8. Since the main
increase in the computational expense for the quadratic elements arises from
calculating the thermal and viscosity terms, which involve the contributions
from the eight linear sub-elements that make up each quadratic element, the
second order solution gives better efficiency in the trade-off between accuracy
and computational expense.
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Figure 6: redConvergence of the anisotropy of the inertia tensor as a function of the
element number. The error bars are the standard deviation of the anisotropy. Meshes
corresponding to the data points are also shown.

3.1.8. Spatial Convergence

redTo demonstrate spatial convergence of the FFEA method, we simu-
lated a series of 6 cubes with identical side length (1µm) but an increasing
number of finite elements, as shown in Figure 6. The other material param-
eters such as the viscosity, temperature and density were held constant in
all 6 simulations. The governing equation for these simulations (using stress
free boundary conditions) is given below:

redρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
=
∂σvij
∂xj

+
∂σeij
∂xj

+
∂σtij
∂xj

. (61)

redTo characterise the thermal fluctuations of each cube we calculated
the average fluctuations in the anisotropy of the inertia tensor. The inertia
tensor Iab is defined as:

redIij =

∫
V

ρ(r2δij − rirj)dV , (62)

redwhere r is the position vector relative to the centre of mass and r2 = r · r.
The inertia tensor is a positive definite symmetric tensor which therefore has
three real eigenvalues and corresponding linearly independent eigenvectors.
The anisotropy of the inertia tensor is defined as the maximum value of the
difference between any two of the eigenvalues. The results of these simula-
tions are shown in Figure 6 alongside the meshes used in each simulation. It
can be seen that with the exception of the coarsest mesh that the anisotropy
converges linearly with the inverse cube root of the number of elements. This
indicates that the error is first order with respect to the distance between
nodes, as expected for linear finite elements.

4. Application to Protein Modelling

Finally, we demonstrate the use of FFEA to model the conformational
flexibility of a globular protein using the first order element approximation

26



Figure 7: Comparison of the SAXS structural envelope and atomistic structure of the
homologue X with the equivalent finite element mesh viewed in NETGEN

to improve computational efficiency. As a representative system, we have
used the long fatty acid chain Co-A ligase enzyme from the organism Fu-
sobacterium nucleatum. To date, it has not been possible to obtain atomi-
cally detailed structural information for this protein. However, the overall
3-dimensional shape of the biomolecule has been determined using Small An-
gle X-ray Scattering (SAXS) [27]. Figure 7(a) shows the atomistic structure
of the homologous protein Archaeoglobus Fulgidus (PDB ID: 3G7S [28]),
with the SAXS structural envelope of the Co-A ligase superimposed. The
experimentally determined structural envelope was converted into a finite
element mesh using TETGEN [29], which was then further refined using
NETGEN [30]. The resulting mesh is compared with the original SAXS
structural envelope in Figure 7(b).

The material properties of the biomacromolecule were assigned based
on the existing literature values quoted for proteins, where available. The
density of a globular protein [31, 32] is around 1500kgm−3. The temperature
was set to 300K. The Young’s modulus of a number of proteins has been
measured using Atomic Force Microscopy (AFM), and values of between
40MPa and 5GPa [33 – 36] have been reported. Given that the Poisson’s
ratio for a biomolecule has been estimated to be around 0.4 [36], it is possible
to assign the bulk and shear moduli corresponding to a particular choice of
Young’s modulus. For these calculations, we tested the model using three
values of the Young’s modulus corresponding to low (450MPa), medium
(560MPa) and high (800MPa) biomolecular flexibility. The bulk and shear
moduli can then be calculated from the following, where E is the Young’s
Modulus and ν the Poisson ratio:

G =
E

2(1 + ν)
(63)

K =
E

3(1− 2ν)
(64)

redAs discussed in section (2.1), the high internal viscosities obtained through
AFM measurements are associated with viscoelastic relaxation modes [19]
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Figure 8: RMSD obtained for three different sets of elastic parameters (with rotations
removed prior to analysis).

that are much longer than the timescales of interest for our simulations.
Experiments using alternative techniques that probe the internal viscosity at
much shorter timescales [37] find much lower values for the internal viscosity
1̃0−3Pa s. Therefore, we have assumed a value that corresponds to the shear
viscosity of water, namely 10−3Pa s. The same value was used for the bulk
viscosity [38].

Prior to finite element discretisation, the governing equation for the pro-
tein model is given below in Equation (65):

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
=
∂σvij
∂xj

+
∂σeij
∂xj

+
∂σtij
∂xj

. (65)

Using the governing Equation (65), with stress free boundary conditions
and the mesh shown in Figure 7(b), FFEA analysis was performed for 500ns
for the three different choices of material parameters. Each calculation had
a run time of around 2 weeks on a single CPU. The simulation trajectories
were visualised using paraFEM [39]. On visualising the trajectories, it was
apparent that the molecule changes its orientation relative to the starting
structure, whilst conserving angular momentum, as the fluctuations in the
shape of the biomolecule cause the inertia tensor to change [40]. There-
fore, the trajectories were post-processed to reorientate the molecule prior to
analysis. The biomolecular flexibility was quantified by calculating the Root
Mean Squared Deviation (RMSD) of the co-ordinates of the mesh nodes from
their initial values during the simulations, as shown in Figure 8.

As expected, increasing the Young’s modulus from 450MPa (red line) to
800MPa (blue line) results in a smaller RMSD from the initial structure,
indicating a less flexible protein. Given that a series of 10ns atomistic MD
simulations of small proteins selected from the protein data bank obtained
RMSD values of between 1 and 6Å, the values that we obtain (2Å) are
reasonable [41–44]. Other areas of the simulation literature also support this
conclusion [42, 43] as well as the protein literature in general [44].
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Figure 9: Nine representative conformers Co-A ligase sampled from FFEA simulations
with E = 450MPa: 1. Arm swings left. 2. Small thermal disruptions to the entire trunk,
including lobe. 3. Large arm swing to the left and lobe disruption. 4. Arm sticks out of
the page and disruption to the leftward lobe. 5. Entire protein elongated by the thermal
noise. 6. Arm swings to the right. 7. Arm swings to the left and major disruption to the
shape of the arm. 8. Arm swings out of the page. 9. Elongation with change in shape of
the entire trunk.

In an analogous manner to conventional particle-based molecular dynam-
ics, but now at the continuum level, FFEA provides a series of conformers
of the protein as it undergoes thermal fluctuations. Figure 9 shows 9 repre-
sentative conformations of the protein extracted from the FFEA simulation
trajectories performed with the lowest Young’s Modulus (450MPa).
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Each of the 9 snapshots are coloured by their overall deviation from the
equilibrium configuration with the scale bar showing the displacement in
nanometers. Figure 9 shows that the ”trunk” of the protein is relatively
immobile, and undergoes minor structural disruptions while retaining its
overall shape. However, the lobe located to the left of the biomolecule moves
more significantly than other regions of the trunk as it is considerably thinner
than the main body of the protein. The most striking deformations occur
in the ”arm” at the base of the enzyme, which is highly flexible and swings
back and forth around the bottom of the molecule during the course of the
simulation. This indicates that the intermediate region between the arm and
the trunk acts as a flexible hinge region in the biomolecule. It is interesting
to note from Figure 7(a) that is it precisely in the region that FFEA predicts
should be of greatest flexibility that the homologous protein Archaeoglobus
Fulgidus has missing electron density, indicating that this region was too
mobile for its structure to be determined crystallographically.

5. Conclusions

We have developed an extension of Finite Element Analysis that includes
thermal fluctuations, and which thereby extends the applicability of this
technique from macroscopic materials to soft nano-scale objects, such as
biomacromolecules. This reduction in scale into the nanometer regime is
achieved using a local fluctuating thermal stress to apply thermal agitation
to a continuum material consistent with a Kelvin-Voigt model. The localised
nature of the thermal noise avoids the need to invert a global resistance
matrix. The algebraic derivation of the noise term has been validated by
demonstrating numerically that the algorithm applied to a simple linear beam
provides potential and kinetic energies in agreement with the fluctuation-
dissipation theorem redand that the distribution of the nodal velocities is
consistent with the analytical results expected from statistical mechanics.
Similarly, we have demonstrated that the energy in the first two Fourier
modes of a long thin beam is in agreement with the equipartition theorem
redand that the distribution of the Fourier amplitudes is consistent with that
expected. Finally, we have demonstrated spatial convergence by showing
that the anisotropy of the inertia tensor converges as a function of the mesh
resolution.

Given an overall shape of a macromolecule, and appropriate estimates for
its material properties (such the density, bulk/shear moduli and bulk/shear
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viscosities), fluctuating finite element analysis can provide a continuum dy-
namics trajectory describing the changing shape of the macromolecule as it
undergoes thermal fluctuations. The algorithm has the advantage over many
of the existing biomolecular modelling techniques, such as conventional atom-
istic simulations, in that it does not require a detailed atomic structure as
input to the calculation. Consequently, we have been able to apply FFEA
to the Co-A Ligase enzyme from the organism Fusobacterium nucleatum, for
which it has only been possible to obtain lower resolution structural informa-
tion to date. Assuming physically realistic values for the material parameters
of the protein gives RMSD values from equilibrium that are consistent with
estimates obtained for proteins from atomistic simulations [43]. However,
we have shown that changing the input material parameters, specifically the
Young’s modulus, changes the magnitude of the thermal disruptions; stiffer
proteins with a larger Young’s modulus undergo smaller thermal fluctuations.
It is extremely difficult to obtain atomically detailed experimental informa-
tion on biomolecular flexibility. However, developments in lower resolution
techniques, such as SAXS [45], cryo-electron microscopy [46], fluorescent res-
onance energy transfer labelling [47], ion-mobility mass-spectroscopy [48] and
atomic force microscopy [49] are all starting to provide dynamic information
at the mesoscopic level. FFEA uniquely offers the possibility of using compu-
tational methods to quantitatively assign mesoscale material parameters to
individual biomolecules from such experimental data by systematically vary-
ing the input parameters until they match the experimental results. Such
an analysis would allow for a quantitative comparison of the flexibilities of
biomacromolecules, which explicitly takes the shape of the molecular enve-
lope into account. For molecules where the structure is known in atomistic
detail, this will improve our understanding of the relationship between atomic
structure and global flexibility. For biomolecules which must be inherently
dynamic in order to perform their function, such as molecular motors, we
will gain new insight into the physics underlying their mechanism of action.

By providing trajectories at the mesoscopic continuum level, FFEA has
the potential to provide information complementary to that of detailed atom-
istic simulation, but at the next level up in terms of system size and sim-
ulation timescale. Although our focus is on biomolecular dynamics, FFEA
could equally well be applied to the meso-modelling of microgels [50], block
copolymers [51] or soft colloids [52]. The algorithm has been designed to be
sufficiently flexible that it will accommodate successive methodological devel-
opments to both improve its accuracy for protein modelling and to broaden
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the range of biological questions that can be addressed. We anticipate that
introducing inhomogeneous material parameters within a protein of known
secondary structure will enable us to provide a more accurate representation
of biomolecular dynamics. This is straightforward, given that there is no
requirement for the finite element mesh to be homogeneous. Moreover, tech-
niques for calculating continuum material properties from atomistic struc-
tures of biomolecules have already been reported [53]. We are currently
modifying the stress tensor (Equation (2)) and utilising the boundary ele-
ment method to include short range repulsion between macromolecular sur-
faces, attractive dispersion forces, electrostatics and exterior hydrodynamics
so that FFEA can be applied to protein-protein complexes, protein-surface
interactions and crowded macromolecular environments.
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