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ABSTRACT 

 

Objective 

Diets with high glycemic index (GI), glycemic load (GL), or high in all carbohydrates, may 

predispose to higher blood glucose and insulin concentrations, glucose intolerance and risk of 

type 2 diabetes. We aimed to conduct a systematic literature review and dose-response meta-

analysis of evidence from prospective cohorts.  

Research Design and Methods 

We searched the Cochrane Library, MEDLINE, MEDLINE in-process, Embase, CAB 

Abstracts, ISI Web of Science and BIOSIS were searched for prospective studies of GI, GL, 

and total carbohydrates in relation to risk of type 2 diabetes, up to July 17
th

 2012. Data were 

extracted from 24 publications on 21 cohort studies. Studies using different exposure 

categories were combined on the same scale using linear and nonlinear dose-response trends. 

Summary relative risks (RR) were estimated using random-effects meta-analysis. 

Results 

The summary RR was 1.08 per 5 GI units (95% confidence interval [CI]: 1.02 – 1.15, 

p=0.01), 1.03 per 20 GL units (95% CI: 1.00 – 1.05, p=0.02), and 0.97 per 50 g/day of 

carbohydrate (95% CI: 0.90 – 1.06, p=0.5). Dose-response trends were linear for GI and GL, 

but more complex for total carbohydrate intake. Heterogeneity was high for all exposures 

(I
2
>50%), partly accounted for by different covariate adjustment and length of follow-up.  

Conclusions 



Included studies were observational, so should be interpreted cautiously. However, our 

findings are consistent with protective effects of low dietary GI and GL, quantifying the 

range of intakes associated with lower risk. Future research could focus on the type of sugars 

and other carbohydrates associated with greatest risk. 

 

 



 

INTRODUCTION 

Type 2 diabetes is a leading cause of cardiovascular disease, with a global prevalence of 10% 

(1). An individual’s diet is considered to contribute to the development of type 2 diabetes, in 

particular, the capacity that foods containing carbohydrates have to increase blood glucose 

(2). It has been suggested that diets with high Glycemic Index (GI) or Glycemic Load (GL) 

may predispose to higher postprandial blood glucose and insulin concentrations, which in 

turn increase glucose intolerance and risk of eventual type 2 diabetes (3). 

 

A number of studies have indicated an association between GI, GL and type 2 diabetes(4-8), 

but there are many other large studies that find no evidence to support the hypothesis (9-11). 

Accordingly, the American Diabetes Association’s dietary guidelines for diabetes prevention 

currently state that there is insufficient consistent evidence to say that diets low in GL reduce 

diabetes risk (12). There is also considerable inconsistency in results regarding the role of 

total carbohydrate intake. 

 

Two systematic reviews have concluded that there is evidence of a positive association 

between both dietary GI and GL and risk of type 2 diabetes(13,14), but with considerable 

unexplored heterogeneity. The comparison of only the most extreme categories, based on 

different definitions in each reviewed study, introduced additional heterogeneity and 

discarded information in the middle exposure categories, leading to uncertainty regarding the 

strength of the association. Combination of different definitions of the highest and lowest 

exposure categories meant that their summary estimates could not be related to a particular 

level of exposure, limiting the applicability of results in public health terms. Furthermore, the 



review did not assess the nature of any dose-response relationship, an important criteria for 

judging the chances of any associations being causal. 

 

Results from 9 publications from 8 large prospective studies have been published since the 

most recent review, including almost 20000 cases of type 2 diabetes from over 250000 

participants. We therefore assess the evidence accumulated to date, investigating possible 

dose-response curves, and formally exploring the potential causes of heterogeneity that may 

lead to deeper understanding of the nature of the associations. 

 

METHODS 

Data sources and searches 

A comprehensive systematic literature search was conducted at the end of 2009 covering all 

prospective research providing evidence on all aspects of dietary carbohydrates and cardio-

metabolic health, including cardiovascular disease, insulin resistance, glycemic response and 

obesity. The following online databases were searched for all prospective studies published in 

English language from 1st January 1990 to 30
th

 November 2009: The Cochrane Library, 

MEDLINE, MEDLINE in-process, Embase, CAB Abstracts, ISI Web of Science and 

BIOSIS. We then updated the search, using the two primary sources (Medline, including 

Medline in-process, and Embase) up to 17
th

 July 2012. The updated search was restricted to 

cohort studies investigating GI, GL, total carbohydrate intake and type 2 diabetes (detailed 

search strategy in supplementary table 1). Hand searches of key journals, with searching of 

reference lists from included studies and previous review articles, were also conducted. The 

guidelines for conducting meta-analysis of observational studies in epidemiology were used 

throughout the design, conduct, analysis, and reporting of this review (15). A protocol was 



drafted prior to starting the review 

(http://www.sacn.gov.uk/meetings/working_groups/carbohydrate/21092009_1.html) but is 

not currently available for download. 

 

Study selection 

The first round of screening of titles and abstracts was carried out by members of the review 

team to remove publications it was immediately apparent were not relevant, such as 

editorials, single case-study reports and therapeutic approach articles. Pre-specified 

guidelines were in place to ensure consistency between separate reviewers. We extracted full-

text copies of potentially relevant articles, which were read independently by two members of 

the review team. Any disagreements were settled by a third reviewer. A structured flow chart 

and detailed guidelines were used to determine eligibility for inclusion. 

 

Only cohort studies were eligible, including nested case-control studies and case-cohort 

studies nested within a cohort. Inclusion criteria were: studies based on an adult population, 

published in the English language since 1990, with assessment of GI, GL or total dietary 

carbohydrate intake with more than two categories of exposure, with at least some control for 

confounding either by adjustment in a model or matching, type 2 diabetes as an outcome, and 

some estimate of relative risk with a measure of uncertainty such as 95% confidence 

intervals. Only studies with generally healthy participants were included, i.e. only if cohort 

participants were not recruited specifically because of ill health or a personal history of 

disease. Mean dietary exposure for cases compared to non-cases were not eligible unless they 

were adjusted means. Results for dietary patterns were not eligible if they did not quantify 

intake. Gestational diabetes outcomes were not eligible. Study selection was carried out by 



two researchers from DCG, DET, CELE, CLC, CN, and VJB, with disagreements resolved 

by a third researcher. 

 

For inclusion in dose-response meta-analysis, only studies publishing estimates of relative 

risk with associated confidence intervals, alongside a quantified measure of intake, and 

sufficient detail regarding the numbers of cases and non-cases or person-years exposure could 

be included. 

 

Data extraction and quality assessment 

We extracted the following information from the publications identified: authors, publication 

year, geographical region of the study, name by which the study is known, participants’ 

gender, age range or mean age of participants, study type (full cohort, nested case-control, or 

case-cohort), length of follow-up, numbers of cases and non-cases, method of dietary 

assessment, and method of outcome assessment, level of dietary exposure (either as mean, 

median, midpoint or range for each category or unit of increment for continuous estimates), 

the standard used to derive GI or GL (glucose or bread) estimated relative risks with 

confidence intervals, and characteristics controlled for either by modelling, matching or 

stratification. Data extraction was carried out by DCG, DET, CELE, CLC, CN, CW, and VJB 

and its accuracy checked by DET and DCG.  

 

Data synthesis and analysis 

To enable pooling of individual study results reported using different exposure categorisation, 

a linear dose-response trend was derived for each study using Greenland and Longnecker’s 

method (16,17). This method estimates study-specific dose-response slopes and associated 



confidence intervals, based on the results presented for each category of GI, GL or total 

dietary carbohydrate intake before combining into a pooled estimate. 

 

To derive the dose-response trend, we used the mean or median exposure for each category if 

this was presented and used the midpoint when exposure ranges were presented instead. 

When the lowest or highest categories were unbounded, we assumed the width of the 

category to be the same as the adjacent category when estimating the midpoint. Greenland 

and Longnecker’s method also requires the distribution of cases and person-years, or cases 

and non-cases, with relative risks and estimates of uncertainty (e.g. confidence interval) for at 

least three categories of quantified GI, GL or carbohydrate intake. Where the total number of 

cases or person-years was presented in the publication, but not the distribution, we estimated 

this based on definitions of the quantiles. The estimated exposure level (based on median, 

mean or midpoint) was then assigned to the corresponding relative risk for each study. For 

studies presenting the exposure per given unit of energy intake, we rescaled this using 

estimated energy intake for each category if this was presented. 

 

For the studies already reporting a linear dose-response trend, with a measure of precision 

such as a confidence interval or a standard error, this was used directly. Where results were 

only presented separately for men and women, these were first combined using a fixed effects 

meta-analysis before combining with other studies. This ensured that between-study 

heterogeneity was not under-estimated. All the estimated dose-response trends for each study 

were then pooled using a random effects model to take into account anticipated between-

study heterogeneity (18). In presenting the linear dose-response trend we chose an increment 



size approximately equivalent to one standard deviation in a European or US population, to 

ease comparison across exposures. 

 

To examine possible nonlinear associations, we calculated restricted cubic splines for each 

study with more than three categories of exposure, using three fixed knots at 10%, 50% and 

90% through the total distribution of reported intake, then combined using multivariate meta-

analysis (19-22). Four studies only presented results for a linear trend over a continuous 

exposure (8,10,23,24), and two studies only presented results for three categories (25,26), so 

could not be included in nonlinear dose-response analyses. 

 

We assessed between-study heterogeneity using Cochran’s Q and the percentage of total 

variation in study estimates attributable to between-study heterogeneity (I
2
) (27). Rather than 

assess study quality using a quality score, to minimise bias from confounding we excluded 

results with no adjustment for any confounding, or where only unadjusted dose-response 

trends could only be estimated. We also tabulated the following markers of risk of bias: 

adequacy of the dietary assessment tool, objectivity of ascertainment of the outcome, 

adequacy of length of follow-up, adequacy of control for confounding, and potential 

competing interests. In addition we investigated the extent to which specific study 

characteristics defined in advance, were associated with different higher or lower estimates, 

or how they potentially explained some of the heterogeneity. These characteristics included 

duration of follow-up and adjustment for pre-specified confounders, which are potential 

indicators of study quality. Potential small study effects, such as publication bias, were 

investigated with contour-enhanced funnel plots. However, with small numbers of included 



studies, exploration of sources of heterogeneity and of small study effects lack power. All 

analyses were conducted using Stata version 12 (28). 

 

RESULTS 

We identified 24 publications from 21 cohort studies that reported GI, GL, total or 

carbohydrate intake and incidence of type 2 diabetes (supplemental figure 1). One publication 

could not be used in meta-analyses because they did not quantify intake (7), one could not be 

used because they only presented results for the highest and lowest categories (29), and one 

could not be used because of the form the results were presented in the paper (30). The 

remaining 18 cohorts provided sufficient information for inclusion in dose-response meta-

analyses (supplementary table 2). The risk of bias assessment is provided in supplementary 

table 3. 

 

Nine studies were from the US, 4 from Europe, and the remainder from Australia, Japan and 

China. One cohort presented results in 3 publications (4,31,32), so we used the data in the 

most recent publication (32). A further study reported GI and load in a separate paper from 

total carbohydrate intake (11,33). For one study to be included, we estimated standard errors 

using the reported p-value and estimates (25). For another to be included, category means 

were estimated based on an assumed normal distribution with approximate mean and 

standard deviation derived from the publication (34). The exclusion of studies reporting 

unadjusted estimates had resulted in the loss of two studies presenting results for total 

carbohydrate intake that would otherwise have been included (35,36). 

 



Glycemic index 

Data were extracted from 15 publications investigating the association between GI and type 2 

diabetes (5,6,8-11,23-26,32,37-40) (figure 1a). The estimated category mean intakes ranged 

from approximately 45 to 90 units of GI, with individual studies spanning between 6 and 36 

units. The pooled estimate of relative risk from linear dose-response meta-analysis was 1.08 

(95% CI: 1.02 to 1.15) per 5 units of GI (p=0.01). There was substantial heterogeneity 

between the cohort studies (I
2
=87%, 95% CI: 80% to 92%, Q=108, df=14, p<0.001).  

 

Studies adjusting for family history of type 2 diabetes appeared to have much higher 

estimates than those not adjusting (p<0.001). The stronger association between GI and 

diabetes was restricted to those studies that adjusted for this, leading to improved 

heterogeneity within each subgroup (supplementary table 4). Estimates were largely 

consistent across the other pre-defined subgroups. The funnel plot was approximately 

symmetric, with little evidence of small-study effects such as publication bias (data not 

shown).  

Nonlinear dose-response meta-analysis showed a consistently increasing risk associated with 

increased GI (figure 1c). There was little evidence of a threshold effect in the plot. 

 

Glycemic load 

Data were extracted from 16 publications investigating the association between GL and type 

2 diabetes (5,6,8-11,23,25,26,32,34,37-41) (figure 1b). The estimated category mean intakes 

ranged from approximately 55 to 245 units of GL, with individual studies spanning between 

48 and 190 units. The pooled estimate of relative risk from linear dose-response meta-

analysis was 1.03 (95% CI: 1.00 to 1.05) per 20 units of GL (p=0.02). There was moderate 



heterogeneity between the cohort studies (I
2
=54%, 95% CI: 19% to 74%, Q=33, df=15, 

p=0.005).  

 

As with GI, studies that adjusted for family history had higher estimates than those that did 

not adjust for this covariate (p=0.03), with stronger associations between GL and diabetes 

apparent in those studies that did adjust for family history. Stratifying by family history 

improved heterogeneity within each subgroup (supplementary table 4). Longer follow-up was 

associated with stronger associations between GL and type 2 diabetes (p=0.03). Estimates 

were largely consistent across the other pre-defined subgroups. The funnel plot was 

approximately symmetric, with little evidence of small-study effects such as publication bias 

(data not shown).  

 

Nonlinear dose-response meta-analysis showed a consistently increasing risk associated with 

increased GL (figure 1d). There was little evidence of a threshold effect in the plot. 

 

Total carbohydrate 

Data were extracted from 8 studies investigating total carbohydrate intake and type 2 diabetes 

(5,8,9,23,24,32,33,42) (figure 1c). The estimated category mean intakes ranged from 

approximately 130 to 340 grams, with individual studies spanning between 72 and 210 

grams. The pooled estimate of relative risk from linear dose-response meta-analysis was 0.97 

(95% CI: 0.90 to 1.06) per 50 grams per day of total dietary carbohydrate intake (p=0.5). 

There was substantial heterogeneity between the cohort studies (I
2
=75%, 95% CI: 50% to 

88%, Q=28, df=7, p<0.001). 

 



Estimates were largely consistent across pre-defined subgroups, though there was a tendency 

for studies with longer follow-up to have larger estimates (supplementary table 4). The funnel 

plot was approximately symmetric, with little evidence of small-study effects such as 

publication bias (data not shown). 

 

Nonlinear dose-response meta-analysis showed a relatively flat curve over a broad range of 

typical intakes, with a suggestion of lower risks associated with higher intakes where data are 

more sparse and confidence intervals wider (figure 1f) and where studies had higher 

proportions of male participants. 

 

DISCUSSION 

We have quantified a clear positive association between both GI and GL with increasing 

incidence of type 2 diabetes. The association was stronger for GI than GL, with 

approximately one standard deviation of GI intake associated with more than twice the 

increased risk associated with GL. Compared to the data on dietary GI, the evidence base for 

GL is more inconsistent in terms of direction of association.  

 

Despite use of linear dose-response trends to combine studies using different exposure 

categorisations, heterogeneity was still high for all exposures. Exploration of this 

heterogeneity by investigating the estimates in different pre-defined subgroups suggested that 

adjustment for family history of diabetes was potentially important, with studies that did not 

adjust for it having much lower estimates for the association between GI, GL and type 2 

diabetes. 

 



Whilst these findings are consistent with those of two previous systematic reviews (13,14), 

our review is the first to quantify the strength of the association, the first to explore some of 

the heterogeneity in results, the first to remove some of this heterogeneity by combining 

dose-response trends, and the first to investigate possible nonlinear associations. We have 

included results from 9 publications from large prospective studies that have been published 

since the most recent review, and these include almost 20000 more cases of type 2 diabetes 

from over 250000 more participants, further strengthening the evidence on which our 

conclusions are based. 

 

Meta-analysis of observational studies is susceptible to the same biases that the studies they 

contain are prone to, so the pooled estimate may still contain an element of bias to the extent 

that the studies reviewed are biased. In particular, all the studies reviewed used some form of 

self-reported dietary exposure and therefore susceptible to potentially large measurement 

error. In addition, many adjusted for self-reported dietary covariates, so may not have fully 

adjusted for true intake. This could bias the associations in either direction. Furthermore, we 

cannot conclusively prove that any associations are causal on the basis of observational 

studies alone, and there may be some uncorrected confounding in some or all of the studies. 

However, the estimates we have found for GI and GL are strong with clear dose-response 

trends, and there was no evidence of any small-study effects such as publication bias. 

 

Given the limited nature of databases of GI values for foods, assigning a GI to an individual’s 

diet as captured by a FFQ is potentially problematic. Typically, GI values for each food item 

in a questionnaire were taken from the 2002 international table of GI values of foods (43). 

Broad groupings of foods within each FFQ item sometimes necessitates the allocation of an 



average GI for that item, and this has led some to express concerns about the appropriateness 

of using FFQ-derived GI and GL values to explore disease associations (44). The dietary GI 

of a food is subject to considerable variation dependent upon the extent of processing, 

cooking method and duration, extent of starch gelatinisation, ripeness and storage duration 

(45). Further issues concern whether foods consumed together impact on each other to alter 

the GI of the whole meal (46).  This exposure is therefore potentially prone to measurement 

error bias. The estimation of GL requires the additional estimate of the amount of 

carbohydrate in the diet, providing greater scope for dilution of results through measurement 

error bias.  

 

Even though the estimated absolute values of GI and GL are probably not accurate estimates 

of actual values in many studies, we have still used them so that the different studies can be 

combined on the same scale, and dose-response trends and nonlinear trends can be estimated. 

However, in interpreting these the emphasis should be on the relative ranking as much as on 

the estimated GI and GL. 

 

A wide range of exposures were reported across the publications, though the intakes reported 

by individual studies generally varied by smaller amounts. This may reflect the variety of 

dietary assessment tools leading to different amounts of measurement error in each study, or 

may be because of contrasting populations, different diets and phenotypes. 

 

In general the GL of a diet is likely to be partly related to the dietary fibre content, and this 

means that it is difficult to dissociate the effects of GL from the fibre content. In the studies 

we reviewed, adjustment for fibre tended to be associated with larger estimates where this 



was done (5,6,9), suggesting that other studies may have underestimated the association, and 

our pooled estimate may be an underestimate. Similarly, GI and GL may reflect other aspects 

of dietary quality, such as saturated fat intake, with findings partly reflecting some other 

dietary characteristics. It is quite likely that higher carbohydrate intakes may substitute for fat 

or protein, whilst maintaining a constant energy intake. This is another example where 

observational studies are unable to assign causality, and it is the same with their meta-

analysis. 

 

Inconsistencies in results for total carbohydrate intake and type 2 diabetes may be due to 

differences in the main sources and types of carbohydrate consumed or other differences in 

dietary practices between European, US, Chinese and Australian cohorts. It might also reflect 

the possibility that healthier, more active people are consuming more carbohydrate. An 

alternative explanation may relate to differences between both the amount of carbohydrate 

consumed and the type of carbohydrate eaten, with different cohorts also having different 

proportions of men and women.  

 

This may also account for any nonlinear appearance of the dose-response plot, with studies 

reporting higher intakes of total carbohydrates having different sources of carbohydrate in the 

diet than those reporting lower intakes. Nonlinear dose-response curves are susceptible to 

cohorts with different ranges of intake leading to the appearance of a nonlinear curve. In this 

situation, differences in design or population can cause the appearance of nonlinearity. 

However, there is a reasonable spread of carbohydrate intakes over a number of studies 

included in the meta-analysis, so this is unlikely to have occurred in this review. 

 



Our findings are consistent with, and contribute to, a growing body of evidence for the 

protective associations with low dietary GI and GL. Our results have quantified for the first 

time the range of exposures associated with lower risk, and quantified the risk reduction 

associated with specified differences in GI and GL. Results for carbohydrates more generally 

are less clear, and future research could focus in more detail on the source and composition of 

carbohydrates associated with greatest risk. 
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Figure legend 

 

Figure 1. Glycemic Index, glycemic load, total carbohydrate intake and estimated relative risk of type 

2 diabetes. Forest plots of linear dose-response trends with pooled estimates from random effects 

meta-analysis (A to C). Increments used are approximately one standard deviation. Summary 

nonlinear dose-response curves (D to F). The median intake is used as the reference category. Tick 

marks on the horizontal axis indicate the location of category medians, means or midpoints for 

included studies. 
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Supplemental table 1. Search strategies. 

Medline 
 
1. exp cohort studies/ 
2. cohort$.tw. 
3. epidemiologic methods/ 
4. or/1-3 
5. (animals not (humans and animals)).sh. 
6. 4 not 5 
7. exp dietary carbohydrates/ 
8. carbohydrat$.ab,ti. 
9. ((glucose or fructose or lactose or maltose or sucrose) adj3 (diet$ or intake$)).tw. 
10. sugar$.ab,ti. 
11. sucrose/ 
12. monosaccharide$.tw. 
13. disaccharide$.tw. 
14. isomaltose/ 
15. maltose/ 
16. glycemic index/ 
17. ((index or load) adj3 glyc?emic).tw. 
18. ((diet$ or low or high) adj3 GI).tw. 
19. ((diet$ or low or high) adj3 GL).tw. 
20. or/7-19 
21. Diabetes Mellitus, Type 2/ 
22. (type 2 adj3 diabetes).tw. 
23. (type II adj3 diabetes).tw. 
24. (inciden$ adj3 diabetes).tw. 
25. or/21-24 
26. 6 and 20 and 24 
27. limit 26 to english language 
28. limit 27 to yr="2009 -Current" 
 



 

Embase 
 
1. exp Cohort Studies/ 
2. epidemiology/ 
3. cohort$.tw. 
4. exp carbohydrate diet/ 
5. exp carbohydrate intake/ 
6. exp carbohydrate intake/ 
7. carbohydrat$.tw. 
8. ((glucose or fructose or lactose or maltose or sucrose) adj3 (diet$ or intake$)).tw. 
9. sugar$.tw. 
10. sucrose/ 
11. monosaccharide$.tw. 
12. disaccharide$.tw. 
13. isomaltose/ 
14. maltose/ 
15. glycemic index/ 
16. glycemic load/ 
17. ((index or load) adj3 glyc?emic).tw. 
18. ((diet$ or low or high) adj3 GI).tw. 
19. ((diet$ or low or high) adj3 GL).tw. 
20. non insulin dependent diabetes mellitus/ 
21. or/1-3 
22. or/4-19 
23. 21 and 22 and 20 
24. limit 23 to english language 
25. limit 24 to yr="2009 -Current" 

 

 

 



 

Supplemental figure 1. Article retrieval and screening process for original SACN literature search (all carbohydrates and cardio-metabolic diseases) and 

update search (incident type 2 diabetes and GI, GL, or total dietary carbohydrate intake. 





 

 

Supplemental table 2. Characteristics of studies included in meta-analyses of glycemic index, glycemic load, or carbohydrate intake and incidence of type 2 

diabetes. 

Author, year, region Study name Participant 

characteristics 

Follow-up Case/total Exposure 

ascertainment 

Outcome ascertainment Exposures 

Barclay et al., 2007, 

Australia (24)  

Blue Mountains Study Age 49+, mean age 

65, 44% male 

10 years 138/3654 FFQ (145 item) Self-report and current 

medication, or fasting 

glucose ≥126 mg/dl 

GI, total 

carbohydrate 

Hodge et al, 2004, 

Australia (23)  

Melbourne 

Collaborative Cohort 

Study 

Age 27-75, mean age 

54, 41% male, multi-

ethnic 

4 years 365/41528 FFQ (121 items) Fasting blood glucose GI, GL, total 

carbohydrate 

Hopping et al, 2010, 

USA (34)  

Multiethnic Cohort 

Hawaii 

Age 45-75, 48% 

male 

14 years 8587/75512 FFQ (178 items) Confirmed self-report GL 

Krishnan et al, 2007, 

USA (6) 

Black Women’s Health 

Study 

Age 21-69, 0% male, 

black 

8 years 1938/40078 FFQ (68 items) Self-reported GI, GL 

Meyer et al, 2000, 

USA (9) 

Iowa Women’s Health 

Study 

Age 55-69, mean age 

61, 0% male 

6 years 1141/35988 FFQ (127 items) Self-reported GI, GL, total 

carbohydrate 

Mosdol et al, 2007, UK 

(38) 

Whitehall II Study Mean age 50, 71% 

male 

13 years 329/7321 FFQ (127 items) Glucose tolerance test GI, GL 

Sahyoun et al, 2008, 

USA (39) 

Health, Ageing, and 

Body Composition 

Mean age 75, 46% 

male, multi-ethnic 

6 years 99/1898 FFQ (108 items) Multiple methods GI, GL 



Study 

Sakurai et al, 2012, 

Japan (40) 

 Age 35-55, 100% 

male, factory 

workers 

6 years 133/7604 FFQ (147 items) Confirmed self-report GI, GL 

Salmeron et al, 1997a, 

USA (4) 

Health Professionals 

Follow-up Study 

Age 40-75, 100% 

male 

6 years 523/42759 FFQ (131 items) Confirmed self-report GI, GL, total 

carbohydrate 

Salmeron et al, 1997b 

(5), Halton et al, 2008 

(31), Mekary et al, 

2011, USA (32) 

Nurses’ Health Study Age 40-65, 0% male 26 years 6950/81827 FFQ (134 items) Confirmed self-report GI, GL, total 

carbohydrate 

Schulz et al, 2006, 

USA (25) 

Insulin Resistance 

Atherosclerosis Study 

Age 40-69, mean age 

55, 46% male, multi-

ethnic 

5 years 146/892 FFQ (114 items) Glucose tolerance test GI, GL 

Schulze et al, 2004, 

USA (37) 

Nurses’ Health Study II Age 25-44, 0% male 8 years 741/91249 FFQ (133 items) Confirmed self-report GI, GL 

Schulze et al, 2008, 

Germany (42) 

EPIC Potsdam Age 35-65, 40% 

male 

7 years 846/27548 FFQ (148 items) Confirmed self-report Total 

carbohydrate 

Simila et al, 2011 (11), 

Simila et al, 2012, 

Finland (33) 

Alpha-tocopherol, 

Beta-carotene Cancer 

Prevention Study 

Age 50-69, 100% 

male, smokers 

12 years 1098/25943 FFQ (276 items) Confirmed self-report GI, GL, total 

carbohydrate 

Sluijs et al, 2010, The 

Netherlands (8) 

EPIC Netherlands Mean age 51, 26% 

male 

10 years 915/37846 FFQ (178 items) Confirmed self-report GI, GL, total 

carbohydrate 



Stevens et al, 2002, 

USA (10) 

Atherosclerosis Risk in 

Communities (ARIC) 

study 

Age 45-64, mean age 

54, 44% male, multi-

ethnic 

9 years 1447/15792 FFQ (66 items) Fasting glucose ≥126 

mg/dl or non-fasting 

glucose ≥200 mg/dl 

GI, GL 

van Woudenbergh et 

al, 2011, The 

Netherlands (26) 

The Rotterdam Study Age >55, mean age 

67, 40% male 

12-15 

years 

456/4366 FFQ (170 items) Plasma glucose 

≥7.0mmol/L, random 

plasma glucose  

≥11.1 mmol/L, diabetes 

medication, or diet  

GI, GL 

Yu et al, 2011, China 

(41) 

Hong Kong Dietary 

Survey 

Age 25-74, 48% 

male 

12 years 74/690 FFQ (266 items) Confirmed self-report GL 

 



 

Supplemental table 3. Risk of bias assessment for PRISMA checklist. 

Author, year, region Study name Adequate dietary 

assessment tool * 

Objective 

outcome 

ascertainment † 

Adequate 

follow-up ‡ 

Adequate 

adjustment for 

confounding § 

Potential 

competing 

interest || 

Barclay et al., 2007 (24)  Blue Mountains Study Y Y Y N Y 

Hodge et al, 2004 (23)  Melbourne 

Collaborative Cohort 

Study 

Y Y N Y N 

Hopping et al, 2010 (34)  Multiethnic Cohort 

Hawaii 

Y Y Y Y N 

Krishnan et al, 2007 (6) Black Women’s 

Health Study 

N N N Y N 

Meyer et al, 2000 (9) Iowa Women’s Health 

Study 

Y N N Y N 

Mosdol et al, 2007 (38) Whitehall II Study Y Y Y Y N 

Sahyoun et al, 2008 (39) Health, Ageing, and 

Body Composition 

Study 

Y Y N Y N 

Sakurai et al, 2012 (40) Toyama factory 

workers cohort 

Y Y Y N N 



Salmeron et al, 1997a, (4) Health Professionals 

Follow-up Study 

Y Y N Y N 

Salmeron et al, 1997b (5),  

Halton et al, 2008 (31),  

Mekary et al, 2011 (32) 

Nurses’ Health Study Y Y Y Y N 

Schulz et al, 2006 (25) Insulin Resistance 

Atherosclerosis Study 

Y Y N N N 

Schulze et al, 2004 (37) Nurses’ Health Study 

II 

Y Y N Y N 

Schulze et al, 2008 (42) EPIC Potsdam Y Y N N N 

Simila et al, 2011 (11),  

Simila et al, 2012 (33) 

Alpha-tocopherol, 

Beta-carotene Cancer 

Prevention Study 

Y Y Y Y N 

Sluijs et al, 2010 (8) EPIC Netherlands Y Y Y Y N 

Stevens et al, 2002  (10) Atherosclerosis Risk 

in Communities 

(ARIC) study 

N Y N Y N 

van Woudenbergh et al, 2011 (26) The Rotterdam Study Y Y Y Y N 

Yu et al, 2011 (41) Hong Kong Dietary 

Survey 

Y Y Y Y N 



* Adequate dietary assessment was considered to be a measure that was validated, and covering at least 100 separate food items for precision. 

† Objective outcome assessment was considered to be fasting glucose, fasting or non-fasting glucose, medical records, or self-report confirmed by one of 

these objective methods. 

‡ Adequate follow-up was considered to be 10 years or more. 

§ Adequate adjustment for confounding was considered to be adjustment for age, gender and anthropometric measures. 

|| We interpreted potential competing interests in the broadest sense, according to information presented in the publication. 

*, †, ‡, §, ||, ¶, #, **, ††, ‡‡ 

 



 

Supplementary table 4. Subgroup analyses for glycemic index, glycemic load, total carbohydrate intake and incidence of type 2 diabetes.  

  Glycemic Index (per 5 units/day)  Glycemic load (per 20 units/day)  Total Carbohydrate (per 50g/day) 

Subgroup  RR (95% CI) I2 n Phet 
a Phet 

b  RR (95% CI) I2 n Phet 
a Phet 

b  RR (95% CI) I2 n Phet 
a Phet 

b 

Subjects' gender Male 1.07 (0.93, 1.24) 74% 3 .02 .7  1.02 (1.00, 1.05) 14% 4 .3 .6  0.90 (0.84, 0.96) 0% 3 .8 .3 

 Mixed 1.05 (0.99, 1.12) 42% 8 .1   1.02 (0.97, 1.07) 51% 8 .05   1.04 (0.81, 1.33) 76% 3 .02  

 Female 1.12 (0.99, 1.26) 97% 4 <0.001   1.05 (1.01, 1.09) 45% 4 .1   1.03 (0.95, 1.12) 51% 3 .1  

Standard used to derive GI 

values 

Glucose 1.09 (1.04, 1.13) 0% 4 .7   1.07 (0.99, 1.15) 76% 4 .005        

White bread 0.99 (0.94, 1.04)  1    1.01 (0.97, 1.04)  1         

Not stated 1.08 (0.98, 1.18) 91% 10 <0.001 .6  1.02 (0.98, 1.05) 41% 11 .08 .4       

Length of follow-up <10 years 1.08 (1.02, 1.14) 80% 9 <0.001   1.02 (0.99, 1.04) 0% 9 .5   0.93 (0.88, 0.98) 0% 4 .4  

 ≥10 years 1.07 (0.95, 1.20) 85% 6 <0.001 .5  1.04 (0.99, 1.08) 75% 7 <0.001 .03  1.05 (0.89, 1.22) 82% 4 <0.001 .1 

Geographic location Americas 1.09 (1.00, 1.18) 93% 8 <0.001   1.03 (1.01, 1.06) 50% 9 .04   1.02 (0.93, 1.11) 64% 3 .06  

 EU 1.00 (0.92, 1.09) 41% 4 .2   1.03 (0.89, 1.19) 79% 4 0.002   0.96 (0.83, 1.13) 76% 3 .02  

 Other 1.18 (1.07, 1.30) 0% 3 .7 .3  0.99 (0.94, 1.05) 0% 3 .7 .2  0.92 (0.79, 1.07) 33% 2 .2 .2 

Adjusted for age Yes 1.08 (1.02, 1.15) 87% 15 <0.001   1.03 (1.00, 1.05) 54% 16 .005   0.97 (0.90, 1.06) 75% 8 <0.001  

 No   0      0      0   

Adjusted for alcohol Yes 1.08 (0.99, 1.17) 90% 11 <0.001   1.03 (0.99, 1.07) 57% 12 .008   0.99 (0.90, 1.08) 77% 6 <0.001  

 No 1.06 (0.98, 1.14) 65% 4 .03 .9  1.02 (1.01, 1.04) 10% 4 .3 .9  0.92 (0.80, 1.05) 33% 2 .2 .6 

Adjusted for anthropometry Yes 1.07 (1.01, 1.14) 88% 14 <0.001   1.03 (1.00, 1.05) 54% 16 .005   0.97 (0.89, 1.06) 78% 7 <0.001  

No 1.22 (0.98, 1.54)  1  .4    0    1.03 (0.81, 1.32)  1  .7 

Adjusted for energy intake Yes 1.09 (1.02, 1.17) 89% 12 <0.001   1.03 (1.00, 1.06) 64% 12 0.001   0.98 (0.88, 1.08) 82% 6 <0.001  

No 1.03 (0.94, 1.12) 51% 3 .1 .4  1.02 (0.99, 1.04) 0% 4 .8 .9  0.96 (0.85, 1.08) 0% 2 .5 1 

Adjusted for family history Yes 1.14 (1.08, 1.21) 67% 9 .002   1.05 (1.02, 1.09) 43% 9 .08   1.02 (0.90, 1.15) 75% 5 .003  

No 0.98 (0.96, 1.00) 0% 6 .7 <0.001  1.01 (1.00, 1.03) 9% 7 .4 .03  0.92 (0.86, 0.99) 34% 3 .2 .3 



Adjusted for physical 

activity 

Yes 1.08 (1.02, 1.15) 89% 13 <0.001   1.03 (1.01, 1.06) 59% 14 .003   0.97 (0.90, 1.06) 75% 8 <0.001  

No 1.04 (0.89, 1.22) 30% 2 .2 .7  0.98 (0.88, 1.08) 0% 2 .8 .4    0   

Adjusted for gender Yes 1.08 (1.01, 1.15) 88% 14 <0.001   1.03 (1.01, 1.05) 54% 15 .004   0.99 (0.90, 1.08) 76% 7 <0.001  

 No 1.12 (0.94, 1.34)  1  .7  0.96 (0.84, 1.10)  1  .5  0.91 (0.83, 1.00)  1  .5 

Adjusted for smoking Yes 1.07 (1.01, 1.14) 88% 13 <0.001   1.03 (1.01, 1.06) 54% 15 .006   1.01 (0.93, 1.11) 68% 6 .007  

 No 1.15 (1.02, 1.29)  1  .5  0.97 (0.89, 1.05)  1  .3  0.88 (0.81, 0.94) 0% 2 .9 .1 

a
 P for heterogeneity within each subgroup.   

b
 P for heterogeneity between each subgroup 

 

 

 

 


