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X-2 BOYNTON ET AL.: DATA DEDUCED COUPLING FUNCTIONS

Abstract.
The NARMAX OLS-ERR algorithm, which is widely used in the study

of systems dynamics, is able to determine the causal relationship between

the input and output variables for nonlinear systems. This technique has been

applied to measurements of the solar wind from ACE at L1 and the D,; in-
dex in order to find the best solar wind-magnetosphere coupling function,
i.e, which combination of solar wind parameters provide the best predictive
capabilities of the D,; index. The data deduced coupling functions were then
compared to those suggested in previous analytical and data based studies.
The most appropriate coupling function was found to be n'/2V*Br sin®(6/2),
where the power of velocity, o, was inconclusive but should be in the range

2-3.
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BOYNTON ET AL.: DATA DEDUCED COUPLING FUNCTIONS X-3

1. Introduction

A coupling function based on solar wind parameters, to predict the magnetospheric
dynamics, has been sought since Chapman and Ferraro [1931]. These authors assumed
the dynamic pressure would provide the best potential for forecasts. However, through
measurements taken in the solar wind, it has been shown that on its own the solar wind
pressure has a limited capability for predicting the magnetosphere dynamics [Crooker and
Gringauz, 1993]. Dungey [1961] proposed that the magnetic merging between the inter-
planetary magnetic field (IMF) and the geomagnetic field would have a greater influence
than the viscous forces on the dynamics of the magnetosphere. Hence the north-south
component of the IMF, B,, would provide a better predicting capability than the dynamic
pressure. However, like dynamic pressure, on its own the north-south IMF does not have
a large influence over the magnetosphere dynamics. Burton et al. [1975] introduced a
half-wave rectifier, based on the dawn-dusk component of the interplanetary electric field
that is set to be zero below a critical threshold. This value is effectively a product of
the velocity and the southward component of the IMF, Iz = V B,. Later Perreault and
Akasofu [1978] suggested ¢ = V B?sin*(6/2) which in contrast to Ip has a continuous
dependence on the clock angle, § = tan~!(B,/B.), of the IMF. The theoretical derivation
of the € parameter was addressed by Kan and Lee [1979]. Arguments based on dimen-
sionality were used by Vasyliunas et al. [1982] to suggest Iy = n'/6V*43BrG(6) and other
coupling functions, where n is the density, G is a function of the clock angle and Br is
the tangential IMF, By = \/m . These analytically deduced coupling functions, in

particular /g, have often been used as inputs to forecasting data derived models [Klimas
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X-4 BOYNTON ET AL.: DATA DEDUCED COUPLING FUNCTIONS

et al., 1996, Klimas et al., 1999, Balikhin et al., 2001, Boaghe et al., 2001 and Zhu et al.,
2006].

Data based studies have also been devoted to the quest of determining the most ap-
propriate coupling functions. Previous experimental studies were based on correlations
between geomagnetic indices and combinations of solar wind parameters [Newell et al.,
2007]. The correlation function indicates the linear dependence between data sets. Its
application to nonlinear systems can be misleading. This can be illustrated by considering
a simple example of a quadratic stochastic system with a zero mean input X (¢), shown in
Figure 1 and output Y'(¢) = X?(t — 1) 4+ ¢((t) shown in Figure 2, where ((¢) are the noise
and measurement errors and are assumed to have a zero mean. The correlation between
X and Y is shown for 20 time lags in Figure 3. A lag at 7 in Figure 3 represents the
correlation coefficient between Y (¢) and X (¢t — 7). Even though X (¢ — 1) is the only input
to the system, the correlation between Y and X is roughly zero for all of the time lags,
including a time lag of one, which is the correlation coefficient between Y (¢) and X (¢ —1).
As a result the correlation between X and Y produces the misleading result that X does
not have a causal relationship with Y, despite the known fact that X is the input and Y
is the output for the simple quadratic system.

This example emphasizes that for nonlinear systems, only techniques that can take
into account nonlinearities can be applied successfully. One possibility is to apply a
methodology based on a nonlinear autoregressive moving average model with exogenous
inputs (NARMAX) and an orthogonal least squares (OLS) algorithm [Leontaritis and
Billings, 1985, Billings et al., 1989] to study the nonlinear dependences of the dynamics of

the magnetosphere. In this approach the output at time ¢ is a scalar value and is assumed
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to be a function of previous values of inputs u(t), output y(t) and error terms e(t), as

described by equation 1).

y(t) = F[y(t - 1)7 "'>y(t - ny)>
ur(t—=1), oy ur(t — nyy),y ey
U (t— 1), oy up (t — 1y, ),

e(t—1),....e(t —ne.)| +e(t) (1)

where F[-] is some nonlinear function (e.g. polynomial, rational, B-Spline, radial basis
function), y, u, and e are the output, input and error respectively, m is the number of
inputs to the system and n,, ny,,...,n,,, and n. are the maximum time lags of the output,
the m inputs and error respectively.

The NARMAX OLS-ERR methodology consists of three stages, namely model structure
selection, parameter estimation and model validation. The model structure selection
stage determines the most influential model terms by analyzing all possible cross-coupled
combinations of past inputs and past outputs. The parameter estimation stage then
determines the coefficients for each of the selected terms in the model. Finally the model
validation stage justifies the final model. In this study, only the model structure selection
stage will be used to identify the most significant solar wind-magnetosphere coupling
functions.

From (1), the function F[-] can be taken as linear-in-the-parameters to a specified

power. Therefore F'[-] is a polynomial in which the monomials comprise of all the possible
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cross-coupled combinations of the components to the specified power. Then (1) becomes

y(t) = Orpr(t) + apa(t) + - - + Onpar (£) + e(?) (2)

where p;(t) is the i monomial or regressor, 6; is the coefficient of the i regressor and
M is the total number of monomials. Equation (2) can be written using a scalar, y(t), or

by evaluating over the data to construct the vector notation, y.

YO =S nhelt) o y=Pote )
where

[ y(1) pi(1) pa(1) par(1)

y(2) pi(2) p2(2) pur(2)

y = P = : ;

_y(N) p1(N) p2(N) pu(N)

[ 91 6(1)
0 = 9.2 €= 6(:2)

N e(N)

and N is the data length. The columns of the matrix P are made orthogonal to each
other using the Gram-Schmidt procedure to give the matrix W. The application of the
Gram-Schmidt process to the columns of matrix P yields y = P(R7'R)f + e, so the

matrix W = PR~ and vector g = Rf, where

1 rig rig - 1M

0 1 To3 - +- Tom
R: . .

0 R T(M-1)M

0 ... 0 1

and is called the upper right triangular matrix. Since the columns of W are orthogonal,

for ¢ # j the multiplication of the columns wi'w; = 0. (3) then becomes the auxiliary

equation
M

y(t) =) wi(t)g; +e(t) or y=Wg+e (4)
i=1
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where
w1(1) w2(1) wM(l) g1
wi(N) we(N) -+ wy(N) am

here g; is the i*" auxiliary coefficient of the i orthogonalized regressor, w;(t). An estimate
of the auxiliary coefficients can be found from the fact that the multiplication of different
columns of W equals zero. So wifw; = 0 for ¢ # j where w; = [w;(1) w;(2) -+ w;(N)]"
and w; = [w;(1) w;(2) -+ w;(N)]T. Multiplying (4) by wyx yields
M
wiy = (wh S wigi + wie) )
i=1

For wTw; to be non-zero, n must equal i, leaving
T T T
W,y =W; Wig; +W; e (6)

Assuming that the noise, e(t), has a zero mean, is ergodic and is uncorrelated with all the
regressors then wi'e = 0. Equation 6 is now wi'y = wi'w;g;, which is an orthogonalized
solution of minimizing the Least Squares. It should be noted that this method is for
estimating the unknown coefficients in a linear regression model. Although the terms are

nonlinear with respect to the inputs, the terms are linear-in-the-parameters (Equation 2).

h

This enables the unknown " auxiliary coefficient, g;, to be estimated as

. wly

w
The contribution to the dependent variable variance by each regressor can be found from
multiplying yT by (4)

M

yTy = Z (93W1TW1 + giW;re + gieTWi) + eTe (8)
=1
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X-8 BOYNTON ET AL.: DATA DEDUCED COUPLING FUNCTIONS

From the above mentioned properties of ¢(t), w;'e = 0 and eTe represents the variance

of the noise, 02, so that (8) may be rewritten as

M
vy =Y gwiwi+o? (9)
=1

For the " regressor the dependent variable variance will be g?wIw;. Dividing this by
yTy will determine the proportion of the dependent variable variance explained by the
i" regressor. This is called the error reduction ratio (ERR) and is defined by

~2 T
g; Wi Wi

| ) yTy

(10)

The algorithm was applied to the previous example of Y (t) = X?(t — 1) +((¢), using YV’
as the output, X as the input, 5 time lags for both input and output and a nonlinearity of
degree of four. Thus the algorithm will search all the possible cross-coupled past output
and input functions to the power of four, to determine the most influential model terms.
The results in Table 1 show that the algorithm was able to determine the parameter X?>
as the most significant function, with an error reduction ratio of 99.93%.

The main goal of this study was to use the model structure selection procedure of the
NARMAX OLS-ERR algorithm to identify the most significant solar wind-magnetosphere
coupling function for the D,; index, i.e., determine which combination of solar wind pa-
rameters results in the best predictive capabilities of the D,; index. The algorithm is able
to detect nonlinear dependencies on the output and thus assess the prediction capabil-
ity of the coupling functions. In essence, the algorithm is used in a way similar to the
application of the correlation function by other authors. However, unlike the correlation
function which can only assess linear dependencies, the NARMAX algorithm is able to

find nonlinear dependencies.
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BOYNTON ET AL.: DATA DEDUCED COUPLING FUNCTIONS X-9

It should be noted that for different conditions the best coupling functions can vary. For
example, in the case of a northern IMF, a viscous solar wind-magnetosphere interaction
is expected. This should differ from the case of a purely southward IMF direction when

reconnection is expected.

2. Data sets and methodology

Data from OMNI web, for the period from the start of 1998 to the end of 2008, have
been used in this study. The hourly averaged solar wind data for the period occasionally
has data gaps, which breaks the consecutive data into many sections. The NARMAX
algorithm needs a continuous time series data set of about 1000 data points or greater.
The initial 11-year data set was divided into 1000 point subsets and the data sets with
data gaps were removed from this study. This procedure resulted in 64 continuous subsets.
The NARMAX OLS-ERR algorithm was run for the 64 data sets, returning 64 models,
each consisting of 20 model terms.

The 20 model terms, or coupling functions, were selected from all the possible cross-
coupled combinations of the inputs, in the order of the functions ERR. The reason for
limiting the NARMAX algorithm to select only the top 20 terms was to reduce the time
taken for the algorithm to run. If the ERR were to be calculated by simply using (10)
for every single candidate term, it may lead to an incorrect calculation of the ERR. This
is because the ERR may depend on the order in which each candidate term enters the
equation. Therefore orthogonalizing the candidate coupling functions into an orthogonal
equation in the order in which the coupling functions happen to be written down may
produce the wrong ERR. To prevent this from happening, the ERR is calculated by using

a forward regression procedure [Billings et al., 1988].
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The first step involves calculating the ERR of each of the M candidate function, so for

1=1,...,.M
Wl(i):pi

g0 = My
! (w1 @) Twy ()

N2 . )
G) 91(1) (Wl(l))Twl(Z)
=

ERR
[ERR] Ty

then the index of the function with the highest ERR is found
hy = arg[max{[ERR,'",1 <i < M}]

which is the index of the first and most significant function of the model, so wy = w "1) =
Pn; -

The upper triangular matrix R is used so that the subsequent calculations are made
in a subspace orthogonal to wy. To do this the elements of R are calculated in the
subsequent steps. For the n'* step, to find the n'* most significant term, the ERR is
calculated for each candidate function, apart from the n — 1 functions already selected.
So forv=1,..., M, where ¢ # hy,i # ha,...,1 # h,_1, the elements of R are calculated

forj=1,...,n—1

T
@ — Wi Pi
T w:Tw
WJ WJ

Tjn

this can then be used to calculate wy, so that it will be orthogonal to all the other columns

of W.
. n71 .
Wn(Z) =DPi — Z Tjn(z)wj
=1

(i) _ (Wn(i))Ty
DR A FWR®) Wn® February 22, 2011, 12:25pm DRAFT
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BOYNTON ET AL.: DATA DEDUCED COUPLING FUNCTIONS X-11

N2 . .
G (W )y, )

yly

[ERR),," =
then the index of the function with the highest ERR is found as
hy = arglmax{[ERR]," 1 <i< M,i# hy,...,i# hy1}]

So pn, will be the n'* most significant function of the model.

Calculating the ERR for every possible candidate function is computationally expensive
and since the majority of the ERR is explained by the top functions, only 20 model terms
or coupling functions were calculated.

The estimates of the regressor coefficients, é, can then be computed backwards from

the number of model terms that the algorithm is set to select, M, (in this case 20) using

g=R0

éMs = 9M,

A Ms A

0; = gi — Z Tintn
n=i+1

The previous hour value of Dg(t — 1) had substantially the highest ERR, in all the 64
models produced by the algorithm, with a mean ERR of 95.5% and a standard deviation
of 2.13%. All the other terms had a much lower ERR in comparison. It is well known that
the autoregressive term of Dg(t — 1) greatly helps in the prediction of the next value. It
has been shown to have the highest ERR in other NARMAX studies of the D,; index, e.g.
Boaghe et al. [2001]. The coefficient of the Dy (t — 1) term had an mean value of 1.126
for the first stage of the study with a standard deviation of 0.14. The small standard

deviation of the Dy (t— 1) ERR and coefficient, indicates that the algorithm is consistent.
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X-12 BOYNTON ET AL.: DATA DEDUCED COUPLING FUNCTIONS

The aim of this study is to find the most significant solar wind magnetosphere coupling
function to aid in the understanding of the underlying physics. Hence we do not wish to
discuss the Dy (t — 1) term and therefore it will not be included in the results. However
since it is an important part of the model, the term was kept in the algorithm as a
candidate term to avoid any ill-conditioning. Instead of removing Dy (t—1) as a candidate
term, the ERR of all the candidate coupling functions were normalized using the difference
between the whole ERR of each model and the ERR of the D;. If the sum of every terms
ERR is represented by W and the ERR of the Dy (t — 1) is represented by D, then
the remaining ERR, or explained variable variance, is W — D. therefore, a candidate
term, with an ERR of ¢, has a normalized ERR (NERR) of ¢/(W — D) x 100%. This
NERR effectively yields the dependent variable variance of the output Dy (t) —aDg(t—1),
where « is the decay term and is automatically calculated for each model in the parameter
estimation stage of the NARMAX algorithm.

In each stage of the study, the algorithm used 5 time lags of the output and inputs as
candidate terms. The second to fifth lags of Dy were still kept as candidate functions, as
well as the nonlinear coupling functions of all the past values of Dy, (including Dy (t—1)),
coupled with the inputs to the selected degree. The NERR for each function is then
averaged over the 64 models displayed in Tables 2-5 to quantify the effects of a particular

term in the evolution of the D, index.

3. NERRs of second order basic solar wind parameters
It was anticipated that Iz = V B, by Burton et al. [1975], would be the coupling function
with best predicting capability. This hypothesis influenced the choice of solar wind inputs

and the degree at which the algorithm was set for the first stage of the study. The basic
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solar wind parameters used as the inputs to the algorithm were the solar wind velocity
V', density n, dynamic pressure p, ion temperature 7T;, the x, y, z components of the IMF
in GSM coordinates B,, B,, B., and the z component of the IMF split into its north
and south components B,, and B, (B, = 0 for southward IMF and B, = 0 for northward
IMF). The ion temperature has not been known to have any effect on the Dy index,
because the solar wind thermal distribution is lost as it penetrates terrestrial bow shock.
However, T; was included to provide extra validation of the algorithm. Only nine solar
wind parameters were used, due to the current limitation of the software. The degree of
nonlinearity was limited to second order, due to the expectation of Iz having the best
predicting capability.

Table 2 lists the top four terms in order of NERR and also shows how many times each
individual term was selected.

The results show that the coupling function with the best predicting capability was,
in fact, V B,. Out of all the possible linear and quadratic cross-coupled combinations of
the inputs, the half-wave rectifier was selected as the best input confirming our initial
hypothesis. The second best coupling function was pB,, and since p = %an, this term
also can be represented as a product of nV and V' B, and so it is effectively a fourth order
nonlinear term. Since it has about half the NERR of Iz, this points to the fact that the
limitation to a second order nonlinearity is too restrictive.

The epsilon function, ¢ = V B?sin*(0/2), [Perreault and Akasofu, 1978] was added to
the inputs, in place of the northward IMF, and the algorithm was run again. This was

done to see how this coupling function would compare to the half-wave rectifier and other
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X-14 BOYNTON ET AL.: DATA DEDUCED COUPLING FUNCTIONS

quadratic and linear terms. The epsilon function was selected as the fourth best function
with a NERR of 3.89%.

The second lag of D,; was the third best and was selected in 51 out of the 64 models.
As a result, it appears in more models than the V B, function but has a lower NERR.
This implies that the second lag of D, must only have a minor influence in each of the
51 models that it appears in, compared to the top three functions which are selected less,

but when selected have a much higher NERR and hence predicting capability.

4. Comparison of NERRs for previously proposed coupling functions

The aim of the second stage of the study was to differentiate between the predicting
capabilities of previously proposed coupling functions. This aim was similar to the goal of
Newell et al. [2007], however, the major difference is that a methodology appropriate for
nonlinear systems is used in the present study. The NARMAX OLS-ERR algorithm can
theoretically combine the solar wind parameters to reproduce these functions, however,
as the order of nonlinearity of these coupling functions is high, up to 9, such a direct
approach would be too computationally demanding.

The coupling functions used as inputs to the algorithm were similar to those chosen by
Newell et al. [2007]. These were I5 = V B [Burton et al., 1975], the epsilon parameter ¢ =
V B%sin*(0/2) [Perreault and Akasofu, 1978], Iy = V By sin*(0/2) [Wygant et al., 1983,
Isg = p'?V Brsin*(0/2) [Scurry and Russell, 1991], Iy = p'/2V Bysin®(6/2) [Temerin
and Li, 2006], Iy = V3B sin%3(0/2) [Newell et al., 2007] and Iy, = n/SV43B,G(0)
[Vasyliunas et al., 1982]. sin*(#/2) was used as the clock angle function in Iy, G(6).
Unlike the previous section, the algorithm was set to have a degree of nonlinearity equal

to one, implying a linear relationship between the inputs and output. The NERR was
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then used to assess the predicting capabilities of the coupling functions on the Dy index.
The results for the top 5 coupling functions with highest NERR are presented in Table 3.

From Table 3, the coupling function Ir; [Temerin and Li, 2006] had the highest NERR,
just over twice that of the next best function. The half wave rectifier, which was selected
as the best term in the previous section, was the second best coupling function when
competing with more complex functions. The third best function was [y [Vasyliunas
et al., 1982], using a linear dependence on By and sin*(6/2) as the function of the clock
angle and the Igr function fourth. Both the Iy and Igr functions are similar to the
I function. All three functions include the solar wind parameters of density, velocity,
tangential IMF and a continuous function of the IMF clock angle. Since n'/6V1/3 = p!/6,
the Iy, Isr and I7;, functions only differ by the power of the pressure and the I, having
a factor of sin®(f/2) instead of sin*(6/2). The second lag of D,; had the fifth highest
NERR, again being selected in many of the models but only having a minor influence in

each one.

5. NERR of solar wind parameters from the best coupling functions

In the first stage of the study, an arbitrary set of basic solar wind parameters, V,
n, p, T;, By, By, B., B, and Bs, were used as inputs to the algorithm. However, the
coupling functions deduced in previous studies contained combinations of parameters with
fractional powers or high powers. Since NARMAX cannot detect fraction powers and the
search for higher powers is computationally demanding, the parameters with a fractional
or high power, can be used as an input to the NARMAX algorithm. The aim of the third
stage of this study was very similar to the first, the only difference being that instead of

an arbitrary set of basic solar wind parameters, the factors of the best coupling functions
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X -16 BOYNTON ET AL.: DATA DEDUCED COUPLING FUNCTIONS

from Table 3, have been used as building blocks to assemble the most appropriate coupling
function. These factors were the square root of the pressure p'/2, the sixth root of the
density n'/%, the velocities V and V*/3, the southward IMF B,, and the tangential IMF
with the different functions of clock angle Brsin*(/2) and By sin®(#/2). Table 4 shows
the top five coupling functions with the highest NERR.

The two most significant coupling functions in Table 4 are p'/2V*/3B;sin®(0/2) and
pY/2V2Brsin®(0/2), which differ only by the fractional power of velocity. The coupling
function with the third highest NERR, also has a similar form that contains a density,
velocity, tangential IMF and clock function but with different fractional powers. The
second lag of Dy was found to have the fourth highest NERR, being selected in over half
of the models despite only having a small NERR in each one. The function with the fifth
highest NERR is also of a similar form to the top three functions. The results suggested
that the coupling function is a factor of By, n to the power of between 1/6 and 1/2,
most likely 1/2; sin(6/2) most likely to the power of 6 and V' to the power of somewhere
between 2 and 3, when considering the pressure to be composed of velocity and density.

In Table 4, the NERR of the best coupling functions are small, compared to those in
Table 3. This is due to the algorithm having to select a model from more candidate model
terms than those used in the previous section. The algorithm used in the previous section
generated a total 46 candidate model terns, whilst in this section 3571 candidate model
terms were generated. Since the latter study resulted in many more model terms, many
of which were very similar to each other, a small ERR would be attributed to terms that

have no influence on the output. This would cause the influential terms to have a reduced
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ERR. Therefore it is not possible to directly compare the ERR from the two different runs

of the algorithms, which significantly differ by the number of inputs or degree.

6. NERR of the best overall coupling function including the two most

significant from the previous section

The aim of the last stage of this study was to confirm that the results of the previous
section do indeed result in better coupling functions than those suggested in previous
studies. To do this, the top two coupling functions determined in the previous section were
included as inputs along with those used in Section 4. Thus the functions used as inputs to
the algorithm were I, €, Iy, Iy, Isg, Irr, p*/?V*3Brsin®(0/2) and p'/?V2Brsin®(0/2).

Table 5 unexpectedly shows that the function p'/2V2Bysin®(6/2) was selected as the
best coupling function, followed by p'/2V*/3 B;-sin(0/2). The subsequent functions, Iy,
I and [y, are in the same order as those in Table 3. The top three functions are very
similar, only differing by the power of the velocity and again showing that the most
appropriate coupling function should be composed of density, velocity, tangential IMF

and clock angle factors.

7. Discussion and conclusions

The main objective of this study was to apply the model structure selection procedure
from the NARMAX OLS-ERR system identification algorithm, to identify, directly from
data, the best coupling functions that describe the solar wind-magnetosphere interaction,
i.e., the combinations of solar wind parameters that provide the best predictive capabilities

for the magnetospheric dynamics, that are related to the D,; index.
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The physical processes that are involved in the solar-wind magnetosphere interaction
depend upon the parameters of IMF and the solar wind. Two cases are expected to exist.
The first occurs when the IMF is directed exactly northward, in the stable flow of the
solar wind. In this case, no reconnection should take place and the main factor affecting
the magnetosphere should be the viscous forces of the solar wind shearing against the
magnetosphere. In the second case, of a exactly southward IMF regime, the merging
between magnetic field lines of the IMF and geomagnetic field should be the dominant
factor. The most appropriate coupling functions in these two extreme examples should
be different. Without a comprehensive model, based on first principles, to describe the
interaction between the solar wind and the magnetosphere, it is only possible to suggest
mechanisms for the interaction of the two extreme cases mentioned above. It is not
possible to determine the sensitivity of their interaction to changes in the IMF orientation
and magnitude.

The initial data sets were arbitrary subdivided into 64 data intervals, without any
information about the direction of the IMF and other solar wind parameters. Therefore
the most appropriate coupling function for each IMF scenario would most likely not
coincide with the data sets. In the future, different regimes of the magnetosphere will be
studied in more detail, similar to the studies of Vassiliadis et al. [1999], Valdivia et al.
[1996] and Newell et al. [2008].

It should be noted that it is a well known fact that the previous value of D,; already
provides a fair estimate in the prediction of the one hour ahead D, values. This was
confirmed by the results of the NARMAX algorithm. In each of the 64 models produced

by the algorithm, the Dy (¢ — 1) function had the highest ERR.
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The coupling functions with the highest NERR in Tables 3, 4 and 5 only differ by the
power of velocity. The majority of the coupling functions in these three Tables contain
the parameters of density, velocity, tangential IMF and clock angle function. In the
final section, the two functions in Table 4 with the highest NERR, which were found
by the NARMAX algorithm, were used to determine how they would compete against
the perviously proposed coupling functions. Table 5 shows these two coupling functions,
p/2V2Brsin®(0/2) and p'/2V*/3 B sin®(0/2), to have the highest NERR but in reverse
order when compared to Table 4. This is followed by I, = p'/2V Brsin(0/2) [Temerin
and Li, 2006], Iz = V B, [Burton et al., 1975] and Iy, = n'/SV*/3 By sin*(0/2) [Vasyliunas
et al., 1982]. Again, four of the five functions with the highest NERR are composed of a
density, pressure, tangential IMF and a clock angle term. Therefore, according to these

Tables, the most appropriate coupling functions should be of the form
At/ B RY im0 4
n*V"”B] sin 3 (11)

From Tables 3 - 5, it can be seen that the function that has the highest NERR, have
values of «, v and ¢ equal to 1/2, 1 and 6 respectively. The value for § is inconclusive
but should be in the range 2 — 3.

With the presently available methodology, it is only possible to find the exact values
of 8 by a time-consuming trial and error approach, to check various fractional numbers.
In the future, we will develop a methodology for the automatic identification of both
integer powers and fractional powers of the solar wind and IMF parameters. However,
currently the only certain conclusion, which follows from Tables 3-5, is that coupling
function should include the following factors, n'/2, By and sin®(6/2). The dependance on

the velocity appears to include a power of somewhere between 2 and 3.
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Three functions of the IMF clock angle, 6, were used throughout this study. These
were the southward component (— cos(6) for 7/2 < 6 < 37/2 and zero for all other clock
angles) and the functions sin*(6/2) and sin®(#/2). Although the three functions are very
similar, the algorithm continuously selected the sin®(#/2) function as the most appropriate
for explaining the dependent variable variance of Dy, throughout the stages of the study.
The relevance of the sin®(6/2) function is discussed in more detail by Balikhin et al. [2010]

Although Dg(t — 1) was not included in our results, the second to fifth time lags of
D,; were included. Nonlinear functions of Dy were also considered. In Section 3, all
possible quadratic cross-coupled nonlinearities, that included the first to fifth time lags
of Dy, were candidate functions, and in Section 5, all possible fourth order cross coupled
nonlinearities, involving the first to fifth time lags of D,;, were considered as candidate
functions. Out of all of these past D, functions and nonlinear functions of D, only
Dy (t — 2) appears to have a significant NERR, appearing as a top 5 function in Tables
2, 3 and 4. In each of these Tables, the second time lag of D, is selected in the majority
of the models but with only a minor influence. Therefore, although it is not a highly

significant term, it should be included in any model.
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Table 1.
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| Function | ERR (%) |

XZ(t—1)] 99.93
Y(t—1)| 0.027
X4t—1)| 0.013

Functions selected by the NARMAX OLS-ERR algorithm, for the example system

Y(t) = X?(t — 1) + ((t), using Y as the output, X as the input, 5 time lags for both input and

output and a nonlinearity of degree four

Table 2.

[ Coupling Function [NERR (%) [ Selected |

VB.( 1)
sz(t - 1)
Dalt —2)
B,(t—3)

30.77
15.95
5.47
2.74

49
25
ol
16

Coupling functions selected by the OLS-ERR algorithm using 9 basic solar wind

parameters as inputs, showing the NERR and the number of times each function was selected in

a model

Coupling Function

|NERR (%) | Selected |

pt2V Brsin®(0/2)(t — 1)

VB,(t—1)

nY/SV43 Brsint(0/2)(t — 1)
p/2V Bysin*(0/2)(t — 1)

Dy(t—2)

31.32
12.76
10.30
8.37
7.23

51
40
32
31
45

Table 3. Coupling functions selected by the OLS-ERR algorithm using the previously proposed

coupling functions, showing the NERR and the number of times each function was selected in a

model
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| Coupling Function [NERR (%) [ Selected |

pPVABBrsin®(0/2)(t — 1) 5.46 7
pY2V2Bysin®(0/2)(t — 1) 3.18 6
nYV2Brsint(0/2)(t — 1) 3.15 4

Dy (t —2) 2.96 35
P2V Brsin®(0/2)(t — 1) 2.77 4

Table 4. Coupling functions selected by the OLS-ERR algorithm using the decomposed
parameters from the best coupling functions, showing the NERR and the number of times each

function was selected in a model

| Coupling Function |NERR (%) | Selected |

p/2V2Brsin®(0/2)(t — 1) 14.0 39
pY2VAB Brsin®(0/2)(t — 1) 12.5 27
pY2V Brsin®(0/2)(t — 1) 12.1 34
VB(t—1) 8.91 41
n'/6V4/3 Brsin®(0/2)(t — 1) 8.71 35

Table 5. Coupling functions selected by the OLS-ERR algorithm using the previously proposed
coupling functions and best function from section 5, showing the NERR and the number of times

each function was selected in a model
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