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SUPPLEMENTARY INFORMATION 

1. Using linear regression to evaluate surface energies is flawed 

One commonly employed method of calculating surface energies is to plot the total energies of 

slabs of increasing size against  , and then to use a linear regression fit to identify the intercept 

of the best fit line as the total surface energy    . This approach is potentially very misleading if 

used in situations where the surface energy (as calculated for individual slabs using equation (2) 

- see main text) converges in a slow oscillatory way with increasing slab thickness. To illustrate 

the point, we have plotted the total supercell energies      from the (430) /          slabs in 

Figure S.1 along with their corresponding surface energies        as found using equation (2). 

Consider a set of   slab/vacuum supercells of increasing size, labelled           . By 

calculating the total energy of the     slab,   , one then subtracts the (negative) energy of the 

corresponding quantity of bulk material,          , to obtain the total (positive) surface energy 

of that slab,     . Expressed another way, the total slab energies    are related to their 

corresponding surface energies,     , by a linear shear transformation in the positive direction 

along the energy axis: 

 
     
   

   
  
   

   
     
    

                                                                                                                       

If this shear transformation is applied to the best fit line, then its gradient is changed, but not 

its intercept. This of course means that fitting a straight line to    plotted against    gives exactly 

the same intercept as fitting a straight line to      plotted against   . Therefore, these two 

methods of estimating the surface energy are entirely equivalent. The intercept from either of the 

two best fit lines in Figure S.1 give the same estimate of the surface energy, since the two best fit 

lines are related by the shear matrix and therefore have the same intercept. There is clearly 

nothing linear about the trend of      with increasing    in Figure S.1, and one could barely 
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justify using the "best fit" line shown. The best fit line for the    data clearly gives a very good 

estimate of the gradient (i.e. an estimate of the bulk energy,   ), however the point is that even 

an excellent estimate of the bulk energy can still produce an intercept which is a poor estimate of 

the surface energy. This is because the intercept is tiny compared to the values   . The fact that 

the estimate of the surface energy is poor is made particularly obvious by observing that for the 

data shown, the intercept is about 5.3 eV, whereas with the surface energy data points      are 

quite clearly converging to the region of around 4.1 eV. 

 

 

Figure S.1. The flawed nature of evaluating surface energy using a linear fit of supercell 

energies against slab size. Left panel: Total supercell energies plotted against supercell size 

with best fit line. Right panel: Supercell surface energies plotted against slab size with 

corresponding best fit line. The two "best fit" lines give the same estimate of the surface energy 

because they share the same intercept. 
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There are three main sources of motivation behind this extensive discussion. Firstly, the linear 

fitting approach is based on the false premise that the data points      are merely a series of 

measurements of some linear trend subject to random errors characterised by a Gaussian 

distribution, which is a required assumption in regression models. In fact, the oscillatory 

behaviour of the surface energies is a physically meaningful, reproduceable, and predictable (in 

principle) manifestation of alternating modes of electron density configurations. The linear 

fitting approach therefore effectively discards   precise and physically insightful surface energy 

values,     , in favour of one poorly estimated surface energy value obtained via an intercept. 

Secondly, there is generally no guarantee that selectively omitting data points at small   does in 

fact completely remove the bias in the calculated intercept. Thirdly,  if the linear fitting method 

is used to calculate the surface energies of high-index slabs, it can potentially give very 

inaccurate predictions of the energies of steps. If the data points      oscillate significantly, then 

the intercept of the "best fit" line also oscillates greatly depending on how many data points and 

indeed which data points are included in the fit. Some examples of this are shown in Table S.1. 

Slab size 

(TinO2n) 

Total supercell 

energy     / eV 

Data range used for linear regression 
 

                  included in fit                               not included in fit 
 

  3 layer (Ti23O46) -57068.4036       

  4 layer (Ti29O58) -71959.2572       

  5 layer (Ti37O74) -91810.0404       

  6 layer (Ti43O86) -106699.8280       

  7 layer (Ti51O102) -126551.1090       

  8 layer (Ti57O114) -141440.4900       

  9 layer (Ti65O130) -161291.9740       

10 layer (Ti71O142) -176181.1710       

 

Resultant intercept (3 d. p.) 

 

6.299 eV 

 

6.452 eV 

 

3.439 eV 

 

3.937 eV 

 

5.461 eV 

 

3.677 eV 

Table S.1. The dependence on the chosen data range of the intercept of a linear fit of total slab 

energies against the number of atoms. The resultant intercept varies dramatically depending on which 

data points are included in the fit, so the intercept cannot reliably be interpreted as the surface energy. 
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The instability shown in Table S.1. then propagates through to the solutions     ,   and   if 

they are evaluated by using intercept-derived values     , and these solutions are very sensitive 

to the intercepts used. In particular,   and   are very small compared to the total surface energy, 

and they can change by an order of magnitude upon making the most minor of alterations to the 

data range across which the regression is applied. 

2. Applying the high-index surface energy equation to supercells 

   Consider a semi-infinite vicinal surface like that illustrated in Figure S.2, in which the 

supercell lattice vectors    and     lie in the high-index plane with     lying parallel with the step, 

and in which    is understood to extend infinitely far into the bulk material.  

 

Figure S.2. Ball-and stick model of a semi-infinite periodic (430) surface of TiO2 rutile, 

consisting of (110) terraces and         steps. The region shaded in transparent blue with white 

borders lies in the (110) plane and has area   , equal to the projection of the area            

onto the (110) plane. The step-step distance   lies in the (110) plane and perpendicular to    . 
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Let the total surface free energy per supercell,   (eV) , be expressed as the sum of three 

components:   , the free energy of the (110) terrace region,   , the free energy of the step 

structure and    , the energy associated with the strain field due to step-step interactions. We 

work with the approximation that the step is of insignificant width so that the surface area of the 

(110) terrace region per supercell,   , is given by the projection of the area                   

onto the (110) plane with         , where   is the angle subtended by the high-index plane 

with the (110) plane, and     is the angle subtended by the lattice vectors    and    . Since the 

lattice vector     lies parallel with the step, the step-step distance   measured perpendicular to the 

steps and lying in the (110) plane is found by finding the projection of the vector    onto the 

(110) plane,           , and then extracting the magnitude of the component of     which is 

perpendicular to     by multiplying     by       . The general expression for the step spacing is 

therefore                 . The inverse square MP step-step interaction potential can then be 

used to write     
 

  , where   is some interaction constant to be found. By combining all of 

these considerations with some straightforward manipulations, the total surface energy per unit 

area of the high-index plane,    
 

 
, can be written as 

  
           

 
      

  

  
 

  

      
 

 

       
                                                                                   

We identify 
  

  
 as the (110) terrace surface energy per unit area,      (eVÅ

-2
), and 

  

     
 as the 

energy per unit length along the step,   (eVÅ
-1

). We also identify 
 

     
 as a constant representing 

the strength of the step-step interaction which we name   (eVÅ) in order to recover equation (1): 
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This is a macroscopic equation and it is independent of the particular atomic configuration of 

the step structure as long as the small step width approximation holds. 

3. Statistical uncertainty and sensitivity analysis of step energy solutions 

For a large geometry optimisation problem, there is a degree of uncertainty in the value of the 

final energy. For most purposes, this uncertainty is ignored because it is small. However, the  

    ,   and   values are quite sensitive to the slab/vacuum supercell energies      and so it is 

wise to carry out an uncertainty analysis. This is difficult to do analytically because it is highly 

unlikely that a repeated optimisation of a given supercell would yield a distribution of final 

energies characterised by a Gaussian curve. The optimisation algorithm searches for the 

variationally lowest energy state so one might expect an asymmetric distribution with an abrupt 

lower bound on the energies. One major source of uncertainty is that of systems becoming 

trapped in configurations corresponding to local metastable energetic minima which lie close to 

or even far from the global minimum. Also, the specification of finite tolerances introduces 

systematic errors into the distribution. Nevertheless, it is easy to show how sensitive     ,   and 

  are to changes in the supercell energies     , which we now do. 

   Consider three high-index supercells of   layers thickness with total surface areas    ,     

and     and step-step distances   ,    and   . Suppose that these supercells and a bulk unit cell 

are optimised to give energies   ,   ,    and   . Suppose then that these optimisations are 

repeated identically to obtain energies   
 ,   

  and   
  and   

 , where any differences between the 

two sets of results are denoted as       
    ,       

    ,       
     and     

  
    . The corresponding      and       solutions are 
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and the absolute difference between the two solutions is                 , given by 

      
 

     
 

 

 

   
     

  

 
      

    
  

 

   
     

  

 
      

    
  

 

   
     

  

 
      

    
  

 

 

                                                                               

By similar reasoning, 

   
 

     
 

 
 

 

   
     

  

 
      

  

 
 

   
     

  

 
      

  

 
 

   
     

  

 
      

  
 

 

                                                                                         

     
 

     
 

 
   

  
 

   
     

  

 
    

   
  

 

   
     

  

 
    

   
  

 

   
     

  

 
    

 

 

                                                                                       

To gain a sense of the order of magnitude of the quantities      ,   , and   , a three layer 

Ti26O52 (341) slab/vacuum supercell with the         step was optimised to an energetic 
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minimum four times with identical input parameters to those listed in the method. The four final 

energies were  64513.033697 eV,  64513.034118 eV,  64513.031639 eV, and 

 64513.033121 eV, all to 6 decimal places. The range of this sample is 2.479   10
-3

 eV (3. d. 

p.), or about 3   10
-5

 eV per atom. For the sake of example, let us prescribe an uncertainty of ± 

1.5   10
-5

 eV per atom for all supercell energies. The bulk unit cell was also optimised 

repeatedly, but the range was found to be   10
-6

 eV due to the comparatively stringent tolerances 

used and so we set      . Let us now consider the worst case scenario and borrow the 

dimensions and total atom numbers from the biggest slabs of lowest symmetry: the 10 layer 

        Ti74O148 (341), Ti94O188 (451) and Ti114O228 (561) slabs. Let us denote their energies 

    ,      and      respectively, to produce numerical values for      ,       and      . Using 

the nominated uncertainty range of ± 1.5   10
-5

 eV per atom, this gives      =   3.33   10
-3

 

eV,         4.23   10
-3

 eV and         5.13   10
-3

 eV. The functions      ,    and    

each depend on the three variables      ,       and       and so can't be straightforwardly 

plotted, so instead they are tabulated in Table S.2 with all possible combinations of the upper and 

lower limits of      ,       and       to show the upper and lower limits of the intervals within 

which      ,    and    lie. For this particular case, the maximum deviations are            

   2.7%,         12.3% and         14.5%, which are significant, but not pivotal to the 

conclusions. 
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Solutions taken from 10 layer 

        slabs 

Hypothetical supercell energy 

changes 
Resultant changes to     ,   and   

      
/ eVÅ

-2
 

(3 d. p.) 

   
/ eVÅ

-1
 

(3 d. p.) 

   
/ eVÅ 

(3 d. p.) 

       
/ eV 

(3 d. p.) 

       
/ eV 

(3 d. p.) 

      
/ eV 

(3 d. p.) 

      
/ eVÅ

-2
 

(3 d. p.) 

    
/ eVÅ

-1
 

(3 d. p.) 

    
/ eVÅ 

(3 d. p.) 

 

 

 

2.495   

10
-2

 

 

 

 

 

 

9.111   

10
-2

 

 

 

 

 

 

3.599 

 

 

  3.330   10-3   4.23   10-3   5.130   10-3     0.234   10-4     0.000   10-2         0.000 

  3.330   10-3   4.23   10-3   5.130   10-3   4.973   10-4     0.849   10-2       0.319 

  3.330   10-3   4.23    10-3   5.130   10-3     6.628   10-4   1.186   10-2         0.520 

  3.330   10-3   4.23    10-3   5.130   10-3   1.421   10-4     0.337   10-2       0.201 

  3.330   10-3   4.23    10-3   5.130   10-3     4.973   10-4   0.849   10-2         0.319 

  3.330   10-3   4.23    10-3   5.130   10-3    6.628   10-4     1.186   10-2       0.520 

  3.330   10-3   4.23    10-3   5.130   10-3     1.421   10-4    0.337   10-2         0.201 

  3.330   10-3   4.23    10-3   5.130   10-3    0.234   10-4      0.000   10-2         0.000 

Table S.2. The sensitivity of     ,   and   to changes in supercell energy. The instances where     , 

  and   change the most are indicated in bold type. 

 

 

 

 

 

 

 

 

 

 

 

 

 


