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ABSTRACT

The NARMAX method of identifying the frequency dom—
ain characteristics of nonlinear systems is illus-
trated by computing the first, second and third
order generalised frequency response functions of a
heat exchanger.

NOMENCLATURE

d time delay

fS sampling frequency
a constant

g parameter vector
T sampling interval

e(k) prediction errors

u(k) input

y (k) output

£(k) residuals

Hi(ﬁ) generalised frequency response functions
INTRODUCTION

The identification of the frequency domain charac-
teristics of nonlinear systems is of fundamental
1mportance in many branches of science and engin-
eering. Although several authors(l) have consider-
ed the theoretical analysis of such ideas only a
few researchers have attempted to produce estimates
of the generalised frequency response functions
from measured signals of real processes of unknown
model structure. In the few cases where such re-
sults have been attempted only the first and second
order functions were estimated on the assumption
that all higher order terms were zero. In the
present study a parametric estimation method based
on the NARMAX (Nonlinear AutoRegressive Mov1ng
Average model with eXogenous inputs) model is des-
‘cribed. By considering the identification of a
nonlinear heat exchanger it is shown that the method
can provide estimates of the generalised frequency
response functions of any order and the first,
second and third order functions are estimated and
analysed.

THE NARMAX METHOD

A wide class of nonlinear systems can be represented
by the NARMAX model (2)

y(t) = u+F£[y(t—1),...y(t-ny),u(t-d), ..u(t-d-nu+1),

e(t-1),. .g(t~n€)]+s(t) (1)

where u(t) and y(t) represent the measured input
and output respectively. e(t) is the prediction

error
e(t) = y(t)-y(v)
nu,ny,ne represent the number of lags in the input,

output and pred1ct10n error, d is the time delay, a
a constant, and F* (*) is some nonlinear function of
degree 2. The Volterra, bilinear and other well
known nonlinear models can be shown to be 5pec1al
cases of eqn (1). In the present analysis rt (=)
will be expanded as a polynomial although other
choices such as rational functions etc can be made.

A NARMAX model with first order dynamics expanded as
a second order polynomial nonlinearity would for
example be represented as

x(k-1)u(k=-1)

-_— - - 2 -
x(k) = Clx(k 1)+Czu{k 1)+C11x (k 1)+C12

+022u2(k-1) (2)

If the output is measured with additive noise
y(k) = x(k)+e(k)
the NARMAX model becomes
_ i - e
y(k) = C1Y(k 1)+CZU(k 1)+Clly (k 1)+Clzy(k Lu(k-1)
2
+022u (k-1)+e(k)-Cle(kvl)—ZClly(k 1)e(k-1)

+¢) e (-1)-Cp e (1) u(k-1) ©)
and cross-product noise terms appear in the expan-—
sion. In general the noise may enter the system
internally and because the system is nonlinear it
will not always be possible to translate it to be
additive at the output. Any nonlinear identifica-
tion procedure should therefore take account of
this phenomena. Unfortunately, most of the para-
meter estimation algorithms developed for linear
systems cannot be applied to equation (3) because



even though the model is linear-in-the-parameters
the noise is not independent of the input. Notice
that only a small number of parameters are required
to describe the system eqn (3) by a NARMAX model
vhereas the Volterra series expansion of this sys-
tem would require thousands of terms to character-
ize the system using hl('), hz(','), h3(',',')
ntc(B). Because the NARMAX model utilizes the in-
formation in the past output measurements it has a
much smaller parameter set than the functional
series expansions. Although it was derived from
a totally different approach the NARMAX model can
be visualised as a Volterra series in the inputs
and outputs.

Several parameter estimation algorithms have been
derived for the NARMAX model. Most of these al-
gorithms are based upon defining the following
vectors associated with the model of eqn (3) for
example,

T

g

[y (k=1) ,u k-1, > (k=1 ,y (k=1)u(k-1) ,u’ (k-1) ,

£ (k-1) e (k=1)y (k-1) ,u(k=1)e (k-1) ,e” (k-1)]

[c; 62,...65]

éT

) = y(ke1) = x T8 Cw)

With these definitions several parameter estimation
algorithms can be utilized to estimate B. Although
it may be tempting to model the system as a series
of threshold piecewise linear models this will often
yield results that are biased and virtually useless
for prediction(5), It is important therefore to
be able to estimate the parameter vector B in models
such as eqn (3) and (4) and one way to achieve this
is to derive a prediction error algorithm based on
minimising the cost function
N
1 T
J,(8) = g log det ] e(k;B)e (k;B) ()
R 5 |

Notice, however, that the determination of the model
structure or which terms to include in_the NARMAX
model expansion is vitally important(a)s(s). Con-
sequently, all the parameter estimation algorithms
derived for the NARMAX have incorporated a struc-
ture detection module. A new orthogonal estima-
tion algorithm derived for the NARMAX model provides
an alternative solution to this problem(7).  The
algorithm allows each coefficient in the model to

be estimated independently of the other terms in

the model because of the orthogonality property
which holds for any input and shows the contribution
that each term makes to the output. The results of
a new updated version of this algorithm will be des-
cribed below.

Whichever model formulation or identification pro-
cedure is implemented it is important to test that
the identified model does adequately describe the
data set. This will be true providing the follow-
ing simple tests are satisfied(4),(6)

¢€E(T) = 6(1)

¢u£(r) = 0¥ 1

¢ 21 (T) = O¥1
u

] 21 2(1’) = 0¥1 (6)
E u

£

I)=0¥T1>0
¢E£U( ) 2
Once the NARMAX model coefficients have been esti-

mated and the model validated the generalized
frequency response functions

Hn(wl,wz...mn) = [wmal hn(Tl,Tz...Tn)
exp{-j(wlrl+...wnrn)}dfl...dTn (7

can be computed using the probing or harmonic in-

put method (&) (9) To compute Hl(jwl) for example
set ul) = e,y = B (Wl in the NaRMAX
model and equate terms of erkT. .To compute the

. Jl-l-‘lkT jwokT
second order function set u(k) = e +e .
. Jwi kT . JwpkT
y(k) = Hl(Jml)e +Hl(Jw2)e
j(m1+m2)kT
e and equate coefficlents of

1+w2)kT

+2! Hz(le,sz)

jlw
2le to yield Hz(jwl,jmz). Similarly
for the higher order generalized frequency response
functions H3(Jm1,3m2,3m3), Ha(le,sz,JNB,Jwa) etc.

PARAMETRIC SPECTRAL ESTIMATES OF A HEAT EXCHANGER

A complete description of the heat exchanger sys-
tem, the experiment design, data collection and
earlier nonlinear model fitting is available in
the literature(10), In the present analysis the
identification of the nonlinear frequency response
characteristics will be computed by re-estimating
a NARMAX model based on the latest versions of our
parameter estimation algorithms.

Throughout the data will consist of 500 data pairs
from an experiment with an input bandwidth of
0.5Hz augmented with 500 data pairs from a separ-
ate experiment with input bandwidth 0.05Hz. The
output data is illustrated in Fig.l. Only the
first 500 data pairs will be used to fit the
models, the second 500 data pairs from an indep-
endent experiment with a different input will be
used to test the prediction accuracy of the model.
This is a severe test for any model fitting al-
gorithm but is we believe particularly important
when fitting models, linear or nonlinear, to data
generated from a nonlinear system ), (6) All
the data were obtained by sampling the real sig-
nals at 0.3 secs and in all the experiments a mean
level was added to the input.

Initially, the simple nonlinear detection test

¢ : l2(T) 4) was applied to the output data (re-
yy

corded in response to an input with dec shift and
third order moments zero) to determine if the sys-
tem was linear or nonlinear. The results illus-
trated in Fig.2 clearly show that ¢ '2(1), is

well outside the 957 confidence limits indicating
that the system under test is highly nonlinear.
Despite this result it is of interest to fit a
linear model to the data initially.

The forward regression orthogonal algorithm (this



is a recent extension of the orthogonal estimator)
produced the following model structure and estimates
after ten iterations

y(k) = -0.186+1.772y (k-1)+0.273u(k-1)-0.751y (k-2)
=0.298u(k-2)+e(k)-0.1e (k=1)-0.028¢c (k-2)
+0.22e (k=3)-0.16e(k-4)-0.17c (k-5) (8)

The model validity tests, eqn (6), for this model
and a comparison of the system output and predicted
output of the model are illustrated in Figs.3 and 4
respectively, In Fig.3 ¢ 2;(1) and ¢ 2 2(T) are
ug u g
outside the confidence bands indicating that the
model will be biased because nonlinear terms have
been omitted. From Fig.4 however the model
appears to predict the output well for points 400-
500 but is clearly deficient over points 500-750.
This is to be expected because the model was esti-
mated using points 0-500 only. Forcing the model
to predict over data from a separate experiment
(points 500-1000) however clearly shows it is
biased. An optimise? ?odel computed using a pre-
diction error routine produced a model with al-
most identical deficiencies.
Previous experience(ﬁ) has shown that linear ‘model-
ling often provides a reasonably good starting
estimate of the orders of N0y, ,0 and d to select
in eqn (1). On this basls therefore the for-
ward regression orthogonal algorithm was given the
initial specification ny =2, n = 2, n = 5, d =1,

degree of polynomial expansion £ = 3 and produced
the following model after ten iterations

y(k) = 2.035+0.924y (k-1)+0.452u (k-1)-0.0163y> (k1)
~0.00065u (k-2)y (k=1)u (k-1)=0.0019y> (k-1)
u(k=1)-0.,0018u°> (k-1)-0.0083u2 (k-1) +€ (k)
~0.037¢ (k-1)-0.029¢ (k=2) +0. 21¢ (k-3)
+0.076€ (k=4)-0.15¢ (k-5) (9)

Note that from the 220 possible terms that could
have been included in the above model the algorithm
has deleted the vast majority of these because they
were found to be insignificant. The structure
detection algorithm which decides which terms to
include in the final model usually performs extrem-
ely efficiently. It is however important to check
that the structure is correct and the parameters
unbiased and to modlfy or add to the model as
appropriate(6), (10 These objectives are easily
achieved by checklng the model validity tests eqn
(6) and the prediction accuracy of the fitted model
which for the model above are illustrated in Figs.5
and 6 respectively.

The model validity tests Fig.5 are now acceptable
and confirm that the model eqn (9) is a good fit to
..the data. Inspection of the predicted output of
the nonlinear model eqn (9) illustrated in Fig.6
clearly shows that the model produces good predic-
tions over both the data used in estimation (points
0-500) and over data from an independent experiment

(points 500-1000) and even predicts the saturation
just after point 500. A comparison of the predic-
ted output of the linear model Fig.4 with the
predicted output of the nonlinear model Fig.6
demonstrates the superior performance of the
latter.

Using a prediction error algorithm based on the
structure of eqn (9) produced the model

y(k) = 2.036+0.924y (k-1)+0.45u(k-1)-0.0163y (k-1)
—0.ooosau(k—Z)y(k-l)u(k—l)—0.0019y2(k-z)uGrD
-0.00183u> (k-1)-0.0085u% (k1) +¢ (k) -0. 037 (k1)
-0.0269¢ (k=2)+0. 20& (k-3)+0. 06 7¢ (k~4)

-0.15e(k-5) (10)
A comparison of the two models in eqn's (9) and
(10) shows that they are virtually identical. The
fact that two different estimation algorithms give
the same results gives further confidence in the
model. The results above also compare well with
the model estimated using an earlier stegwlse
regression/prediction error algorithm(l

The generalised frequency response functions of any
order can now be computed by applying the probing
method described earlier to the estimated model in
eqn (10). The probing method is applied by ig-
noring the e(+) or prediction error terms since
these represent a model of the noise and were in-
cluded in the model to ensure the process model
parameter estimates are unbiased. The first order
generalised transfer function is illustrated in
Fig.7 and shows the system has a low pass type
characteristic, Fig.8 which shows the linear
output, first and second harmonic superimposed

on one plot indicates that the harmonics are very
significant at low frequenc1es All the frequency
response plots are against normalised frequency.
Multiplying the normalised frequency by the samp-
ling frequency gives hertz. A normalised fre-
quency of 0.5 (equivalent to fg/2 say) therefore
corresponds to the highest frequency which can be
seen in H;(+) when the original data was sampled

at a normalised frequency of 1.0 (equivalent to
fg). Following a similar argument the results

for Hz(jml,jwz)fwl = wy and Hs(jml,jmz,ij)'lwl

Wy = g in Fig.8 are only relevant for normalised

frequencies less than 0.25 and 0.166 (equivalent to
f /4, £ /6) respectively.

The second order frequency response function
H2(jm1’jw2) is illustrated in Fig.9a with the

corresponding contour plot in Fig.9b. These plots
are dominated by the intermodulation effects rep-
resented by the ridge along f +f2 = 0, and the

1
strong peak for f1 and f2 close to zero. These
(11)

properties indicate that for low frequencies
H,(*,*) will induce nonlinear distortion and a
dc shift in the output.

The third order frequency response function
H3(jm1,jw2,jw3) is illustrated in Fig,10a with the

3



corresponding contour plot in Fig.l1l0b. Both Fig.
=f

10a and 10b display Hﬂ(fl’fz’fB) for f3 x

alternatively f3 can be fixed if required. Using

Fig.l0b to interpret the results the peak at A
shows that for fl,f2 close to zero a strong inter-

modulation effect will be produced. There is a

strong ridge along f1+f2 =0 (ie f1+f2+f3 =

fl—f1+f1 = fl), B in the diagram, indicating a

significant compression effect. The ridge denoted
by C along 2f1+f2 =0 (ie fl+f2+f3 = f1-2f1+f1 = 0)
suggests the system will produce a significant dc
shift in the output. The ridge tagged D along
f1+f2 = 0.5 should be ignored since it is outside

the relevant frequency band for H_,(+,+,*) (see the
j 2 : 3
discussion for Fig.8 above).

In a similar manner H, (-),H,.(-),H,(-) etc can be
readily computed directly from the estimated
NARMAX model eqn (10), the only problem is how to
display the results.

The above interpretation of the estimated higher
order frequency response functions can be con-
firmed and analysed by injecting inputs into the
NARMAX model eqn (10) corresponding to areas of
interest identified in H'('),H (=) and Hj(-).

For example simulating the estimated NARMAX model
eqn (10) (set e(k) = 0 ¥ k) for a sinusoidal input
of normalised frequency 0.0l produced the results
illustrated in Fig.1l1. The constant term 2.036 in
eqn (10) has been subtracted from the outputs in
order to show the strong dc shift produced by the
nonlinearities of the system. Inspection of Fig.
11 shows that as predicted there is a strong dc
shift in the system output (due to the ridge

f1+f2 =0 in HZ(—) and 2f1+f2 =0 in H3(-) etc)

and the output is distorted. The model response
for any other input can be obtained in exactly the
same way, and this allows the experimenter to pre-
dict the response of the system under test to any
input, not just the input used to estimate the
model. Such an approach is extremely difficult
to achieve if an FFT based algorithm is used to
estimate Hl(_)’HZ(-) ete.

CONCLUSIONS

The NARMAX method of estimating the generalised
frequency response functions of nonlinear systems
has been illustrated by analysing data from a heat
exchanger. The results represent just one example
of the type of analysis which can be achieved using
this approach. The NARMAX method has several
advantages compared with other FFT based algorithms;
H.(-) can be computed for all i, the results are
not input dependent and work for sensible record
lengths (ie a few hundred data points), many prop-
erties of H,(-) can be determined and once identi-
fied the moliel can be simulated in the time or
frequency domain to show the response to any input.
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