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Abstract

A prediction error estimation algorithm incorporating model selection
and validation techniques is developed for a class of multivariable
dicciete: time stochastic nonlinear systems which can be represented by
the NARMAX model (Nonlinear AutoRegressive Moving Average Model with

eXogenous inputs).




1. Introduction

The development of microprocessor based control algorithms for nonlinear systems
would be simplified if identification techniques could be developed to yield

representative models of such systems in a stochastic environment.

The present paper introduces a prediction error estimation algorithm for systems
which can be described by the NARMAX model (Nonlinear AutoRegressive Moving
Average model with eXogenous inputs) |Leontaritis and Billings 1985|. An
algorithm for the estimation of the parameters in a NARMAX model 1is developed
using a prediction error estimator based on Newton's method with a line search
at every step. The precise numerial implementation using square root methods

is described in detail. Two basic methods of model selection, the model red-
uction and the model expansion method are described as an integral part of the
estimation. The Householder orthogonal transformation is employed in the model
reduction to perform the selection of thenodel in an efficient manner. Model
validation |Billings and Voon 1983, 1986a, Leontaritis and Billings 1986| is
also briefly described and simulated examples are included. The algorithms
presented represent an alternative to the prediction error/stepwise regression

method described in an earlier publication |Billings and Voon 1986b .

2, Ihe NARMAX Model

Assume that the system that generated the data which is to be analysed is a
general stochastic discrete time system with input space on r-dimensional vector
space and output space on m-dimensional vector space. Define the input and
output of the system at time t as the r-dimensional and m-dimensional column
vectors u(t) and y(t) respectively. If the observation of the system is

- * . t
assumed to start from time 1 to time t this can be denoted by vy

Y=, v, ..., y(1)HT (1)
Similarly for u(t)

yo= w®), w1, ... a)HT )
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A general stochastic, discrete-time, dynamical system can now be described
by the conditional probability density function of y(t) given all past
inputs and outputs yt-l and yt

pr(e)[ y*1,ub (3)
The function eqn. (3) can be put into innovation form

y(©) = £+ e (4)
Where €(t), the prediction error or innovation process 1is the stochastic
process defined as

e(t) = y(t) - E[y(t)lyt_l, uF] (5)
The mean square error estimate of the output y (t) given all past inputs
and outputs, is the vector ;(t)

y(t) = E[y(t)lyt_l,ut] = £(y" e (6)
and thus the innovation form eqn. (4) separates the output that can be
predicted from the past as f(ytnl,ut) and the unpredictable part as the
innovation e(t).

Equation (4) can be expressed in expanded form as[_Leontaritis and Billings
1985 |
vi (©+p)=g; [y, (t+n,-1), y, (t4n -2), ... y; (),
¥, (t+n,-1), ¥, (t+n,=2), ... 7,(t),

ym(t+nm:1), ym(t+nm—2), i ym(t%
ul(t+p), ul(t+p-1), iaw ul(t)

uz(t+p),u2(t+p-1),---, “z(t)

5 ; L}
°

.

u (t#p) 5 ur(t+p-l) — ur(t)
81(t+P"1), — sl(t)

em(t+p—1), FEE & Em(t)]+8i(t+P) (7)
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where i=1,2,...m and p=max (nl,n .n_). The usagers n, are the observability

2* "
indices of the system, and the function f(.) eqn(4) can be found by recursive

use of the functions q, -

The representation in eqn.(7) is referred to as a multistructural input-output
prediction error or innovation model. For single—input single-output systems
this reduces to the NARMAX model (Nonlinear AutoRegressive Moving Average model
with eXogenous inputs). |
y(t) = q[y(e-1), ... ylem ), u(td), ...
u(t-d—nu+1), elt=L), wsus e(t+na)]+ gle) (8)
A rigorous derivation of these results together with numerous examples are

available in the literature |Leontaritis and Billings 1985].

3. Parameter estimation

The prediction error and maximum likelihood estimation techniques both minimize

. The

a loss function |qudwin and Payne 1977, Ljung and Soderstrom 1983
maximum 1ike1ihood method is an asymptotically optimum method but the probability
density function of the innovations must be known. The prediction error method
does not require any density function to be known and is equivalent to the
maximum likelihood method for the case of Gaussian inmovations. It can be
shown that thelperformance of the prediction error method is only slightly
inferior to the maximum likelihood method for bell-shaped probability density
functions of the innovations. The estimate of the parameter vector 6 given by
the prediction error method is the one that minimizes the loss function

3,(0) = —% lag detQ(8) (9)
where

N
Qe) =3 § et,0) (5,0 (10)
t=1

e(t,08) are the residuals
t-1 &
e(t,8)=y(t)=f(y ,u ,08) 7 (11)

and the function £(') eqn.(4) is now expressed as a function of 6 to show the
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dependence on the parameter vector.

of the loss function Jz(e) are given by

The gradient and the approximate Hessian

8J N
2 sl T -1 3e(t,0) .

50, N L €(E:0)00) " Fpmms t= 12, =
1 t=1 i

32J N T
2 =l BE(t,E) =1 aS(t,e) 2 e

T = Z Eer— Q) PR L By, (13)
i t=1 i ]

where the derivatives of the residuals can be calculated

d

36,
1

+9e(t,6) _ - t-1

t
20, »u8)
1

f(y =12, ...

The derivatives of the function f of the model have thus

respect to the parameters.

It is possible to calculate the derivatives of the residuals recursively.

from the equation

(14)

!ne

to be calculated with

In

fact differentiating eqn.(7) with respect to the parameters, the following

recursions are found

aqf

aei(t+p)
831(t+n1—l)

286,
J

qu

o€+

Bel(t+n1—1)
26,
J

“aq;}
862(t+n2-1)

852(t+n2“1) )
a8, Fas
]

° L3 . ® .

SQi

" %e (t+n -1)
m m

aam(t+nm—1)

36,
J

where i=1,2,...,m i=l,2,...,n

8

and p=max(n1,n2,...,nm)

- aaz(t)

Bgl(t)
38,
J

Bql
le(t)

aq Bez(t)

a0,
J

1

.

3€m(t)
a6,
J

aql

5 o) (15)
m

The m*nB recursions eqn.(15) can be used to find the derivatives of the

residuals with respect to the parameters

Billings and Voon 1986b|,

The recursions need initial values for the derivatives of the residuals. Since

the residuals do not depend on the parameters for t < 0, it is clear that the

initial conditions are (aa(t)/aei)=0 for t < 0.
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If the function f is to be derived from the functions q; certain values
of the inputs, outputs and residuals before t=1 have to be known. The
first p inputs and outputs of the data can be used as initial values of the
inputs and outputs. The rest of the data are available for the estimation
of the parameters. The initial values of the residuals present a more
difficult problem, One usually acceptable solution is to assume that they

are ZzZero, -

The gradient and the Hessian of the loss function are thus evaluated for a
specific § by iterating the recursions egn.(l5) to find the matrix

3¢(t,8)/98 for t=1,...,N and substituting them in equations (12) and (13).

The minimization of the loss function Jz(e) can be done very efficiently by
using Newton's method with a line search at every step. The method always
converges to at least a local minimum. The algorithm consists of the

following steps:

(1) Select an initial value of the parameter vector 90 using least squares.
Set k=0.

(ii) Evaluate 21,(8)/36 and asz(e)/aez at 6, .

ees . ; 2. -
(iii) Calculate the direction vector dk= *(Bsz/BS ) 1(8J2/88).
(iv) TFind the scalar ak for which J2(6k + akdk) becomes minimum.

6k+1=8k ¥ akdk'

(vi) If J2(8k+1

set k=k+l and go to (ii).

(v) Set

)—Jz(ek) ig smaller than some small number, stop, otherwise

Notice that the calculation of the direction vector dk in step (iii) does not
require the inversion of the Hessian since the inverted Hessian has only to be
multiplied with the gradient vector. The problem is thus equivalent to one of
solving a set of linear equations. The approximate Hessian is always symmetric
positive definite matrix and thus special methods can be used thaF take
'gdvantage of this property. The square root decomposition methods provide an

efficient solution to the problem.



The Hessian can be factorized as

— = T (16)
30

where U is an upper triangular square matrix and u" is a lower triangular
matrix. Once the Hessian has been decomposed, the direction vector dk can be
easily found. Let the gradient,vector be calledrgk. It is then

vt ud) = = g (17)
The vector Udk can be calculated easily since U’ is a triangular matrix and
the back substitution algorithm [Bierman (1977)| can be used to compute the
elements of Udk iteratively. When the vector Udk has been computed, back
substitution can again be used to give the vector dk'
When the model is over—parametrized, the Hessian tends to become almost
singular and the square root of the Hessian is very difficult to calculate

numerically. In this case, a diagonal matrix uI, where u is a small scalar,

is added to the Hessian before the square root factorization is attempted.

Thus
32J2 . .
2+u1=UU (18)
26
This alters the direction vector dk only slightly, which is unimportant,
since dk is only used as a direction along which a line search for the minimum

can be done.

4, Model selection methods

One of the major problems in system identification is the selection of the
model that can be used to identify the system S, If the model is not general
enough, however well the parameters are estimated, the final model cannot
behave like the true system S. On the other hand a very complicated model
might be much more complex than the one that is actually needed. The theory
of model selection can easily be applied to select the most appropriate model

|Billings and Voon 1986b|. One is a model reduction method and the other a
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model expansion method. For both methods the most complicated model to be
considered must be chosen first. This model is called the full model. All
the other models to be considered aré special cases of the full model with
some of the parameters of the full model equal to zero or some other constant
value. When the non-linear input-output model eqn.(7) is used, the maximum
values of the observability indices must be selected first. The parametric
expansion of the functions q; has to be decided upon next. In the case of a
polynomial expansion, the highest degree of the approximating polynomials

must be chosen.

4.1 The model reduction method

The estimation of the parameter of the full model and the Hessian of the loss
function at the minimum are calculated first using the methods in section 3.
If the full model is heavily over-parametrized, the square root decomposition
of the Hessian might need the addition of a small diagonal matrix, pl, in
order to be numerically evaluated. The comparison between the full model and
any of the reduced models can be done by evaluating the log determinant ratio
test statistic |Leontaritis and Billings 1986| d(y) and comparing it with the
critical value 4s, where s is the number of the reduced coefficients. The

statistic d(y) is given by

- & Rt T il i
d(y) = @ - bl) [be Hab HaaHag](b* bl) (19

where H is the Hessian of NJZ(G) at the minimum ©, H has been partitioned as

T

H = B OH
[ sa a (20)
Bab Hpp d

to correspond to the partitioned parameter vector 6 = [ a } and b 1is a
b

column vector of dimension s and a is a column vector of dimension ng-s.

Thas 6= a} corresponds to the full model and & with b set to some specific
b]

vector b*, usually a zero vector, corresponds to the reduced model. The

purpose of the test is to investigate if there is significant statistical

evidence that the more complicated full model gives a better explanation of
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the data than the simpler reduced model where Gl represents the estimate of
the assumed true value b*. The numerical evaluation of the statistic d(y)
can be done more efficiently using the Householder orthogonal transformation
than using equation (19), for the following reason. The Hessian of the full
model H has already been decomposed as u'u ﬁhere U is the upper triangular
square root matrix of H. The Hessian of the reduced model Haa must also be
decomposed as U;Ua if equation (19) is to be used, so that the inverse of the
matrix Haa does not need to be calculated. If the matrix Haa is the upper
left partition of the matrix H, the square root Ua is also the upper left
partition of the matrix U. The problem is that the Hessian of the reduced
model Haa is the upper left partition of the matrix H only if the parameters
to be eliminated are the last ones in the parameter vector. Since this is
not generally the case, the decomposition of the full matrix H cannot be used
to find the decomposition of the reduced matrix Haa' The Householder orthogonal
transformation may be applied though since it can make full use of the already

calculated square root matrix U.

A short introduction to the orthogonal transformation and in particular to the

Householder orthogonal transformation follows.

A square matrix T is orthogonal if Tt =T (I is the identity matrix). Orthogonal

matrices play a very important role when square root decomposition of matrices

are used. This can be explained by the properties of the orthogonal matrices.
(1) If T1 and T2 are orthogonal matrices, then so is T1T2.

(ii) 1If U is a square root of the matrix H so is TU, where T is some
orthogonal matrix.
This property can be exploited to create a square root of a matrix that
has desirable properties, when some other square root is given. The
usually desirable property is triangularity.

(iii) For any vector y




Tyl = |Iy]] (21)

where
T . 1/2
Hyll = &G'»
So an orthogonal matrix transforms a vector in a way that preserves distance.

It also preserves the inner product of the two vectors so it also preserves

angles.

The Householder orthogonal transformation is the transformation that corresponds
to the geometric notion of reflection on a plane perpendicular to a vector u.

The orthogonal matrix of the Householder transformation is

2
T =1 = o uu’ (22)
uu
where I is the identity matrix. The transformed vector Tuy is given by

T
sy w2
Tuy y =2 - u (23)

u u

The transformed vector Tuy can then be evaluated easily if the vector u that
defines Tu is known and the actual transformation matrix Tu is not needed at

all.

The Householder transformation can be used to tridngulize a matrix. Initially
a specific Householder transformation that transforms a vector y into a vector

that has all components zero except the first one is developed. Let

T .
Tuy=6~0,0,...,0) = —oey o ey (24)
where e is the vector (1,0,...,0)T. Property (iii) of the orthogonal matrices
gives
T oL 2
T 31| =6 2= o] (25)

The direction of u is suggested by eqn.(23)

u=const(y+ce1) (26)
The constant in eqn.(26) can be any scalar and it is taken equal to 1. The
sign of o is also arbitrary. For the choice

o = sign(y) (y'»"/? (27)

the elements of the vector u are
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u1=y1+0
u, = y. for i > 1 (28)
i i
and
2/uTu=l/(Uul) (29)

The sign of 0 was chosen to maximize ]ull so that the term 1/(Uu1) needed in
the transformation of other vectors is as numerically well defined as possible.

The transformation of other vectors is given by eqn.(23).

The following procedure can be used to triangulize a matrix. The Householder tran-
sformation that transforms the first column of the matrix to a vector with all
elements equal to zero except the first one is applied to all the columns of the
matrix. The lower right partition of the transformed matrix without the first
column and row is transformed again so that the first column of the partitioned

matrix has all elements zero except for the first one. Continuing in this way a

triangular matrix is eventually created if the original matrix is square. All
thé partial orthogonal transformation matrices are not actually calculated and
are not needed, If the original matrix is not square the final one has all
the elements below the 45 degree diagonal that starts at the top left corner
of the matrix, equal to zero. The Householder triangulizaion of a matrix can

now be employed to calculate the statistic d(y) efficiently.

Let the Hessian H at the minimum point of the loss function NJZ(G) be decomposed

T i ; - ‘
as U U. The loss function around the unrestricted minimum 6. then is

1
NI, (8)=NJ,(8.) + + (6 - 0.) U U(o-5.)
2 e} 2 il 1
.-NJ'(é ) + 1 (Ug - U§ T(Ue - Ué ) (30)
A | 2 1 1
The matrix Up-can be written as
= I +—-
Ue Uaa Ubb (31)

where the matrix ﬁ; is the nex(ne ~ 8) matrix which consists of the columns
of the matrix U that correspond to the parameters of the vector a, and ﬁ£ is
the n,xs matrix which consists of the cdmns of U that correspond to the vector

b. For the vector b restricted to being equal to b*, the loss function of the
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reduced model becomes

~ l__ PR ~ ,r__ _— A
= — K =
NJz(B) NJ2(61)+ 2(Uaa+Ubb Uel) (Uaa + Ubb Uel) (32)

Let the constant vector c be

= HE - *
¢ =U6 - Upb (33)
Usually, since b* = 0, the vector c is ¢ = Uel. The loss function becomes
_ 2 1 = T
NI, (8) = NI, (0)) + 5 (U = o) {0 8 = ) (34)

A

The function eqn.(34) must be minimized to find the restricted minimum 60.

The matrix ﬁ; is no longer triangular since it is actually the triangular
matrix U with several columns removed. If these columns are not the last ones,
the matrix ﬁ; is not triangular. The orthogonal matrix T that triangularizes
ﬁ; can be found using the Householder transformation. Since T'T = T, the

function eqn. (34) becomes

o r . e e U e
NJZ(B) = NJz(el) *5 (Uaa c) T T(Uaa c)

¥ 1 — Ty
NJ2(61> g (TUaa Te) (TUaa Tc) (35)
The matrix Tﬁ; is an nex(ne - 8') matrix where the top square matrix is
triangular and the bottom s rows are zero. Let the (n,a —s)x(n8 -s8) top square
triangular matrix be called Ua. Also let the top (ne - 8) elements of the

vector Tc be the vector z and the bottom z elements, the vector e. Then

)] z
TU = g I and Te = (36)
* o e |
The loss function becomes
- 5 e . A o T
NJz(e) = NJz(el) +3 (Uaa z) (Ua-2z)+5ee (37)

The value of a that minimizes NJZ(G) is ;0 and it is obviously given by the
solution of the equation

Ua =z (38)
and the value of the statistic d(y) is given by

d(y) = 2M9,(6_) - 243, (8,) = e"e (39)
This approach provides not only the statistic d(y) but the square root of the

Hessian of the reduced model Ua and a simple back-substitution in eqn.(38)
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~

provides the parameters of the reduced model a - The actual matrix T does not
need to be calculated at all since every partial transformation used to trian-
gularize ﬁ; can also be applied to the vector c, the only other vector needed

to be transformed.

It has been mentioned that the Hessian H might be nearly singular that, in order
to calculate the square root U, a small diagonal matrix ul might need to be

added to H, Although this does not affect the estimation of the parameters of

the full model it does affect the evaluation of the statistic d(y). A more
accurate expression for the statistic d(y) can be given. It is based on the

fact that the evaluation of the parameters of the reduced model given by eqn.

(38) is not affected as much as the statistic d(y) by the addition of the diagonal

matrix pI given in eqn. (39). It is

U'U = H + yuI (40)

Thus a more accurate expression for the statistic dfy) is

i % BB P 5
aG) = (@, o)) H (b - 0)) (41)
where as usual ed = [aoT, b*T]T and the original Hessian is used. Another

expression that does not need the original Hessian and is quicker to evaluate
can be derived from eqns. (40) and (41). It is

~

d(y) = efe - u(d, - 6,3 (8 - (42)

1)
Both eqns (41) and (42) require the solution of equation (33) to provide the

reduced model parameters. The above method for evaluating the statistic d(y)

was found to bérquick and numerically very robust.

The selection of one model from several competing models can be determined by
computing the criterion C that is derived from the likelihood ratio test
|Leontaritis and Billings, 1986|. Let two models have parameter vectors 6

1

and 82 with dimensions ne1 and n8 . Assume that n8 7 ne and s = ne - ne 3

2 1 2 2 1
The model with parameter vector 91 is selected according to the likelihood ratio

test ‘if
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2L(Bl) - 2L(82)<f k(s) = sk(1) = (ne2_n81) k(1)
= ng k(1) - ng k(1) (43)
). i
or if
21.(8,) + nel k(1) L 2L(8,) + nez k(1) (44)

The model that is selected amongst all the several competing models is the

one that minimises the criterion
= Y. + -
C = 2L(8) .+ ngk(1), (45)

= Nlogdet Q(8) + ngk(1)

where 6 is the parameter vector and n, is its dimension.

If k(1) is set equal to 2 the above criterion becomes equal to Akaike's
Information Criterion (AIC)

AIC = 2L(8) + 2ng (46)

It is well known that the AIC criterion may overestimate the true parameter
vector but it has recently been shown that the use of the criterion C with
k(1) = 4 reduces the probability of selecting a model with one more parameter

than the true model to an insignificant level |Leontaritis and Billings 1986 .

A full model with even a relatively small number of parameters can generate a
prohibitively large number of reduced models. It is thus of great importance
to have the full model with as few parameters as possible, One way of
.achieving such a reduction is to use a full model with the correct observability
indices, A practical way of estimating the observability indices is to assume
that the system is linear, fit a full linear model and find the best reduced
one, The obserﬁability indices of the best linear model can thus be found.

It can be argued that the observability indices of the best linear model should
not be different from the observability indices of the best non-linear model,
for mild nonwlinearities and for long data sets. This method also works well
in practice so it can be quite safely used. It is very probable that the full
non-linear model with the correct observability indices will still have a large
number of parameters, The only feasible solution in that case is to apply

the Stepwise Backward Elimination (SBE) method or the Stepwise Forward Inclusion
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(SFI) method |Draper and Smith 1981| or to use a combined prediction error

stepwise regression algorithm |Billings and Voon 1986b|. The finally selected

model by these methods is not .always the best one but it is greatly reduced
compared to the full model. Both methods should be employed so that the final
models they select can be compared and the best one of the two chosen.
Simulation has shown that the models the SBE and the SFI methods select are,

if not the correct ones, very near to the correct ones.

4,2 The model expansion method

The basic difference between the model expansion method and the model reduction

method is that in the former, the parameters for the full model are not estimated

at all,

A basic model is first chosen so that it contains parameters known to belong to
the final model. If no such parameters are known, the model with no parameters is
the basic model. Another obvious choice is the best linear model. The parameters
of the basic model are estimated and the Hessian of the loss function at the mini-
mum is calculated. If the basic model has no parameters obviously no estimation
needs to be done. The basic model is too simple to explain the data and should be
expanded. All the expanded models with just one more parameter are considered.
The statistig d(y) is evaluated for every one of the expanded models and the

model that gives the statistic d(y) its maximum value is selected as the best
expanded model with one more parameter. The parameters of the expanded model

have now to be estimated using the original data y. Newton's method can be used
to minimize the loss function of this expanded model. The Hessian of the loss
function at the minimum should also be calculated. This expanded model can now be
expanded again by adding just one more parameter. The statistic d(y) for all such

models is calculated and the one with the maximum value of the statistic d(y) is

chosen and its parameters estimated using the original data. The expansion
process continues until the maxirunm value of the statistic d(y) is found to be
less than the critical value k(1) (chosen to be'equal to 4) for all the

expanded models.
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Then, since none of the expanded models can explain the data significantly
better than the non-expanded one, there are no more parameters that can be

included.

The statistic d(y) can be shown to be given by

Bt R .
dy) = =3 ]eo (B, - HopH, L E ] = ]q3 (47)

A

where Haa'is the Hessian at the minimum 90 of the non—-expanded model, b is the

extra parameter of the expanded model and

32NJ2
Hab - IBaBb J 90 (48)
[32NJ2
- .9 (49)
= 0,

The model expansion is structurally the same as the Stepwise Forward Inclusion
(SFI) method of the general model reduction method. The difference between the

two lies is the way the statistic d(y) is evaluated.

The numerical evaluation of the statistic d(y) in eqn.(47) can be done very
efficiently using the already calculated decomposition of the Hessian

H = U;Ua. The vector H;iﬂa can be evaluated, as it has been done before,

aa b

using the back substitution procedure for solving a triangular set of equations
twice. The fest of the calculations are trivial. The Householder orthogonal
transformation could also be employed here but without any advantage. This is
because the extra parameter of the extended model is added at the bottom of the
parameter vector and the decomposition of Haa can be used without any problem.
The evaluation of d(y) in eqn.(47) requires the derivatives EBNJZ/Bb]é ¥
[ézNJz/Baabjé and [BzNJz/aszé.. These should be evaluated using theooriginal
data and equagions (12), (13) agd (15). The evaluation of these derivatives is

the most time consuming part in the calculation of the statistic d(y).

The model expansion method has advantages and disadvantages compared with the

model reduction method. The advantages are:
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(i) There is no need to estimate the parameters of the full model. The
full model is likely to have a large number of parameters and the
minimization of a loss function with so many variables might be very
time consuming. The full model is also over—parametrized, so the loss
function may have almost singular Hessian. The minimization of such a
1oss function has to be done numerically with great care. However the
use of lewton's method coupled with square root decomposition of the
Hessian and line search at every step has proved that it can estimate
the parameters of highly complicated and over—-parametrized full models
quite successfully, However it can still be a rather time consuming
task.

(ii) The Heséian of the models considered in the model expansion method are
never singular and thus numerically well conditioned. This happens
because every parameter that is included in the model contributes
significantly to the loss function and thus cannot cause singularity
of the Hessian.

The diéadvantages of the model expansion method are:

(i) The calculation of the statistic d(y) for evéfy candidate extended model
is quite time consuming since derivatives of the loss function using
the original data have to be calculated.

(ii) Every time the model is extended with one extra parameter, the loss
function has to be minimized. This minimization is however numerically
well defined since the Hessian of the loss function is never singular.

(iii) The model expansion method is similar to the stepwise forward inclusion

| method of model reduction. The stepwise backward elimination and the
optimal combinatorial methods in the model reduction cannot be easily

extended to the case of model expansion.

The model expansion method is preferable in practice if a small number of
parameters need to be added to the basic model and the full model is actually

very complicated, In such a case the model reduction method is too wasteful.
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5. Model wvalidation methods

Model validation can be achieved using either parametric or non-parametric methods,
|Billings and Voon 1983, 1986a, Leontaritis and Billings 1986|. The parametric
validation method tests if some extension of the chosen model explains the data
significantly better. Comparison between the final model and models which are
reductions of the full model have already been done in the model selection part
of the identification. The final model should thus be validated against models
which are extensions of the full model. The parametric validation method can
thus be regarded as a variation of the model expansion method with an expanded
full model. Parametric validation has the advantage that it has maximum power
and it does not need the estimation of the parameters of the expanded model.
Since parametric validation is actually the same as the model expansion method

nothing more needs to be added.

The non-parametric validation methods are the correlation techniques described

. Chi-square correlation tests

in detail in Leontaritis and Billings |1986
between residuals and monomials of past inputs, residuals and outputs have to

be performed to validate a non-linear model.

The number of correlation tests needed to be evaluated can be extensive since

a wide variéty of monomials of past inputs, residuals and outputs should be
used. The fact that a non-linear model satisfied the correlation tests for a
few monomials does not give much confidence that the chosen model is correct and
a wide range of monomials éhould be used. Alternatively, the simple correlation
tests developed by Billings and Voon|1983, 1986a|, can be -applied to alteviate
this difficulty. Crods—validation methods are correlation methods with the
difference that the chosen model is tested using a completely different set of
data to the one used for parameter estimation and model selection. If a cross-
validation test fails for a particular model which passed all the normal
validation tests, something very wrong has been dome in the identification

process., Cross—validation is the final and ultimate test that confirms that a
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model has been correctly created.

A situation where a different set of data can detect a mistake in the selection

of the correct model is the following.

Suppose that a completely deterministic model is used to fit some input-output
data that are actually created by a stochastic system. The output of the deter-
ministic model will be closer to the real output than the output of the deter-
ministic part of the true stochastic system for the set of input-output data
used for the estimation of the parameters. Thus the closeness of fit of the
output of the deterministic part of the model to the actual output is not a
good measure of the correctness of a model. If however such a wrong model is
chosen, the mistake becomes immediately apparent if the same comparison is done
for a set of data different from the one used for the estimation of the

parameters,

6, Simulation Results

This simulation was carried out to demonstrate the application of the prediction
error method in closed loop operation. In order to show the robustness of the
prediction error method, the system to be identified is an unstable non-linear

system. The system is called 82 and it is given by

g(t) = 1.2y(t=1) + 0.2u(t-1) - 0.8e(t-1) + 0.1y°(t-1) = 5,05y (brLius (t=1) -
0.2y (t=Du(t-1)e(t-1) + e(t) (50)

where u(t) is the input, y(t) is the output and e(t) is a Gaussian white
sequence of standard deviation equal to 0.05. The system 82 is unstable and it
can only be operated in closed loop. The feedback law used is given by

u(t) = w(t) - 2.0y(t) (51)
where w(t) is a set point disturbance signal so that the identification can
be done efficiently, The disturbance signal was chosen to be an independent
Gaussian sequence of standard deviation equal to 1.15. An input-output data

sequence of 500 points was generated and used for the identification of system
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SZ' The first 100 points are given in figure 1. The model used first to

identify the system S, is the correct one with 6 parameters. The estimates

2

of the parameters and their standard deviations are

1 y(t=1)%**1 0.1195E+01 (*0.3841E.02)

2 u(t-1)#*1 0.1989E+00 (+0.1230E-02)

3 e(t-l)#**1 -0.7452E+00 (+0.3865E-01)

4 y(t-=1)*%*3 0.1054E+00 (*+0.4812E-02)

5  y(e=1)**1*u(t-1)#%2 = -0.5045E-01 (+0.9678E-03)
6 y(t-l)#*1Fy(e=))**1%e (£=1)**] = -0.1840E+00 (+0.3000E-01)
The estimates of the parameters are not biased as expected. The output of

the model and the residuals are given in figure 1.

The linear part of the system with only 3 parameters was used next as a model

to identify the system § The estimates of the parameters and their standard

9
deviations are

1 y(t=l)#%1 0.1161E+01 (+0.7740E-02)

I

2 u(t-l)**1 0.2326E+00 (+0.3022E-02)

3 e(t-l)#**] -0.3756E+00 (+0.4234E-01)
The estimates are biased as expected. The output of this model for the first
100 points is given in figure 2. The correlation tests detect that this model

is not the correct one. They are given in figure 3. It can be noted that here

the input sequence u(t) is not white because of the effect of the feedback.

An over—parametrized model with 13 parameters was also used to identify the

system S The output and the residuals of this model for the first 100 points

5
are given in figure 4. The estimates of the parameters and their standard

deviations are

1 y(e-1)*%*1 0.1194E+01 (£0.5645E-02)

2 u(t=l)**1 0.1978E+00 (#0.2127E-02)

]

-0.7885E+00 (+0.5812E-01)

3 e(t=l)**1



= DO -
4 y(t-1)**3 = 0.1071E+00 (+0.7913E-02)

.2974E-02 (+0.6782E-02)

]
o

5 y(t-1)**2%u(t-1)**1

6 y(t-1)*%#*2%e(t-1)*%*1 .9730E-01 (+0.1364E+00)

1l
|
o

I
|
o

7 y(t=1)**1%u(t-1)%%2 .4870E-01 (+0.2135E-02)
8 y(t-1)**1#u(t-1)**1%e(t-1)**1 = ~0.2336E+00 (+0.6984E-01)

.3318E+00 (#0.1258E.01)

Il
|
o

9 y(t-1)%*1ke(t-1)%*2
10 u(t-1)%*3 = 0.2135E-03 (£0.3004E-03)

.8173E-02 (*0.1197E-01)

I
|
o

11 u(t-1)#**2%e (t-1)**1

.1221E+00 (£0.3624E+00)

]
o

12 u(t-l)**1%*e(t-1)*%2

13 e(t-1)*%3 = 0.8456E+01 (+0.5695E+01)

The over—parametrized model can now be reduced. The SBE process is used first.
The value of the AIC criterion and the criterion C for k(1) = 4 for the
reduction of every term is

Total Number of No of AIC of reduced C of reduced Standard

eliminated eliminated model - model - Deviation of
parameters parameter AIC of full C of full the residuals
model model

1 9 -0.1930E+01 -0.3930E+01 0.4913E-01

2 5 -0.3718E+01 -0.7718E+01 0.4914E-01

3 11 -0.5331E+01 -0.1133E+02 0.4916E-01

4 6 -0.6910E+01 -0.1491E+02 0.4918E-01

5 10 -0.8593E+01 -0.1859E+02 0.4920E-01

6 12 =0.9449E+01 ~0.2150E+02 0.4925E-01

7 13 -0.8035E+01 -0.2204E+02 0.4942E-01

8 8 0.4014E+02 0.2414E+02 0.5197E-01

Akaike's criterion over-estimates the number of required parameters and it
keeps term No 13 while the .criterion C finds the correct model. The SFI process
is also used to reduce the over—parametrized model. The value of the AIC

criterion and of criterion C for k(1) = 4, for the inclusion of every term is
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Total Number  No of AIC of reduced C of reduced Standard
of included included model - model - Deviation of
parameters parameter  AIC of full C of full the residuals
model model

it 1 0.6958E+05 0.6956E+05 0.1000E+20

2 2 0.3468E+04 0.3446E+04 0.1621E+01

3 7 0.1020E+04 0.9999E+03 0.1393E+00

4 4 0.4225E+03 0.4054E+03 0.7639E-01

5 3 0.4014E+02 0.2414E+02 0.5197E-01

6 8 -0.8035E+01 -0.2204E+02 0.4942E-01

7 13 -0.9449E+01 -0.2150E+02 0.4925E-01

8 12 -0.8593E+01 -0.1859E+02 0.4920E-01

The SFI process gives the same results as the SBE process.

7. Conclusions

The numerical implementation of a prediction error estimation algorithm and
associated model selection techniques have been preserved for nonlinear systems
which can be represented by a NARMAX model. The square root method of decomposing
a positive definite symmetric matrix was used to ensure an efficient numerical
minimisation of the loss function. Two basic methods of selecting the correct
model were discussed, the model expansion and the model reduction methods, and

the Householder orthogonal transformation was employed to evaluate the criterion

the selected model must minimise.
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