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Abstract
Methods of identifying a series of piecewise linear models which
approximate to a nonlinear system over some operating range are

investigated. Both spatial linear models and models with signal dependent

parameters are considered.,
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1. Introduction

Piecewise linear modelling is the process of developing a series of locally

linear models which approximate to a nonlinear system over some defined operating
range. The main advantage of the piecewise linear approach is that well known
linear algorithms can be used to identify the models and develop control strategies
in a manner which utilizes the wealth of knowledge and experience that is available
for linear systems. The disadvantage is that the model developed may be a poor
approximation to the nonlinear system under study so that simplicity in the

analysis is obtained at the exrense of an inadequate model and inefficient control.

There are several possible ways in which nonlinear systems can be approximated by
locally linear models. White [1971] introduced the term exhaustive linearization
to describe a system which can be linearized about each of the admissible inputs
and showed that such systems can be represented exactly in terms of their linear

behaviour, Unfortunately, to obtain such a representation the response of the

nonlinear system to a vanishingly small test signal must be used to identify what
White [1971] calls the linear operator. This introduces a considerable conflict
because the effect of noise on the measurements causes the S/N ratio to decrease
rapidly as the input is made vénishingly small and hence the identification of an

accurate linear map becomes extremely difficult.

De Hoff and Rock [1979] introduced the idea of multiple linearization of nonlinear
systems where the model form is chosen to éllow separate models of the steady

state response and off-equilibrium behaviour. This approach is simple and efficient
when the nonlinear system has a slow moving input and operatesclose to the steady

state,

Cyrot-Normand and Mien L19801 demonstrated that state-affine models can be con-
structed by combining several linear models identified from step tests for different
levels of plant operation. Several processes were modelled using this approach

and the technique was shown to work well for slowly varying levels of plant

operation, A similar idea was considered by Haber and Vajk [1982] , Haber and



Keviczky [1985] who derived algorithms for the identification of linear models
with signal dependent parameters to represent nonlinear systems. Diekmann and
Unbehauen [1985] introduced an on-line algorithm and showed that the different
sets of parameters in operating point dependent linear models can be estimated

in parallel from one period of measurement.

In time series analysis Tong [19783, bj introduced a class of models called
threshold models, These are linear models where the parameters vary according

to the amplitude of a finite number of past values of some variable. Threshold
autoregressive (AR) and autoregressive moving average (ARMA) models and associated
estimation algorithms have been derived by Tong [1978a, b] and used in the
modelling of nonlinear time series. State dependent models (SDM's) were introduced
by Priestley [1980] again for the study of time series. SDM's are state variable
models which can be interpreted as locally linear ARMA models in which the
evolution of the process is governed by a set of coefficients which depend on

the system state at a previous time instant.

In the present study both the identificétion of spatial piecewise 1linear and
signal dependent linear models of nonlinear systems are investigated. 1In section
2 the linearization of the NARMAX model (Nonlinear AutoRegressive !loving Average
model with eXogenous inputs) [Leontaritis and Billings, 1985Ji§nvestigated and
uged as a basis for the development of a spatial piecewise linear model. An
estimation algorithm for this model is developed in section 3. In section 4 the
estimation of signal dependent linear models is considered and methods of patching
or glueing together these models in an attempt to reconstruct an approximation to
the nonlinear system description, are described. Simulation results are included
for both these techniques and throughout the algorithms are compared and related

to those already in the literature.



2. Linearization of the NARMAX Model

If a system is linear then it is finitely realizable and can be represented by

the linear difference equation model

n n
y “u

y(0) = (@ y(td) + | (b ut-i) €3]

i=1 i=1

If the Hankel matrix of the system has finite rank. When the system is nonlinear
a similar representation can be derived [Leontaritis and Billings, 1985] to yield
" the nonlinear difference equation model

y(t) = F* [y(t-1),... y(t—ny), u(t=d),... u(t-d-n +1)] (2)
where F* [.] is some nonlinear function. The model of eqn (2) can be shown to
exist providing the system under study is finite dimensional and a linearized model

would exist if the system were operated close to an equilibrium point.

An equivalent representation can be derived [Leontaritis and Billings, 1985] for
stochastic systems to yield the NARMAX model (nonlinear Eptbregzessive moving
average model with exogenous inputs)

z(t) = F[z(t—l),...z(t—nz), u(t*d),...u(t—d—nu+1),

e(t-1),... e(tn )] +e(t) (3)
where e(t) represents the prediction errors. Because the NARMAX model can be
used to represent a wide class of nonlinear systems this representation will be
used. as a basis for the development of piecewise linear identification algorithms

for nonlinear processes.

The effects of noise will at this stage only complicate the analysis and consequently

the representation of eqn (2) will be used to represent the nonlinear system.

Assuming that F*[.] is smooth enough to have a Taylor series representation the

linearization of eqn (2) at the operating point Ak is

n n
y u
Sy(t) = ) BF*[.] [oéy(e-i) + ) _aF*[.] u(t-d-i+1) (4)
i=1 oy(t-1i) i=1 u(t-d-i+1)|

A bre

where Ak = [&(t—l),...,y(t—ny), u(t—d),...,u(t—d—nu+1)]

The operating point can for simplicity, be redefined as

A, S|V, sV seeessasy s U 38U, 5000000 ,U (5)
e =07y s 1Y 2 nu]

¥



and

1

Sy(t) y(t) - y(t)lﬁ s, for t=1,2,...,N
k

Su(t) u(t) = u(t) A , for t=1 ,2,...,N (6)
k

Substituting equation (6) in equation (4) yields

n
y i - .
y(t)=y(t)‘A + ) aFx[.] y(t-i) - OF* | .] l y(t-1) |,
ko im1 ay(ed) |, f=i ay(t—i)lA K
k k
n n
u . u -
+ ) arx[, u(t-d-i+l) - )  3F*[.] ut-d-i+1) [ (7)
i=19u{t-d-i+1) | . i=1 Ju(t-d-i+l) Ak k
which is valid in a small neighbourhood of ﬂk and can be written as
L n
oo )
= + -1 . (t-d-1
y(t) @o|Ak L ei}A y(t-1) + izl I , u(t-d-i+1) (8)
k Y %k
where n '
Gof, = y(t) AT ‘ﬁ had y(e=1) |,
k k i=1 py(t-1i) k
| &
k
n
.U 2 | i
~ ol s ,
3 aEx[] o ule=d 1+1)‘A‘ (9)
i=1 8u(t—d-1+1)'A K
k
. < . . - % = (10)
Uil = QJF%* .! l s, 1=1,2,..... < S
Ak Iy (t-1) &
k
0 .| = OF*|. 5 151,256 s0,0 i (11)
+
0" A  Bu(t-d-i+1) “
k Ak

The linearized NARMAX model of equation (8) is this a locally linear model which

is valid in a small region about a particular operating point Ak.

3. Spatial Piecewise Linear Models

Assuming that the system under study is relatively smooth a number of linear
models of the form of eqn (8) could be used to provide a spatial pilecewise

linear approximation to the nonlinear system eqn (2).

In this case the model of eqn (8) can be rewritten as
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n Oy
. Y
y) = 6 %+ T o.M ghgy o 7 0% y(e-da-ien) (12)
0 % L z n+é
i=1 i=1 g
or
LW ) ,
y(t) =L [l,y(t—l),...y(t—ny), u(t d)),.-,.u_(t—d—ny+1)] (13)
where L(k) [.] is a locally linear function of its argument about a particular

operating point Ak and there are m operating points and hence m operating regions
which cover the global space of operation. Spatial piecewise linear modelling
would mean that the parameters in a large number of linearized models would need
tobe estimated each valid in a small region of operation. In practice a conflict
may arise with this approach. To achieve a greater accuracy in the approximation,
the region of operation of each model would need to be reduced. This in turn
would mean that the signal to noise ratio also reduces, since the noise free
output of the system is reduced but the noise remains unchanged, and hence the
models which are estimated become inaccurate. A compromise is therefore required
to achieve a reasonable degree of approximation without incurring an unacceptably

low S/N ratio.

The spatial piecewise linear model is a global representation of a nonlinear system
formulated as a family of locally linear models suspended together over the global
space, Each of the individual locally linear models is independent and has no
influence on any other locally linear model. The stability criteria developed

for linear systems is therefore applicable within each’operating region.

Within each region the accuracy of the locally linear model should be comparatively
good providing the operating point is constrained to }ie within this region. The
disadvantages of this approach is the fairly large number of models which may

be necessary to characterise the nonlinear system. This number increases expo-
nentially as the number of intervals for each independent variable is increased.
For example, a ten variable function where each variable has ten intervals results
in 1010 linear models. Another problem is the selection of optimal operating
regions for the locally piecewise linear models and this can be computationally

time consuming.
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3.1 Parameter Estimation for the Spatial Model

The estimation of each locally linear model suspended over the global space
requires a set of global excitation data. The ideal choice of input would be
the uniformly distributed random input within the maximum and minimum input
constraints of the nonlinear process such that every subspace is equally weighted
during the estimation of the locally linear models. The maximum and minimum
values of the input (ie, u » U , ) are divided into a suitable choice of
max’ min
intervals, say m . The input intervals are (umin’ ui], (ul, u2],...,
(um —1’%n] » Similarly, the maximum and minimum values of the output (i.e.
u
y > ¥_. ) are divided into a suitable choice of intervals, say m . The output
max min ¥y
intervals are (ymin’ yi], (yl,yz],..., (ym _l,ym; . For simplicity, let equation

(12) be a second order linear system with ny=nu=2, d=1 and mu=my=3 say. Then

(k)
4

(k) (k)

0 +G)._L y(t-1) +e(k)

2

(k)

3 u(t-1)+6

y(t)=0 y{(t-2)+0 u(t-2) (14)

for the operating region indexed ask and the spatial piecewise linear model can

be represented diagramatically as shown in Fig.l.

y(t-1) _ y(t-2) u(t-1) u(t-2)

Fig.l. Schematic representation of a Spatial Piecewise
Linear Model.



The intervals in Fig.l are defined by

Iy1 - (ymin’yf
Iy2 = (v, ]
Iy3 - (y2’ymax]
Iu1 B (umin’u£|
qu = (up5uy]
Iu3 - (u2’ uma;

ach of the paths linking all the variables y(t-1), y(t-2), u(t-1), u(t—-2)
represents a region of operation for a spatial pilecewise linear model. For

example, the path linking Iy s Iy s Iu s Iu represents the operating region
1 1 1 1

Ymin < y{=1)

A
g
=t

. t—
Yoin < y(t-2)

A
<
=

Ymin & ale=l) 1

A
Ly

Uin < u(t-2) 1

A
=

and the path linking Iy , I , I ,1I represents a model within the region
1 Y2

Foin, S y(t-1) ¢ Yy

¥y * y{(t-2)

A
g
(=]

u . < u(e=1)
min 1

u, < u(t-2) L e

A
=

AN
=

n n
The total number of models or operating region is given by m=(myy X myu) and

there are 81 for equation (14) thus each operating region k=1,2,...,m is

characterized by a locally linear model and can be expressed in matrix form as

i

y(t) =y () (t)’o(k) (15)
where &k)(t)=[1,y(t—1),...,y(t—ny), u(t-d),...,u(t—dunu+l)JT
(16)
(k) (k) . (k) (k) (k) (k) 4T
0 =[90 b0 5eees0 s Q10000 4 ]
y y y u

Parameter estimates for the localiy linear models can be evaluated using least

squares



50 _ [y, (971,107 () K
where

v 8 [0 gy (2),......,w‘k)(w.(k)ﬁ'T

E(k) = D,y ,eeeninnnnn. ,y(N(k))JT
and N(k) are the number of data points in region k. If noise is present in the

data a parameter estimation algorithm which yields unbiased estimates such as
generalised least squares, or a pfediction error method, extended least squares
etc. [Norton, 1986] should be employed., The bounded operating regions of the
spatial piecewise linear model must be taken into consideration when selecting
the input-output intervals to ensure that there are sufficient dita within each
region. However, it is possible that some of the regions are not reachable for
a particular nonlinear system and these can obviously be ignored. The global
spatial piecewise linear model is therefore obtained by estimating the locally
linear model of equation (15) iteratively over the range of reachable operating

regiomsusing the least squares estimator of equation (17).

3,2 ‘Simulation Restlts

Two nonlinear models were simulated to illustrate the spatial piecewise linear

modelling technique,

3.2,1. The Wiener Model

A Wiener model represented as

-
y(t) = 2 tanh| 0.4Z  u(t) (18)
1 - 0,82"

was globally excited by a uniformly distributed random input of amplitude range
~#1,0, Five hundred data points were used for the spatial piecewise linear
estimation, The maximum and minimum range of the input and output were divided
into 4 equal intervals respectively to yield a total of 16 operating regions.

A least squares algorithm was used to estimate a first order locally linear model

for each region and the results are given in table 1. By inspecting the co-
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{k), the locally linear models are stable in all the operating

efficients 0
regions except in 4, 8 and 13 where the poles are outside the unit circle. The
predicted output of the spatial piecewise linear model is comparatively good when
compared with the Wiener model output figure 2. Both sinusoidal and PRBS inputs

of amplitude range #0.9 were also used to excite the Wiener model and the spatial
piecewise linear model to compare their outputs and determine whether the spatial
piecewise linear model is input sensitive [Billings and Voon 1984}. These results

are illustrated in figures 3 and 4 and clearly indicate that the spatial piecewise

linear model is adequate.

3.2,2 An Implicit Model

An implicit model described as
y(t) = 0.5y(t-1) + 0.3u(t-1) + 0.3u(t-1)y(t-1) + 0.5u>(t-1) (19)

was globally excited by an uniformly distributed random input of amplitude range
*#1,0 for 500 data points, The maximum and minimum range of the input and output
were divided into 2 equal intervals respectively which form a total of 4 operating
regions, First order linear models were estimated for each region using a least
squares algorithm and the results are tabulated in table 2. 1Inspection of the
coefficients Oik) in table 2 shows that all the locally linear models are stable.
Figure 5 shows that the predicted output of the spatial piecewise linear model is
comparable to the output of the implicit model. In. order to check the input
sensitivity of the spatial piecewise lineaf model, a sinusoidal and PRBS input

of amplitude #0,9 were used to excite both the spatial piecewise linear model

and the implicit model for comparison and the results are illustrated in figure 6

and 7, The results clearly illustrate that the spatial piecewise linear model

adequately characterises the implicit model eqn (9).

4. Models With Signal Dependent Parameters

This section deals with the identification of nonlinear systems based on linear
models with signal dependent parameters. It has often been argued that many

practical processes can be represented by signal dependent models where the
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parameters depend on the input signal, output signal, an external signal, operating
point etc. Several authors have investigated models of this type including
Cyrot-Normand and Mien [1980] , Diekmann and Uubehauen [1985], and Haber et al

{1982, 1985] and good results have been obtained.

Consider a signal dependent linear model described as
n n

y u
y(t) = @O(m(t)k)+ iZ @i(-m(t)k) y(t-i) + Zl Gny¥i(w(t)kﬁ) u(t-d-i+1? (gO)

.

1 i
where w(t) is the signal upon which the coefficients depend.In the modelling of a
power station for example it may be appropriate to select ®(t) as the power output.
The notation Gi(w(t)k) in eqn (20) should be interpreted to mean _that .the -
parameters Qi)j=l,2,... (nu+ny+1) take on different values depending upon which
of the operating points, denoted by k, the amplitude of w(t) has been located at.
The model eqn (20) can therefore be viewed as a linear system for each choice of

k and this simplifies the identification and aids interpretation of the results.
However, these locally linear models can then be patched together to form an
approximate global nonlinear description of the system under investigation. Thi;w“
can be achieved by replacing the coefficients ?j(uﬁt)k) j=1,2,..(nu+ny+1) in eqn
(20) with polynomial funetions of w(t). Fitting a series of linear models thus
gives an evaluation of these polynomials at particular values of w(t) which can
then be used to estimate the polynomial description. This procedure transforms
or combines a large number of linear models into a concise nonlinear system P

representation. To illustrate these ideas consider eqn (20) expressed in matrix

form
y(t) =¢‘T(t)®(w(t)k) . (21)
where y(e) = [_l,y(t—l),...,y(t-ny),u(t—d),..,u(t—d—nu+1)]T
oCu(t),) =[o,Cal(t) ),0; (u(e), ), ves0  (wlt)),0  , (u(E)))s ...
T
N +ﬂu(wmk)jy

the ;
Assuming that signal dependent parameter vector O(w(t)k) can be approximated by

a finite degree polynomial function of w(t) the individual elements of O(W(t) ) |
k )
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can be expressed as

. : - '
@i(m(t)k) = B W(t)k, 1—0,1,......,ny+n (22)

_ _ 2 L ,. . AT
where W(t), = Il,w(t)k,w (£)) sennnnnst (t)k]

Substituting equation (22) in guation (21) gives the model

0, oo T
y(e) = (t) [p" w(t), ] (23)
where
B=1%0 Biw P ‘- Bnd+n ,0
Bor  Bi1 PBop - By o1
Bog  Bip Bog t vt BLun 2
(24)
Bow  Brg PBog vt v Byin g
L u gy,

The model of eqn (23) is thus an alternate representation of the model in eqn (20)
where the signal dependent coefficients Gj(w(t)k), j=l,2,...,(nu+ny+1) have been

expanded as polynomials, evaluated at the operating points wk(t).

If W(t)k in eqn (23) is not restricted to specific values which define the
operating points but is allowed to vary continuously then eqn (23) becomes the

global nonlinear model.
T ~ T .
y(t) = v (r) [B" wW(t)] (25)
& 2 & AT
where W(t) = [L,w(t), v (t),... wlt)] .
The model of eqn (25) thus provides one means of patching a series of linear

signal dependent models together to yield a nonlinear system description of the

process under investigation.
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4.1 Parameter Estimation for Signal Dependent Parameter Models

The proposed method applies to nonlinear systems that can be linearized about

each operating point in which the systems coefficients are dependent on a

signal w(t). The aim is to combine a series of locally linear models into a single
overall nonlinear model eqn (25), capable of characterizing the nonlinear system
behaviour, A priori information regarding the signal which the parameters in

the model depend upon and the allowable linear region of plant operationabout

each of the operating points w(t)k is of considerable importance in contructing

the most appropriate model of the system.

Parameter estimation for signal dependent models can be achieved in two stages.
At the initial stage k is set to one and the nonlinear process is perturbed by
a bounded input chosen to ensure the process behaves lineady about the operating
point w(t); ¢ This procedure is repeated for each of the m bperating points
w(t)k,k=1,2,...m, and in each case Nk data pairs y(k), u(k) are recorded. Linear
models are then estimated using standard linear algorithms [Norton 1986] to yield
estimates of the parameter vectors O(w(t)l), e(w(t)z).... O(w(t)m)) in eqn (21).

Combining these estimates in the matrix 00(w(t))

; ]
ow(t),) | T

00 (w(t)) = |0(u(t),)

e(m(é)m) |

- A 1T
= @0 (m(t)l) Olkm(t)l) suaiie @ny+nu (m(t)l)
6 (w(®),) 6, w(t),) ... 07 (u(®),)
y u m
number of
i . ) experiments (26)
(-)O (w(t)ﬂ) Ol(w(t)m) @n n (m(t)m)
L =~y u .
- A AR —

(n +nu+l) number of coefficients
¥

and defining
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- 1T 2 . |
w(e) = [, 1w, o, .. W),
= 2 2
W(t i
( )y 1 w(), wi(t), w (t), m
* ' : y v ’ number of
) y * * i : experiments
(] . ® . . ® (27)
2 )
W(t) 1 w(t) w” (t) w” (t)
3 m - - ™ m n |
|
. WA J
(2+1) terms for a £ th degree of
nonlinearity
gives the relationship
T
00 (w(t)) = B WW(t) (28)

where B is defined by eqn (24).
Since all the elements of 00(w(t)) and yw(t) in eqn '(28) have known values .ence
the linear estimation is complete the coefficient vector B can be estimated by
a ieast squares algorithm

B = G (£) 7 wi(e) 00" (w(t)) (29)
_jssuming that the matrix [ww(t) Wﬁr(t)] is well conditioned. The number of
linear models m obtained from m number of experiments must be greater than or
equal to the highest degree of nonlinearity plus 1, (i.e. mZ(2+1)) in order for

equation (29) to have a unique solution for 8.

4.2 Simulation Results

A Hammerstein, implicit and general nonlinear models were simulated to illustrate

-signal dependent parameter modelling as described above.

4,2.1. A Hammerstein Model

A Hammerstein model described as

y(t) = 0.8 y(t=1) + 0.4 tanh (2u(£-1)) (30)
was simulated over the global input range of #1.0. Eleven bounded first order
linearized models of input range #0.1 about the mean of the input at various
operating points were estimated using a least squares algorithm and the results

are tabulated in table 3, The signal dependent coefficient vector ©00(w(t)) was
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assumed to be a function of the input (i.e. w(t)=u(t)). The coefficient vector
R was estimated using eqn (28) for a third degree nonlinearity to give the

following form for eqn (27).

-0.0005 0.2078 0.0094 0.1715 F 1

00(u(t)) =| 0.7990 0.0092 =-0.0010 =-0.0013 u(t-1)
0.6738 0,0027 =-0.8411 =-0.0043 uz(t—l)
W (e-1)

The global nonlinear modél eqn (25) therefore becomes

-

y(£)=[1,y(t-1).u(t-1)] | -0.0005 0.2078  0.0094 0.17157 [ 1 ]

0.7990 0.0092 ~0.0010 ~—0.0013 u(t-1) (31)

0.6738 0.0027 -0.8411 —0.0043 J uz(t—l)

_.u3(t—ll

- J

The linear modelsspecified by the 22 parameters in Table 3 have therefore been

combined or patched together to yield the nonlinear model of eqn (31) containing

just 12 parameters,

A sinusoidal and PRBS input signal of +0.9 amplitude range at zero operating point
were used to excite both the signal dependent parameter model and the Hammerstein

model to compare their outputs and determine whether the model of eqn (31) is input
sensitive fBillings and Voon 1984]. These results are illustrated in figures 8 and
9 which clearly indicate that for this example the signal dependent parameter model

is adequate.

4,2.2 An Implicit Model

An implicit model desecribed by

y(£) = 0.5y(t-1) + 0.3u(t-1) + 0.3y(t-1)u(t-1) + 0.5u”(t-1) (32)
was simulated over the global input range of *1.0. Eleven bounded first order
linearized models of input range *0.1 about the mean of the input at various
operating points were identified using a least squares estimator and the estimates
are tabulated in table 4, The signal dependent coefficient vector ©@0(w(t)) was

assumed to be a function of the input (ie w(t)=u(t)). The coefficient vector B
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was estimated using eqn (29) for a fourth degree nonlinearity and to give the

following form for eqn (28)

00(u(t)) =

The global nonlinear model eqn (23) therefore becomes

-

-0.0019
0,4548

- 0.3034

0.0525
0.4334

1.1151

y(t) =[1,y(t-1),u(t-1)]

-0.0019
0.4548

0.,3034

0.0525
0.4334

1.1151

-0.61C4
0.0580

0.3770

~0.6104
0.0580

0.3770

-0.6156

-0.1933

0.3723

-0.6156
=0,1933

0.3723

-0.3919- rl !
-0.0036 u(t-1)
0.2398 | d P19
u3(t—1)
J u4(t—1)
-0,3919 1 [1 1]
-0.0036 u(t-1)
0.2398 oe-1 || 33
u3(t—1)
L 114(t--l)_J

In order to check whether the signal dependent parameter model is adequate to

represent the nonlinear system eqn (32), a sinusoidal and PRBS input signal of

0.9 amplitude range at zero operating point were used to excite both systems.

The outputs are compared in figures 10 and 11 which clearly illustrate that the

signal dependent parameter model is adequate.

4.2.3. A General Model

The general model illustrated in Fig.12 was simulated over the global input range

of #1.0.

u(t)
—_— ]

Fig.12 Simulated sample 4.2.3,

xﬁ% + Od
V(_t_) X=v X(tl 0.62.—1 y(t)
1 -0 7:&'._1
x=§— 0.4
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Fifteen second order linear models valid over the input range 0.1 about the
mean of the input at various operating points were estimated using a least squares
algoritﬁm to jield the coefficients in table 5. The signal dependent parameter
vector 00(w(t)) was assumed to be a function of the input, (ie.w(t)=u(t)). The
coefficient vector B was estimated using eqn (29) for a third degree nonlinearity

to give the following form for eqn (28).

pu = -

-0,0019 0.155 -0.0127 0.0578 1
1.287 0,0028 =0.:121 0.0145 u(t=1)
00 {u(t)) = -0,409 -0.0032 -0.079 . 0011 uz(t-l)

-0,0002 0,0013 0.0010 -0.0024 u3(t—1)

0,439 0.0004  -0,319 _O‘OOIS.J

Hence the global nonlinear model can be expressed as

y(0)=[1,y(t-1),y(£-2) ,u(t-1) ,u(e-2)]

T -0.0019 0.155 -0.0127 0.05787 [1 )
1,287 0.0028 ~0.121 0.0145 el
X -0,409 ~0.0032 0.079 -0.011 uz(t—l) (34)
-0,0002  0.0013  0,0010 -0.0024 | |u>(t-1)
0,439 0.0004 -0.319  -0.0015 | - )

A sinusoidal and a PRBS input with amplutides of *0.9 about a zero operating
point were used to excite the signal dependent parameter model and the general
model, The outputs are compared in figures 13 and 14. Figure 13 indicates
that tﬁe signal dependent parameter model is comparable with the general model
for a sinusoidal input., However, for the PRBS input, figure 14 shows that the
response of the signal dependent parameter model is poor compared with the
output of the general model yielding a residual error of approximately 40 per

cent of the general model output,

5, Conclusions
Two methods of characterizing nonlinear systems by fitting a series of locally

linear models have been described. The spatial piecewise linear model will,
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providing the nonlinearities are smooth, provide an adequate representation of
a nonlinear system but this may only be achieved at the expense of fitting a

very large number of linear models each valid in a small region of operation.

Alternatively, if the nonlinearity is assumed to be produced by a measurable
system variable a series of signal dependent linear models can be estimated.
These models can then be patched together to yield a nonlinear description of
the process, It is however important to emphasise that the linear models, or
the equivalent nonlinear model obtained by combining them, may only be valid
for relatively slow'moving inputs. This occurs because the models represent
just one possible trajectory over the domain of system operation. The models
will therefore produce an excellent prediction of the process output when
perturbed by the input used for the identification or by an input which causes
the system to traverse slowly from one operating region to another. If however
the nonlinearity is not perfeétly dependent upon one signal or the models are
perturbed by inputs which cause rapid transient changes in the operating point
this will produce an output that may be considerably different to the output

of the process, This means that the identified model does not provide an
adequate representation of the nonlinear system but is only valid for a small
class of input signals, The model is input sensitive [Billings and Voon, 1984].
This effect, which is often overlooked,.can be severe as indicated hy the 40 90

discrepancy in the predicted output of the model in example 4.2.3,

The advantages of approximation by linear models can therefore be outweighed
by either an excessive linear model set in the case of spatial piecewise linear
modelling or by a model which is input sensitive when using a signal dependent
representation, The difficulty of choosing the operating points and range of
input variation to ensure linear operation can also introduce a severe problem.
Methods of detecting nonlinearity in data [ﬁillings and Voon 1983, Haber 19851

can however be employed to aid the investigat.otr in this choice.
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The disadvantages described above suggest that it may in some situations be
worthwhile fitting a nonlinear model to the process rather than attempting to
approximate it by a series of linear models. Recent developments in the field
of nonlinear systems identification have shown that parsimonious nonlinear models
can be fitted using relatively simple extensions of linear algorithms to yield
a representation which provides excellent predictions of the system behaviour
over the global operating region [Billings and Voon 1984, 19861. If a linear
description of the system is then required the nonlinear model can be linearized
about any chosen operating point. This could be used to produce a series of
locally linear models which can be analysed and interpreted by well known linear
methods with the added advantage that an optimal choice of operating points can
be investigated to minimise the number of linear models and the errors introduced
by using the linear description can be readily evaluated. In any event the
identification of locaily linear models should not be regarded as a panacea for

nonlinear systems identification,
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Table.l. Spatial Piecewise linear estimation
for example 3.2.1.

K 'bperatingrRegion @;(ﬁ) 9}K9 y(t-1) Bz(kbu(t—l)
1 =1.00<u(t-1)=-0.495
=1.53<y(t-1)=-0.710 -0.2338 0.6585 0.4852
2 =1.00<u(t-1)s-0.495
~-0.71<y(t-1)s 0.110 -0.0744 0.6918 0.6739
3 -1,00<u(t-1)s-0.495
0.11<y(t-1)s 0.930 -0.0131 0.8475 0.7931
4 ~1.00<u(t-1)<~0.495
0.93<u(t-1)s 1.750 -0.4313 1.2394 0.7214
5 -0.495<u(t-1)50.004
-1.53<y(t-1)=0.710 -0.0031 0.8325 0.6037
6 ~-0.495<u(t~-1)=0.004
-0.710<y(t-1)=0.110 -0.0095 0.7821 0.7602
7 -0.495<u(t-1) 0.004
-0.110<y(t-1)=0.930 -0.01064 0.8446 0.7964
8 -0,495<u(t-1) <0.004
0.930<y(t-1)<1.750 -0.2935 1,0995 0.6275
9 0.004<u(t-1) £0.502
~1.53<y(t-1) =0.710 0.1349 0.9650 0.6861
10 0.004<u(t-1) =0.502
-0.710<y(t-1)=0.110 0.0038 0.8190 0.7901
11 0.004<u(t-1)=0,502
0.110<y(t-1)=0.930 0.0203 0.7820 0.7181
12 0.004<u(t-1)=0.502
0.930<y(t-1)s1.75 -0.0537 0.8971 0.5414
13 0.502<u(t-1051.00
-1.53<y(t-1)s-0.710 0.2576 1,1246 0.7711
14 0.502<u(t-1)=1.00
-0.710<y(t-1)=0.110 0.0084 0.7896 0.7633
15 0.502<u(t-1)=1.00
0.110<y(t~-1) £0.930 0.1244 0.6697 0.6199
16 0.502<u(t-1)=1.00
0.930<y(t~1)=1.750 0.3648 0.6515 0.3278
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Operating region 'gé(k) el(kn yit=1) 92(1:.)- u(t-1)

-1,00<u(t-1) =0.004

~0.059<y(t-1)s1.157 | -0.0568 0.3162 -0.1678

~1.00 <u(t-1)=0.004

1.157<y(t-1)52.373 0.1664 “0.3161 0.2011
0.004<u(t=1)=1.000

~0.059<y(t-1)1.157 | -0.1623 0.6682 0.9582
0.004<u(t-1)s1 000

1.157<y(t-1)s2.373 | -0.484 0.6942 1.423

Table 2, Spatial piecewise linear estimation
for example 3.2.2,
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Experiment | input . - A
number k mean 65 (m(t%g 91 ’(m(t%)y(t—l) 92 (w(t%gu(t—l)
1 -0.9 -0,2995 0.7999 - 0.0865
2 -0.7 -0.2292 0.79%4 0.1755
3 -0.5 -0.1338 0.7985 0.3358
4 -0.3 -0.0400 0.7987 0.5670
5 -0.1 -0.0005 0.7990 0.7584
6 0.0 0.0000 0.7991 0.7879
7 0.1 0.0004 0.7992 0.7584
8 0.3 0.0395 0.7992 0.5671
9 0.5 0.1311 0.7993 0.3388
10 0.7 0.2286 0.7996 0.1761
11 0.9 0.3031 0.7997 0.0851
Table 3. Linear model estimation for example.l}.;?.l. R
Experiment | input , Y Cw
number k mean Bo (w(t2£ 91 (m(t)gy(t—l) (w(t?gg(t—l)
1 -0.9 -0.3493 0.2278 ~-0.5440
2' -0.7 -0.2274 0.2864 ~-0.3822
3 -0.5 -0.1249 0.3347 -0.2089
4 -0.3 -0.0621 0.1760 -0.0209
5 -0.1 -0.0019 0.4505 0.1885
6 0.0 -0.0051 0.4919 0.3025
7 5% | -0.0020 0.5253 0.4247
8 0.3 -0.0689 0.5864 0.7008
9 0.5 -0.2344 0.6451 1.0370
10 0,7 -0.5576 0.7028 1.4704
11 0.9 -1.1592 0.7599 2.0770

Table 4. Linear model estimation for example " 4.2.2.
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