
promoting access to White Rose research papers

White Rose Research Online
eprints@whiterose.ac.uk

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in arXiv.
White Rose Research Online URL for this paper:

http://eprints.whiterose.ac.uk/77037/

Paper:

Lovelace, R A user manual for the integerisation of IPF weights using R.

http://eprints.whiterose.ac.uk/77037/

Supplementary information: a user manual for
the integerisation of IPF weights using R

Robin Lovelace
Geography Department
University of Sheffield,

Sheffield,
United Kingdom,

S10 2TN

March 21, 2013

This worked example demonstrates how the methods described in the
paper “‘Truncate, replicate, sample’: a method for creating integer weights
for spatial microsimulation” (Lovelace and Ballas, 2013) were conducted in R,
a free and open source object-orientated statistical programming language.
An introduction to performing iterative proportional fitting (IPF) in R is
provided in a separate document.1 This worked example focuses on methods
for converting the results into integer weights, with reference to the code that
accompanies this guide. The main aims are to:

1. Introduce R as a user friendly and flexible tool to perform spatial mi-
crosimulation and analyse the results;

2. Demonstrate the replicability of the results described in the paper;

3. Encourage unrestricted access to code within the microsimulation com-
munity. It is hoped that this will:

1This document is titled “Spatial microsimulation in R: a beginner’s guide to iterative
proportional fitting (IPF)”, is available from http://rpubs.com/RobinLovelace/5089

. A larger project, aimed at optimising R code for IPF applications can be found at
https://github.com/Robinlovelace/IPF-performance-testing .

1

http://rpubs.com/RobinLovelace/5089
https://github.com/Robinlovelace/IPF-performance-testing

• Enhance transparency, repeatability and knowledge transfer within
the field;

• Allow others to use, test and further develop existing work, rather
than starting from nothing each time, and;

• Allow other researchers to critically assess the four integerisa-
tion methods presented in the paper — named simple round, the
threshold approach, proportional probabilities and truncate, repli-
cate, sample (TRS) — so they can be improved.

This worked example can be used in different ways, depending on one’s aims.
The first section shows how the necessary files can be downloaded and loaded
into R. Section 2 (Running the Spatial Microsimulation Model) is linked to
aim 1, and shows how the microsimulation model, which forms the foundation
of the analysis presented in the paper, works. Section 3 (Integerisation in R)
is linked to aim 2, and demonstrates how to run each type of integerisation,
and display some of the results. Finally, Section 4 (Adapting the Model),
illustrates how the code constituting the spatial microsimulation model and
integerisation techniques can be adapted to different constraint variables for
areas with different population sizes. Aim 3 can be met throughout: we
encourage other researchers to experiment with and re-use our code, citing
this work where appropriate. To do this, the first stage is to download the
dataset and load it into R.

1 Downloading and loading the files into R

Throughout this example, we assume that the data has been downloaded
and extracted to a folder titled ‘ints-public’ onto your desktop and that R
is installed on your computer. To download R, visit the project’s homepage
and follow the instructions. For new R users, it is recommended that a
introductory text is acquired and referred to throughout. A range of excellent
introductory guides are available online at http://cran.r-project.org/other-
docs.html.

To access the files, unzip the file titled ‘ints-public.zip’, which is available
online in the supplementary data.2 A list of the folders and files contained
within the folder ‘ints-public’ is provided in Table 1.

2From here: https://dl.dropbox.com/u/15008199/ints-public.zip

2

https://dl.dropbox.com/u/15008199/ints-public.zip
http://www.r-project.org/

Table 1: Files and folders contained in the worked example folder

Folder File Description

etsim: Spatial
microsimulation
model based on
IPF

Four *.csv files,
e.g. age-sex.csv

Constraint variables at MSOA level.
Based on scramble census data.

etsim.R The spatial microsimulation model re-
sulting in non-integer weights

cons.R R script to read constraint variables

plotsim.R R script to plot the model output

USd.cat.r Script to re-aggregate the results

Usd.RData Scrambled survey data based on the
Understanding Society dataset

its: a subfolder etsim1.R etc. Additional IPF iterations

R: folder
containing the R
code to integerise
the weights
generated through
IPF

int-meth1-round.R Simple rounding method

int-meth2-thresh.R Deterministic threshold method

int-meth3-cw.R Counter-weight method

int-meth4-pp.R Proportional probability method

int-meth4-pp-
many-runs.R

Many runs of PP method

int-meth5-TRS.R Truncate, replicate sample method

int-meth5-TRS-
many-runs.R

Many runs of TRS

Analysis.R Analysis of the results of integerisation

outputs.R Code to generate some results compar-
ing the 3 integerisation methods

Plotting-ints.R Plotting commands

Iteration-20.RData Results of the 20th iteration of IPF

OA-eg see section 4 Adapted model (for alternative inputs)

3

To use the data, the first stage is to set the working directory. Find
out the current working directory using the command getwd() from the R
command line. Correctly setting the working directory will allow quick access
the files of the microsimulation model and a logical place to save the results.
The command list.files() is used to check the contents of the working
directory from within R. Assuming the folder ‘ints-public’ has been extracted
to the desktop in a Windows 7 computer with the user-name ‘username’, type
the following into the R command line interface and press enter to set the
working directory (change ‘username’ to your personal user name or retype
the path completely if the folder was extracted elsewhere):

setwd("C:/Users/username/Desktop/ints-public/etsim")

To run the model, one can simply type the following (warning: this may take
several minutes, so entering the code block-by-block is recommended):

source("etsim.R")

If the aim is to understand how the method works, we recommend opening
the script files using a text editor and sending the commands to R block by
block. This can be done by copying and pasting blocks of code into the R
command line. Alternatively a graphical user interface such as Rstudio can
be used. In both cases, running the code contained in etsim.R should take
around one minute on modern computers, depending on the CPU. This will
result in a number of objects being loaded onto your R session’s workspace.
These objects are listed by the command

ls()

and can be referred to by name. The constraint variables, for example, can
be summarised using the command:

summary(all.msim)

R objects can also be loaded directly, having been saved from previous ses-
sions. The command:

load("iteration-20.RData")

for example, when run in the working directory ‘R’, will load the results
of the IPF model results after 20 iterations. This may be useful for users
who want to move straight to integerisation, without running the IPF model
first. Referring to file-names in R can be made easier using the auto-complete
capabilities of some R editors. Rstudio, for example, allows auto-completion
of file-names and R objects (see RStudio’s website for more information).

4

http://rstudio.org/

2 Running the spatial microsimulation model

The code for running the spatial microsimulation model is contained within
‘etsim.R’ the folder entitled ‘etsim’ — see Table 1. As with all R script files,
the contents of this file can be viewed using any text editor. With an R
console running, R’s reaction to each chunk of code can be seen by copy and
pasting the script code line-by-line. This should give some indication of how
the model works, and which parts take most time to process. Note that R
accepts input from external files. Within ‘etsim.R’, this technique was used
to reduce the number of lines of code and make the model modular. The
constraint variables, for example, are read-in using the following command,
that is contained within the main etsim.R script file:

source(file="cons.R")

As before, this simply sends the commands contained within the file to R,
line by line, but without displaying the results until the script has finished.

It is good practice to provide comments within the code, so that others
can see what is going on. In R, this is done using the hash symbol (#).
Anything following the hash is ignored by R, until a new line is formed.

Once the first iteration of the entire model has run, you can check to
see if the model has worked by analysing the objects that R has created.
The raw weights are saved as ‘weights0’, ‘weights1’, etc. The number of
each set of weights corresponds to the constraint which was applied. All of
‘weights0’ are set to 1 in the first iteration (the initial condition). The object
‘weights5’ represents the cumulative weight so far, after the weights have
been constrained by all 4 constraint variables.

The simulated zonal aggregates are stored in objects labeled ‘USd.agg’
(this stands for ‘Understanding Society dataset, aggregated’), from the origi-
nal value (the summary results of the survey data) to ‘USd.agg4’ (after fitting
for the fourth constraint). A good first indication of whether the model has
worked is to compare ‘USd.agg4’ with ‘all.msim’ (the latter being the census
aggregates). This can be done by using the command:

head(USd.agg4)

and running the same command for ‘all.msim’. The command head() simply
displays the first 5 rows or elements of an R object, to get a feel for what
it looks like. (The meaning of any command can be prefixing the command

5

name by “?”. In this case ?head() would be used.) To make the comparison
more interesting, one can plot the results. Try the following:

plot(all.msim[,13],USd.agg4[,13])

The ‘[,’ part of this command means “all rows within”; the ‘13]’ part means
“in column 13”. In this model, column 13 is the variable “mainly works from
home” ("mfh"). This can be established using names(all.msim), to identify
the variables contained within the dataframe. If the plot looks the same as
as that illustrated below (Fig .1), the model has worked.

Figure 1: Diagnostic scatter plot to check if the model has worked.

3 Integerisation in R

The code used for integerisation of the results of IPF reweighting are kept in
a separate folder, entitled ‘R’ (see Table 1). As before, navigate to this folder
using a modified version of the following command, this time navigating to
the folder ‘R’:

setwd("C:/Users/username/Desktop/ints-public/R")

6

As always, it is worth opening the script files in a text editor or within a
dedicated R development environment such as RStudio. This will allow the
commands to be seen in context and experimented with.

3.1 Simple rounding

The following section describes the code contained within the file ‘int-meth1-
round.R’. Open the file and send its content to R line by line. The aim of
this script is to round the IPF weights (calculated in the previous section)
up or down and then select individuals accordingly. Once the IPF weights
have been loaded using the load() command, the new weights are created
using the following command:3

intp <- round(i20.w5)

In the following line of code, the decimal remainders are saved by subtracting
the rounded weights from the original weights. Note that each new set of
data is given a name, ready to be referred back to later:

deci <- i20.w5 - intp # Decimal weights

Before running a loop to select individuals based on their rounded weights,
we created a number of R objects to be used during integerisation. Of note,
the object pops is a dataframe for saving data about the population of each
zone that are calculated while the loop is in operation. It has the same num-
ber of rows as there are areas in the constraint table (1:nrow(all.msim)).
The columns are bound together using cbind(). The contents of this object
are updated with each iteration, allowing the results for different methods to
be compared directly.

In order to perform calculations on one zone at a time, a loop is used:

for (i in 1:nrow(all.msim)){ ... }

The commands contained within the curly brackets are performed many
times, once for each area. The index lists the row name of all individuals
within the area i who have a rounded weight above 0 — which(intp[,i]>0).
The corresponding weight is referred to by intp[which(intp[,i]>0),i].

3Here ‘i20.w5’ refers to the weights that emerge after the 4th constraint of the 20th
iteration. Any weights can be used. For example ‘i1.w5’, if loaded into the R workspace,
represents the weights after a single iteration of IPF.

7

The final list of individuals is saved by replicating the integer weights the
same number of times as the integer value of the rounded weights:

ints[[i]] <- index[rep(1:nrow(index),index[,2])]

The replication command rep() is used in this instance to replicate the
individuals who are ‘cloned’ more than once. Note the use of double square
brackets. This is used to refer to objects (dataframes in this case) that
are part of a list. Because the matrix of rounded IPF weights (‘intp’) has
indexes that correspond to the original survey data, we can extract their
characteristics by simply referring to the previously defined index:

intall[[i]] <- USd[ints[[i]],]

Finally, the results are aggregated by converting the raw data into the cat-
egories of the constraint variables — using source("area.cat.R")— and
then summing columns to provide zone-wide counts for each category:

intagg[i,] <- colSums(area.cat)

This same procedure is followed for each of the remaining 2 integerisation
methods. The defining features of each are outlined below.

3.2 The inclusion threshold approach

The starting point of this method is an incomplete simulated population of
integer results (the length of which is defined as Popsim). The 5 steps of the
threshold approach are as follows:

1. Set the initial value of the inclusion threshold IT to 1.

2. If the simulated population is too small (Popsim < Popcens), run the
following loop (if not skip it).

3. Re-sample or ‘clone’ any individuals whose decimal weights4 are less
than IT yet greater than or equal to IT − x, where x is a small num-
ber to be iteratively subtracted from IT (Ballas et al. (2005) — in
SimBritain: a spatial microsimulation approach to population dynam-
ics — suggest x = 0.001; this value was also used here).

4By ‘decimal weight’, we refer to the value of a weight to the right of the decimal point.
So, for a weight of 1.8, the ‘decimal weight’ is 0.8. Mathematically, the decimal weight
(which we also refer to as the ‘weight remainder’) can be defined as w − trunc(w) where
the function trunc() removes all information to the right of the decimal.

8

4. Recalculate Popsim with the additional individuals included.

5. Subtract x from IT to reduce the inclusion threshold for the next it-
eration. If Popsim is still less than Popcens return to step 2; if not
exit.

The script file ‘int-meth2-thresh.R’ replicates these steps in two main
loops, each iterating over the areas whose populations are being simulated.
The first is identical to that of the simple rounding approach, (except in this
case the IPF weights are truncated, not rounded)5 and saves the resulting
microdata as a list of vectors, each containing row names of individuals from
the Understanding Society dataset (see ints[[i]] for area i).

The second loop adds additional individuals to those contained in ints

for each area, by gradually reducing the inclusion threshold. This is done
in a third loop which is nested within the second. Note that the value of
the threshold (wv, for weighting variable — equivalent to IT , as described
above) is set to 1 outside this third loop. This is done so that the threshold
is reduced from one iteration to the next within the loop:

wv <- wv - 0.001

Note also that this third loop is initiated by the command while(), instead
of the command for() used for the previous loops. This is because the
number of iterations performed by the first two loops is fixed (to the number
of areas), while the number of iterations in this one is determined by the
threshold at which the sample population is greater than or to equal the
census population:

while (length(ints[[i]]) < pops[i,1]){

Within this sub-loop additional individuals are added whose weights are be-
tween wv and wv−0.001:

ints[[i]] <- c(ints[[i]], which(dr[,i] < wv & dr[,i] >= wv - 0.001))

5This differs from the original implementation in the original SimBritain paper by
Ballas et al. (2005): they used rounded weights as the starting point. However, after
trying both methods, we found that beginning with truncated integer results leads to
far less error introduced during integerisation. This is because topping up after simple
rounding would lead an individual with a weight of 2.99 to be replicated 4 times: three
times during rounding and once more as the inclusion threshold dips below 0.99.

9

Figure 2: Histogram of the lowest value reached by IT (or ‘wv’ in the code)
for all areas during the threshold approach.

Here, the command c() appends the additional individuals to those already
saved. After the while loop exits, the population and aggregate data for each
area are saved, as with the simple rounding method.

To analyse the threshold reached for each area, this information is saved
as for each area within the main loop:

pops$thresh[i] <- wv

This information can be subsequently analysed, e.g. to investigate the
distribution of thresholds reached (Fig. 2 — This plot was produced by the
following command: hist(pops$thresh)). A similar process is used to save
information about the exit point of the counter-weight algorithm.

3.3 The counter-weight method

The counter-weight method is similar to the threshold algorithm: it begins
with a crude integerisation strategy (in this case simple rounding, not trun-
cation as described above — this starting point was found to lead to more

10

accurate results), and then tops up each area with additional individuals that
depend on their decimal weights.

The process can be summarised in the following 4 steps:

• Sort the IPF weights in ascending order:

sweights <- sort(i20.w5[,j], index.return = T)$x

and save their order for future reference:

ord <- rank(i20.w5[,j], ties.method="first")

• If the total population is too small, top up the results for each individual
by the rounded sum of their decimal weight plus the decimal weight of
the next individual in the sorted vector of weights:

if(sum(iweights) < round(sum(sweights))){

iweights[i] <- iweights[i] + round(dweights[i] + dweights[i+1])

e[j] <- i

}

• Update the integer weight vector for each area, including topped-up
individuals, and re-order:

intp[,j] <- iweights # but the order is wrong

intp[,j] <- intp[ord,j]

• Convert these weight vectors into a list of individuals with replicated
weights leading to replicated (cloned individuals):

for(i in 1:j){

index <- cbind((which(intp[,i]>0)) # generates index

,intp[which(intp[,i]>0),i]) # integers)

11

ints[[i]] <- index[rep(1:nrow(index),index[,2])] #clone

pops$pcounter[i] <- length(ints[[i]]) # save integer dataindividuals

intall[[i]] <- USd[ints[[i]],] # Pulls all other data from index

source("area.cat.R")

intagg[i,] <- colSums(area.cat)

}

Finally, the aggregate results for this integerisation method are saved
as with previous methods, in this case as intagg.cw:

intagg.cw <- intagg

3.4 Proportional probability method

The script file ‘int-meth3-pp.R’ also contains two loops. The first simply cre-
ates proportional weights for each individual-zone combination using the fol-
lowing command: i20.w5[,i] / sum(i20.w5[,i]). This is the code equiv-
alent of the following equation:

p =
w∑
W

(1)

The result (saved as prop.weights[,i]) is used in the second loop as the
selection probability for each individual.

The second loop contains three main parts. First, individuals are ran-
domly selected from the USd dataset, with probability set as follows:

prob=prop.weights[,i]

(Note that here we are sample with replacement — replace=T). Second,
the population of the integerised sample is saved. Third, as with all inte-
gerisation methods, the command source("area.cat.R") is run to extract
the additional information about individual from the Understanding Society
dataset, based solely on their index. The results are saved as intagg.prop.
The next stage is to run the TRS integerisation method.

12

3.5 TRS integerisation in R

The final method is contained in the script file ‘Int-meth4-TRS.R’. It involves
weight truncation, replication of integerised weights, and sampling based on
the decimal remainders. Of these steps, sampling is the only one which
requires detailed attention here: the others have already been described.
Suffice to say that integer weights are generated by the command x%/%1,
which is synonymous with the command trunc(x). Note that the command
round() was used for integerisation in the simple rounding and threshold
integerisation methods.

The population following truncation is guaranteed to be less than the
census population as no rounding up occurs. This differs from the simple
rounding and threshold approaches, and ensures that there will always be a
difference between census and simulated results. The challenge is to fill the
difference:

popstrs[i,1] - popstrs[i,2]

where popstrs[,1] is the census population and popstrs[,2] is the simu-
lated population based on truncated weights. The command:

sample()

allows an exact number of rows to be selected to make up the difference. The
first argument of the command is the vector from which the sample is taken.
The second is the sample size. For our purposes, the vector is the row names
of all individuals from the survey. This vector is referred to by the command
which(i20.w5[,i]>-1), which means “all individuals with weights greater
than −1, for area i”, i.e. all individuals. The size is the difference between
census and simulated population sizes for the area in question (as defined
above).

So far so good, but the sample strategy is simple random, meaning that
probabilities will be equally assigned to all rows, unless stated. This is where
the decimal weights — the ‘conventional weight’ components of the IPF
weights — come into play. Conventional weights can be used to determine
the probability of an individual being selected.

The final argument used, therefore, is the probability of selection (prob=...).
The decimal weights are calculated in-situ by subtracting the integer weights
from the actual weights:

13

prob = i20.w5[,i]-i20.w5[,i] %/% 1))

As with the previous methods, the loop finishes by extracting the full survey
data from the survey dataset, and saving the aggregate level results:

intagg.trs[i,] <- colSums(area.cat)

After the script files associated with all four integerisation methods have
been run, the aggregate results are saved in R objects entitled intagg.round,
intagg.thresh and intagg.trs. These results form the basis of the inte-
gerisation method performance comparison presented in the paper, and can
be replicated using the file ‘Analysis.R’ (Table 1).

4 Adapting the model

So far the model has been used on a single case study. For the techniques
showcased here to be truly useful, they must be be applicable to a wide range
of situations. This section therefore illustrates how to adapt the model to
simulate the individuals living in Output Areas (which contain around 300
people or ∼100 employed people, 20 times smaller than the Medium Super
Output Areas used up until now), using different constraints and a different
(smaller) survey dataset from which individuals are to be extracted.

4.1 Setting-up the constraint variables

In order to show the model’s flexibility, 3 new constraint variables were used:

• Hours worked per week

• Marital status

• Housing tenure of home

These variables are available in both aggregate form for small areas, and from
the Understanding Society dataset. The aggregate data can be downloaded
by UK academics from the Casweb census data portal. The raw data (named
‘hrs worked.csv’ ‘marital status.csv’ and ‘tenancy.csv’) is read into R and
cleaned by the commands contained in the script file ‘cons.R’ within the
folder ‘OA-eg’. The comments in this script file should explain most of the
commands, which read the .csv files and remove superfluous variables. In

14

one case (tenancy) the variables are also manipulated such that the category
‘other’ is the sum of three other variables:

ten$other <- ten$other + ten$council + ten$assoc

The reason for modifying the data in this way is so that the constraint
data match the individual-level survey data. Also, the USd is a huge dataset
(50994 rows by 1322 columns, contained in a 90 Mb file). Dropping unneeded
information makes the data more manageable.

The script to load and subset the USd data is contained in the file ‘load.R’
(also in the folder ‘OA-eg’). For confidentiality reasons the original data is
not provided; the steps taken to process the USd dataset into a form ready
for spatial microsimulation should be applicable to any survey dataset (the
R package ‘foreign’ may be used to load unusual data types as an R object).
The steps taken here should be fairly self-explanatory, based on the names
of the commands and the comments. Although the script has been set-up to
process the USd survey, in anticipation of running IPF constrained by the
three constraint variables mentioned above, it would be possible to modify
‘load.R’ to accept different input survey datasets and subset the data for
different constraints.

The data is also simplified to match available constraint categories in
‘load.R’. To provide one example, the USd variable for married status —
‘pmarstat’ — contains 14 categories, many of which can be merged. To
ensure the categories of the survey data matched the census constraints (5
marriage status categories), the following command was used:

levels(Und.sub$mas <- s[sample(nrow(s), size=500),]rstat) <- c(

rep("other",5), "single", "married", "single",

"separated", "divorced", "widowed", rep("other",3))

After running both ‘load.R’ and ‘cons.R’ we are left with four R objects
in the workspace:6 ‘s’, the survey micro-level dataset and ‘hrs’, ‘mar’ and
‘ten’ — the three constraint variables.

4.2 Modifying the spatial microsimulation model

The script that runs the spatial microsimulation model in the previous exam-
ple is called ‘etsim.R’. In order for it to use new constraint variables it must

6Due to data confidentiality, the full USd dataset cannot be provided. However, the
data that results from ‘load.R’ has been saved as ‘oa-data.RData’ in the example folder.

15

be modified. These modifications (which maintain the original structure and
semantics of the original script) can be seen by comparing ‘etsim.R’ con-
tained within the ‘OA-eg’ folder against the file of the same name contained
within the folder ‘etsim’. The following points summarise the changes made:

• Add or remove constraints and loading functions depending on the in-
put data. In this case, for example, the input survey dataframe ‘s’ is
too large relative to the average size of the zones under investigation
(nrow(s) = 1678, more than 10 times greater the average size of indi-
viduals in Output areas — ∼ 100). Therefore a simple random sample
is taken to reduce the number of rows to 500:

s <- s[sample(nrow(s), size=500),]

• Alter the file ‘USd.cat.r’ so to convert the survey dataframe ‘s’ into
a wide data frame whose dimensions match ‘all.msim’. This involves
converting categorical variables into binary (1 or 0) using the subsets.
Females who work more than 48 hours per week, for example, are
allocated the value of 1 in the appropriate column using the following
command:

s.cat[which(s$jbhrs >= 49 & s$sex=="female"),12] <- 1

• Names of the R objects referred to are changed to reflect the new input
data. The object ‘USd’, for example, is renamed as ‘s’.

4.3 Integerisation of the new results

The integerisation scripts must also be modified slightly to accept the new
input data. Therefore the files ‘int-meth1-round.R’ to ‘int-meth4-TRS.R’
described in Table 1 have been altered. The changes we need to account for
include the new name of the weights (i1.w4 instead of i20.w5 in this case —
only iteration of the new model has been run for brevity) and, again, the
renaming of the survey to ‘s’ from ‘USd’ in the original files. It is recom-
mended that differences in the R scripts for integerisation between files in
the folder ‘R’ and those (with the same file names) in the folder ‘OA-eg’ are
identified to understand how the methods can be generalised to accept any
weighted input data.

16

Figure 3: Scatter plots illustrating the relationship between census constraint
variables (x axis) and simulated counts for these variables (y axis) after IPF
and four methods of integerising the results. Each dot represents one variable
for one area, 528 dots in each plot (22 variables multiplied by 24 areas).

4.4 Results

To confirm that the TRS method advocated in the paper is also the most
accurate when it is used on different input data, a basic analysis script has
been compiled (‘basic-analysis.R’ with the folder ‘OA-eg’). These commands
calculate the correlation between the simulated and census data at the ag-
gregate data and illustrate the results. The results demonstrate that the
TRS method is also more accurate than the others for these new constraints,
as expected. The level of correlation rises (from 0.948 through 0.976, 0.975,
and 0.981 to 0.987) for the threshold, rounding, counter-weight, proportional
probabilities and TRS methods respectively. Note, the order of accuracy is
the same as the same as presented in paper which this Supplementary Infor-
mation accompanies, except for the counter-weight method performs worse
than the inclusion threshold approach with the new input datasets.

These results can be visualised in scatter plots of census vs simulated
results (Fig. 3). This figure can be replicated using the last section of code
in ‘basic-analysis.R’, provided the packages ‘reshape2’ and ‘ggplot2’ have
been installed.

17

We encourage users to test the integerisation methods described in this
user manual on a wider range of datasets, citing the authors where appropri-
ate. This will help to check the replicability of the results presented in the
paper that accompanies this code. It is also hoped that the code and the
findings will be of use to researchers developing, evaluating and using spatial
microsimulation models.

Any feedback would be gratefully received by robin.lovelace at shef.ac.uk.
There is also the possibility to clone, branch and commit to a larger code de-
velopment project related to this research: https://github.com/Robinlovelace/
IPF-performance-testing.

5 Reference

Lovelace, R., & Ballas, D. (n.d.). “Truncate , replicate , sample”: a method
for creating integer weights for spatial microsimulation. Computers, Envi-
ronment and Urban Systems. (In press).

18

https://github.com/Robinlovelace/IPF-performance-testing
https://github.com/Robinlovelace/IPF-performance-testing

	Downloading and loading the files into R
	Running the spatial microsimulation model
	Integerisation in R
	Simple rounding
	The inclusion threshold approach
	The counter-weight method
	Proportional probability method
	TRS integerisation in R

	Adapting the model
	Setting-up the constraint variables
	Modifying the spatial microsimulation model
	Integerisation of the new results
	Results

	Reference

