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Abstract

The stabilization af.lineér,parahdlie;systems of the reaction-diffusion

type is considered, in the presence of unilateral boundary conditions.
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j Introduction

In this paper we shall consider the linearized stability of the reaction-

diffusion system

3¢ = dag + £(¢,9)
ot (1.1)

oy = Ay + g(¢,y)
ot
(defined in a domain QeR™ with boundary 30 which is sufficiently smooth) in a

neighbourhood+ of a stationary solution (¢,9) where

£(,9) = 8($59) =0 (1.2)
subject to the unilateral boundary conditions

4= » ¥=p on T  , 39 =0 on T

3
on i

on

3y = uon rﬁ\?ﬂ s YU, 3y >0, (W-9)3y = 0 on i
an an

where

sl

p IR » rNng T %,

meas (%N) +0°, meas (BQ\ﬁFDUFEJ) =0,

meas (TD) + 0.
It is known (Drdbek, Kucera, 1986) that unilateral conditions have a destabalizing

effect on the linearized system, and so it is important to comsider whether this

can be overcome with the application of boundary control.

t In an appropriate topology' - see later



We shall write

F - Ei (g,ﬁ) ’ F = E_ (E;E) )

11 5% 12 30
F = _?_g_ (E,_ﬂj) ’ F = B_g_ (gsﬁ) s
21 3 22 3

and then we obtain the linearized form of (1.1) (writing ®,Y in place of

d’—}-’ IP'E) .

3 = dAp + F 0+ F ooy, (1.3a)

ot

%% = gw + Ty b+ Foob - (1.3b)
together with the unilateral conditions

¢ =y=0 on T, ,3 =0 on Iy s

an

5 = u on rﬁ{?ﬁ , >0, 3> 0, Y3 =0 on T, . (1.4)

X O o N

on oan an

2, Abstract Formulation

Let V be the Hilbert space defined by

Ve { ¢EH1(Q) : ¢=0 onT in the trace sensel ,

D ?
and let H = Lz(ﬂ). Then V has the inner product
.1
<Gy = Lo Lo v dx o, ¢, ¥eV.
i=1 71 Ti-

If <-,+> is the usual inner product on H, then we can write

H
<Ag, >y = <d,¥py = S vdx

for all ¢,peH , where A is a completely continuous, positive symmetric operator on V.

From (1.3a) we have, for ¢eV and any weV,



H]
o

< agét), WZ - <dA¢p(t) + Fllcp(t) * Flztp(t) 4 w>H
and so

it
(=)

<a¢'(t), w> +<dg(e) = F o Ap(t) = F L Au(t), wy (2.1a)

ot H
for almost all t»o , by Green's formula (see Lions, 1971).
Now let K QV be the closed convex cone

K= {weV: w >0 on ¥ in the trace sense}

N 2
in V. Then, from (1.3b) we have, for yeK and all wek,

2006 , W= By + (R)F, A0 (e) - Fphb(E), TH()y
at [\ B

- [ uG=p)dr > o
MMy (2.1b)

- |
for almost all t>o, provided wucH Z(Tﬁ\%m)
In the case where the inequalities in the boundary conditions (l.4) are

replaced by equalities we have the following equations corresponding to (2.1a,b):

<8¢(t), w> + <dp(t) - F11A¢(t) _ 'FleliJ(t), Wy =0 (2.2a)
ot f

a8, 7 + <000 = Typae() - B, By
ot ' )
H

~f v uwdl = 0 (2.2b)
FN\I‘N
for W,EEV.

We can write equations (2.1) and (2.2) on the cross product spaces

V=vVxV , H=HxH with the inner products

<(¢l!¢1)5(¢’29¢'2)>"\? = <¢1!¢2>V + <1p1!¢2>v

<(¢13,‘p1)3(¢2:1p2)>-ﬁ =<¢1,¢2>H % <w1!¢2>H



- -

in the following way. If K = VxKEV then (2.1) becomes

30 (t), Qw@(t);>_ + <Da(t) - FAO(t), Q-8(t) > 30 (2.3)
ot H v

for all QeK and almost all t>0, where ¢ (t)eK and

FF; Fip , D(d) =(d o)
01
Fa1 a2
AS = (Ad AY) , o = (p, VeV
Similarly, (2.2) becomes
20(t), %>a + <D(d)e(t) - FAo(t), 9> = 0, (2.4)
3t H v

for all QeV and almost all t>0.

3. Eigenvalue Placement.

Since the operator A is completely continuous, symmetric and positive, it has a
spectrum consisting of eigenvalues Ass i=1l, 2, .... such that ....;Aiaki+13....>0

and Ai+0 as i+, The corresponding eigenvectofs {ei} form a complete orthonormal

system in V., Hence we can write, for any (¢, w)eﬁ,

= O> o = - . o
¢ §=1<¢, e>e. ¥ §=1<w, e >e;

Consider first the case of zero control u=0. Then the eigenvalue problem

corresponding to equation (2.4), i.e.

FA® - D(d)® = pAo
is equivalent to the system of equations

<y e > (d-Fp A A = <Y, e PF oA = 0

<p, ei>F21Ai - <y, ei>(1—F22Ai+Aiu) = .
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Following Drébek and Kufera, 1986, we see that u is an eigenvalue of the operator

FA-D(d)I if and only if p is a root of the quadratic equation
3202 = u[F, 4F. A = (@+1)]+(d-F, A ) (1=F A )=Fp oF Az =0
T S & B B2 1174 7 Wl i TG

In particular, d is a critical point of (2.4) (i.e. p=0 is an eigenvalue) if

2
dz FpFphy + Fiphse

L Eoohy

Then the following lemma is proved easily (Drabek and Kufera, 1986):
Lemma 3.1. Let the coefficients Fll’ rIr F22 satisfy

F 1705 F1,<0, Fy >0, Fyp<0, F +F,,<0,

21 22 11

1 12

and suppose that the greatest critical point d of (2.4) is simple (i.e. the
geometric eigenspace has dimension 1). Then there exist continuous functions
u:(do—r,d;] + R, @:(do—r, d0]+§ (for some r>0) such that u(d) is an eigenvalue
of (2.4) with the corresponding eigenvector ¢(d), and we have u(d)>0 for all
ds(doﬂr, do) and u(do) = 0, Moreover, for any de(do—r, do], d is the greatest
aumber for which n(d) is an eigenvalue of (2.4). O

It follows from this lemma that there exists pro such that for any dla(dojp, do‘
we have

(1) if d>d1 then all real eigenvalues of FK—DI—u(dl)K are negative, and

(1i) if de(dlﬂg, dl) (some & = E(d1)>0) then there is one simple positive eigenvalue
of FK—D(d)I—u(dl)E and the other real eigenvalues are negative. (Moreover, the

complex eigenvalues all have negative real parts.)

Then, under the conditions of lemma 3.1, the following theorem can be proved

(Drabek et al, 1985):

Theorem 3.2 Suppose that ula(O, Fli] is a simple eigenvalue of (2.4) with some

d1>0 and assume that the associated set of solutions of (FKuD(dl)I-ulE)@ =0



i
has an element in K . Then there exists d'>d1 such that u, is an eigenvalue
of the inequality
<D¢ - FAD + gl'ﬁcp, R-0>= >0 for all QekK,

with d=d' and such that the associated solution set of this inequality has an
element in 8K , but the solution set of the equality (FE}D(d')I-u1E)®=O consists
of 0 alone., OO

it is easy to show that, for d=d' the linear equality (2.4) is stable but the
inequality (2.3) is unstabie. From the proof of this theorem it is also clear
that if the condition

if de(dl-E,W) , for some fixed £>0, then the operator

FA-D(d)T-u(d, YA

has only eigenvalues with negative real parts
holds, then both the equality (2.4) and the inequality (2.3) are stable.

We shall need the following lemma:
Lemma 3.3 Let H, and H, be Hilbert spaces and let u:Hl+H2 be a linear, continuous

1 2

surjective mapping with kernel W. Also, let {ei} be a basis of H1 such that

ek¢w for some k. Then there exists an element h of H2 such that
<h,p(ek)>#0, <h,u(ei)>=0 s i¥k
Proof. By the open mapping theorem, EEH1/W+H2 defined by
u(ﬁl) =uth,) , hléﬂlaﬁllw
is a linear isomorphism. Now, since ekéw the set {Ei,...,é%,,..} does not generate
Hllw and so the set {E(El),...,ﬁfgk),..e} does not generate H,. The result now

follows since the set {E{Ei),...,ﬂtzg),...} does generate H,. o

Corollary 3.4 Let V be the space

V={¢€H1(ﬂ): ¢=0 on FD in the trace sense}
and let A be the operator considered above with basis eigenvectors {ei}. Suppose
that ek(x)#O for x belonging to a subset of Iy of nonzero measure. Then there

exists a function ceH_%(PN) such that



fFN tGe, (AN = 8, - (3.1)

Proof. Since F=FDUF is a disjoint union we have the trace map

N

¢+¢|I.N

from V to {weH-é(F) : wlF = 0}. This map is linear, continuous and surjective
(Lions-Magenes (1972)) ang has kernel Hi(m). The result follows easily from
lemma 3.3. O

Remark

n
If ek(x)¥0 on { a subset of measure >0 of) Tﬁ\TN’ then we can replace (3.1) by

;(x)ei(x)dr =85 (3.2)

4 g
We can now prove our main result:
Theorem 3.5 Suppose there exists p>0 such that, for any dle(do-p,d;] , the
conditions (i) and (ii) preceding theorem 3.2 hold and let e, be the eigenvector
of A corresponding to the simple positive eigenvalue of the operator FEFD(d)I—u(dl)K.
Suppose that ek(x)#o on a subset of measure >0 of FQ\?N. Then the systems (2.3)
and (2.4) can be stabilized by boundary feedback.
Proof Let ;eﬂﬁé(?ﬁ<FN) be a function satisfying (3.2). Then we define the
feedback control u by

u = a§<¢,ek> + s;<¢,ek> (3.3)
for some real o,B. Substituting u and w=ei,1§}<w into (2.2) we have the eigenvalue
equation

2.2
Wy - u[ (. +F )Ak—(d+1);\k+axk]

11 722

+(d=F_ .1 Jda +(d-F

1% 1M AFooh) = (B M=BIF phe=



- 8 -
By appropriate choice of o and B we can therefore move the spectrum of
FA - D(d)I - u(dlfﬂ into the left half-planme and the result follows, since the
spectrum for i#k is unaffected. O
4. Example Consider the reaction—-diffusion system

9 = d 3% + 976+ o -y

b
oy =02y + Byt 42
at sz ayZ

on the rectangle [b,il X Eb,f] with boundary conditions

¢p=t= 0 on FDQ({o}U{l})XIO,l] u ([o,1] x {o})

3¢ = 0 on FN=[b,ﬁ] x {1}
on
LY
3y = u on Pﬁ\?N s
an
u

g»0 , 3->0 , Y3 =0 on T
. _— — N

on on

where

v

Ty = [o,4] x {1}.
In this case we have

Fp=hs Fyp=-ly Fpy=ls Fpp=2

_and so the system satisfies the conditions of lemma 3.1. The spectrum of the

i,

operator A is easily seen to be given by

kmn = 1 . m=1,2,...; n=0,1,2,...
mr+(2n+1)w/2

The equation for the gre@test critical value of d is therefore

2
d, = max i‘FIZFZi}mn + Fdn ii
B8 LIF n
22" mm

fa )

il
B
»

I
>
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9

It
o

3+ 2

corresponding to the eigenvalue A Since the eigenvector of A with this

10°
eigenvalue is simple and does not vanish anywhere on FN’ theorem 35 shows that
we can shift 310 by boundary feedback to be smaller tha 2/3m so that dc is no
longer a critical value of the equation. Hence the system is stabilizable.
D Conclusions

In this paper we have shown that, although the introduction of unilateral
conditions into a systems of parabolic equations can be destabilizing, we can
stabilize such systems by the proper use of boundary control. In fact we can
choose a control which is 'orthogonal' on.the boundary to the eigenvalue§ which
have negative real parts, so that we affect only the eigenvalues with positive
real parts. Although the main result has oniy been proved for a single simple

eigenvalue with positive real part, the theory can be extended to systems with a

finite number of such eigenvalues.
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