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Abstract

The Lyapunov equation for the characterization of the stability of

linear systems is generalized to nonlinear systems.
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1. Introduction

The stability of linear system is, as is well-known, equivalent to the

existence of a positive-definite, symmetric solution of the Lyapunov equation
PA %A = T,

and then a Lyapunov function can be written directly in the form (1.1)
V(x) = <x,Px>. Such a simple characterization of stability for nonlinear
systems is hardly to be expected, but it turns out that by using the technique
of Carleman linearization (Carleman, 1932) one can obtain a direct extension
of (1.1) to a nonlinear system, The method was developed by Brockett (1978)
and has been applied in a variety of situations by Baillieul (1981),Banks (1986)
and Leparo and Blankenship (1978). In the latter paper the Carleman linear-
ization technique is applied to the estimation of the domain of attraction of
nonlinear systems, The essential difference, here, however, is that we do not
use a lexicographic ordering of the Taylor monomials involved in the expansion
of the solution of the original equation. We leave these functions in the
form of a tensor which allows us to generalize (1.1) directly.
2. Notation

Let N denote the set of natural numbers and,mp be the set of n—tuPh; of
such numbers. A typical element of N" will be written i = (il""’in) and,
in particular, 1(k) will denote the n-tuple with 1 in the k'th placé and zero
elsewhere.

We shall use the theory of tensors as outlined in Banks and Yew (1985);

any tensor ¢ being written in terms of its components in the standard basis as

RO

3. Tensor-Valued Differential Equations

Consider the differential equation

x = f(x) , x(o) = xogm“ (3.1)
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where f is assumed to be a real analytic function with f(o) = 0, Any other
equilibrium point can be considered similarly by a change of wvariables.
(0f course, the analyticity of f guarantees that the equilibrium points are
isolated.)

Introduce the Taylor monomials

¢;(x) = ¢il"'in(X) = Xil...xin=xi, Ocij<e , l<jen
Then we have
T

Writing fk(x) in a Taylor series about the equilibrium point (x=0), we have

e 3
£ = ] wx 1<k<n (3.3)
. i Sk
1el

for some constants a? . Hence, from (3.2) and (3.3),

. v . _(i-1(x K
¢i(x) 5 Z lkx(l (k)) jZI 0tij

]
~1

n . .
) i x(lﬂl(k)+3)a%

= b= 3
R IR e
£ gy TR *
. k :
where we define uR =0 1if 2<0,
Hence,
. j
b = a, o.
. jer
where

J & k
a, = E L. .
i k=1 kTj-i+1(k) .
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Defining the tensor operator A by

_ j
(a0), = ] aj

jel ]

we can write the system (3.1) in the form

o = Ad . (3.4)
Note that U, x;...xg = 1 and so the equilibrium point of this linear system
corresponding to the origin for (3.1) is not the zero tensor. However, if

we define

where 1 is the tensor with
1, =1,1 =0 fori#o ,

then we have
b= A
Since f(o) = 0, i.e. { satisfies the same equation as ¢ and has equilibrium
point § =0 ,
Next we would like to define an inner product on the tensor space i£
so that it becomes a Hilbert space. Let EZ denote the space of sequences
(ao,ul,...) such that the sequence (uo,allll,u2/2!,...) belongs to %7,

. . 2
Then we define an inner product on Re by

Then 22 is a Hilbert space such that the map

E:22+22
e
defined by
2
- 1
E(a) (an/n.) R ueRe
is an isometric isomorphism. We can define an inner productcnli%ffgiz by
n
<CI):S_B> E Tr <0'vk,8k> & (3.6)



_4_
where ¢,] are the simple tensors

2
b = a1®....®an 3 J = E.l@...@Bn s ai,BjES&e

and by linear extension to J;f
i i ;
Lemma 3.1 For any tensor ¢ of the form (xll...xnn) = (xV) s

X = (xl,...,xn)sm? we have

1 ke 2 1 2
llell <expd}, ; x) = e x [
Proof
n i
Fell = 1l )
L
n o 2% ]
=137 %
k=1 | &= (z,)Z
n o 20 :
< 14 7%
k=1 {f4=0 & !
exp(3], 2 <} . m
Theovem 3.2 On the space Iﬁlof tensors of the form ¢ = (xi) we have

| as || < kzll £, [ el

Proof We have
; x(m100)
1 k

I~

(A¢)i = fk(X)

k

Consider the term

. ilfl i2 in
(A1<I>)i £:11x1 Xp" eeax fl(x)
Then,
i.-1 n i
lagell = lix* | ;ﬁ!f<xkk)lfelfl<x>l

oo

2. % B 1 5
=[ 12°(xD) PTG LE, G



I

n ik
;§;|i<xk ) I £ 0

o1z, 60l

The result now follows easily. [I

Corollary 3.3 |a%s || < (Ekzll:‘fk(X)l)jl le || .m

Corollary 3.4 eAtQ exists for all t and for all @EJZE , and satisfies

At n
(| E.EXP{(Zk=1 ]fk(x)|)t Fllefl. &
Hence the system
& = Ao
is soluble in JZ: with the norm introduced above and if @O = (X;) for some

XOEWP, then the solution ¢ (t) satisfies.
leo) || < exp i@, L, £, [le, | (3.7)

Noke, however, that (3.7) cannot be extended to spaﬁ Qﬁg) so that eAt is not
a linear semigroﬁp, although it is a nonlinear semigroup on‘fg .

We now come to our main result. Consider the system (3.1) and the tensor
operator A associated with it as above. Before stating the theorem let us
note first that the tensor Lyapunov equation

ATP + PA = -1 {3.8BY
does not generally have a solﬁtiom. In fact it does not even have a 'weak'
solution P in the sense that

< (ATP + PAD, T>= ~<P,]> , @si’,: -1 .

However, it may have an e -approximate weak solution, i.e. a positive definite
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symmetric tensor PE for each e>o such that

<P+ P_MP, P = <D +e Ll -1 . (3.9)

Theorem 3.5  If there exists a strictly positive definite, symmetric tensor
PE, with lower bound independent of ¢ for each bounded e>o, such that the
Lyapunov equation (3.8) has an ec-approximate weak solution (i.e. (3.9) holds)
then the system (3.1) is asymptotically stable at the origin.
Conversely, if the system (3.1) is (globally) asymptotically stable at
the origin then if any solution x(t;xo) of (3.1) satisfies
2 o
I x(t3x ) |© < 1og(1+c/t™) (3.10)
for some constant C and for sufficiently lapge t, then there exists an
e-approximate weak solution of (3.8).
Proof Suppose that an e—approximate solution PE exists and that the system
(3.1) us not asymptotically stable, Then there exists &»>0 such that
2 i T .
” w(ti)!l >6 for some sequence ti+m, where {(t)=(x (t))-};ein is the tensor
associated with the solution x(t). Let e<8 and consider the function
- T
Vv = <Q,PE@> s (P + l)g;ﬂn .

Then

<}
]

<A@_(t),1’g@(t)> + <@(t),PEA?_(t)>
—<Q,1;_D> + £ 5

Since P /2 is strictly positive definftewe can write
£

: 2
@ > ol?
for some o , independent of e. Hence,

ad || 30 1% < - [ || 2 +
dt

< 0
if H y(t) H2 >Ea This is a contradiction .

To prove the converse we shall follow the classical proof for the linear
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case., Thus, consider the tensor operator-valued differential equation

X =ATx + XA, X(0) = I. (3.11)

This equation has the unique solution
T
X(t) = eA teAt

Let § be such that § + 1 e’ . Then
0 o — n
T TATtAt
,XI = Jye” el .
A . 2 i
However, as we have seen, e tﬁo 1s the solution of (3.5) with initial value
Eo and so eAtQD is of the form {xl(t)} - 1 , where x(t) is the solution of (3.1)
with initial condition X for which
i
{xo} -1=13.
Hence,

B x3 = gl ), wn)>

(e} (o]

where P(t) = QAtﬁd and so

xp = g 17 = et )? -

I\

exp%_” x(t) ”2) -1
By (3.11)
t
X(OVP o >=<D, 0> = <(ATx(t)+X(t)A)@O,po> dt
O

Using (3.10) we see that

XD 50> € expd] x(55x) | -1 > 0

as t»», so if e>o0 choose t(g) so that <X(t)@o §0> < e , and define
3
t(e)

P = f X(t) dtc .
€ (o]

Then,



T
£ = <1“DD’@0> = <(A PE: + P€A>§Osmo Z
so that (3.9) has an e-approximate weak solution. P€ is clearly symmetric

and it is strictly positive definite since

t(e)
BP0 = 5 {E((t;x%e) - 1} dE
o
> e e ||
, n i xn@ Ity
for some constant ¢, if ¢ is bounded above, where E(x)= Jl; %0 (_@%1} "

Remarks (1) We can replace I in (3.8) by an arbitrary positive definite
symmetric tensor, just as in the classical case.

(2) By using different norms on 2:2 it may be possible to relax
the condition (3.10).

(3) If an equation has several stable equilibria then the result can
be applied with @0 = {Xi } where X is in the region of attraction of a
particular stable equilibrium.

4, Evaluation of the Lyapunov Function

In the last section we have seen that, given an analytic system

f(x) : (4.1)

1l

%

which has x = 0 as an asymptotically stable equilibrium point, we can construct

a Lyapunov function of the form

T
vV = fz <P eA'teAt@> dt , (4.2)

which we have seen exists provided the condition (3.10) holds. Since eAtQ

is ‘the solution of the system with initial condition P = {xi} - 1, evaluating
(4.2) requires us to solve the equation (4.1). Hence finding a Lyapunov function
for a general system of the form can only be achieved by solving the original
differential equation. Of course, the Lyapunov function (4.2) can also be

expressed in the form



Vo(x) = f:{E(x(tjxg)J‘l}clt

where X(t;XO) is the solution of (4.1) with initial condition x(o0) = X .
This is not surprising since, for any system of the form (4.1) which is

asymptotically stable, we can write down the Lyapunov function
Vx) = S0 p(|l x(tsx )] ) d
- - t
(Xo o P ELEE,

where p is any function which makes the integral exist,
The advantage of the expression (4.2) is that, since the formal evaluation
ate
of e "J as a series just gives the Taylor series of the solution x(t;xo) as
a function of t and X is we truncate ¥ and A in the obvious way to a finite
dimensional tensor and tensor operator, respectively, then we can write the
finite-dimensional approximation
L] =A
?m m@m
. At
to the exact equation U = AJ, for each m>l. The solutions e ™ §m to these
; . . At
equations clearly converge uniformly to the solution e § of the exact
equation on compact sets since the former are just approximations of Taylor series.
If we solve the finite-dimensional Lyapunov equations
ATP + P A =-1
m m m m m
then we obtain a sequence of Lyapunov functions
Vv (x) = <P > 4,3
) = <Py Ly > (4.3)
which are valid in expanding neighbourhoods of O as m increases. Here,
Cese> is not the usual inner product in finite dimensional space, but the
obvious truncation of the one introduced above on

Jﬂg . Each function Vm in (4.3) is a polynomial in x the zeros of which move

away from the origin to = as msw,
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Example Consider the 'time reversed' van der Pol oscillator:

8 3
X = TE,PX] Xy
27
Then if ¢,.(x) = xixj we have
1] 172
‘ =ixi_1 1 T .Xi _]—1}.{
ij 1 ¥ ¥ TIEH 2
_ lxl—l j+1 2 I . S| " i+1 -1
1 % ix) U oxy - ix) x4 jx) X))
= -i . i, oo=h.. + 0. v
l¢i—1,3+1 ¢1+2,J ¢1J J¢1+l,J—1
kg
= 1 a6,
K, 1] 'k
where
k. _ .k & Lk L Lk o8 .k
By —_16i—16j+1 + 16i+26j léi % # J5i+15j_1
If A = (a%%) and A = (akg) ;5 then we can obtain approximations
1.3 m ij71<k,%<m,1<ij<m ,

to a Lyapunov function on a neighbourhood Um of O by solving the tensor operator

equation

T = -
AmP +P A = -1 ; (4.4)

The resulting Lyapunov function Vm = <Pﬁm,@m>m.converges to <P7J,0> uniformly

on each Um and U Um = U , where U is the interior of the limit cycle of the system,
m=0

5. Conclusions

In this paper we have generalized the familiar Lyapunov equation to nonlinear

systems and have demonstrated a method for evaluating approximations to a
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Lyapunov function for the nonlinear system, Since we have seen that this

involves solving a sequence of tensorial.generalizations of the well-known

linear equation
ATP +PA=-1

as defined by (4.4), efficient methods of computation of the latter equation

are desirable.
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