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ABSTRACT 

In this work, we present a new efficient iterative solution technique for large sparse matrix systems 

that are necessary in the mixed finite-element formulation for flow simulations of porous media with 

complex 3D architectures in a representative volume element. Augmented Stokes flow problems with 

the periodic boundary condition and the immersed solid body as constraints have been investigated, 

which form a class of highly constrained saddle point problems mathematically. By solving the 

generalized eigenvalue problem based on block reduction of the discrete systems, we investigate 

structures of the solution space and its subspaces and propose the exact form of the block 

preconditioner. The exact Schur complement using the fundamental solution has been proposed to 
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implement the block-preconditioning problem with constraints. Additionally, the algebraic multigrid 

method and the diagonally scaled conjugate gradient method are applied to the preconditioning sub-

block system and a Krylov subspace method (MINRES) is employed as an outer solver. We report the 

performance of the present solver through example problems in 2D and 3D, in comparison with the 

approximate Schur complement method. We show that the number of iterations to reach the 

convergence is independent of the problem size, which implies that the performance of the present 

iterative solver is close to O(N). 

 

Key Words: Flow in porous media, Representative volume element (RVE), Iterative solver, Block 

preconditioning, Algebraic multigrid method 

 

1. Introduction 

In this work, we consider a fast and efficient iterative solution technique for the numerical 

simulation of flows in porous media with complex micro-architectures to investigate the flow 

behaviors such as the permeability, the mobility of fluids with shear-dependent viscosity or the flow 

resistance of viscoelastic fluids, which has various industrial applications: e.g. liquid molding in 

composite manufacturing, the packed-bed reactor in chemical engineering, the secondary-oil recovery 

in petroleum industries and various filters in automobile industries. Due to its repeated structure, it is 

necessary to introduce a representative volume element containing a small number of microstructures 

with periodic boundary conditions for effective numerical simulations. Good examples are the works 

of one of the authors’ group (Wang and Hwang, 2008; Liu and Hwang, 2009; Hwang and Advani, 

2010; Liu and Hwang, 20 12) in which the authors modeled 2D and 3D structures in bi-periodic or tri-

periodic unit cells containing fibers or fiber tows to predict the permeability of complex porous 

microstructures for the application to the composite manufacturing. There are two necessary 

ingredients in dealing with this class of porous media flows: one is the treatment of the periodic 

boundary condition and the other is the introduction of the solid bodies within the flow. As we will 
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introduce later, mathematical treatments for these two lead to highly constrained flow problem, the so-

called augmented Stokes problem, particularly with mixed formulation of the finite-element method. 

A suitably preconditioned iterative scheme is essential for successful flow simulations of large-scale 

problems, as the use of a direct solver is impractical and even impossible for large 3D problems. In 

this work, we aim to develop a new efficient iterative solution technique for the highly constrained 

large sparse matrix system using specific choices of block-preconditioning, which is specifically 

tailored for flow simulations of porous media within a unit cell. 

To introduce the problem, let us first consider the standard Stokes problem in a domain  . 

Since fluid inertia is often neglected on scale of interest with flows in porous media, the Stokes flow 

is usually assumed as follows:  

 0, 0,   σ u  (1) 

subjected to the following boundary conditions: 

 , on and , on .u t   u u t t  (2) 

The stress is 2p   σ I D  with the pressure p , the identity tensor I , the viscosity   and the 

rate-of-the deformation tensor   1 2
T

   D u u . Suppose that the domain boundary      

be composed of the Dirichlet-type boundary u  and the Neumann-type t  boundary and 

u t   . From the standard Galerkin approximation with the velocity and the pressure as the 

primitive variables, one can obtain the following weak form for this problem: Find  , pu  such that 

      2 : ,
t

p d D d d
  

        v D u v t v  (3) 

   0,q d


   u  (4) 

for all the admissible weighting functions  ,qv . The discrete finite element matrix system for Eqs. 

(3) and (4) can be written in a block-matrix form with a suitable combination of discretized spaces for 

the velocity and the pressure as 
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 , .
0 00

StokesT T

K G u K Gf
A

G p G

     
      

     
 (5) 

The variable u  is a collective unknown for the discrete velocity variables, p  for the discrete 

pressure variables and f  is the work equivalent nodal force due to the traction boundary condition. 

(The symbols with tilde indicate the discretized variables throughout this work.)   

The linear system shown in Eq.(5) is already highly constrained and can be classified as the 

saddle point problem, which means that the matrix StokesA  is indefinite though symmetric and it will 

have positive and also negative eigenvalues and pivots while elimination (Strang, 2007). (We will 

consider additional constraints to the discrete Stokes problem in Eq. (5) in this work and therefore the 

class of the flow problem of interest in the present work may be best called highly constrained 

augmented Stokes problem.) This complication has originated from the presence of the 

incompressibility constraint. Although the basic methods for solving large sparse indefinite problems 

are the minimum residual (MINRES) and the generalized minimum residual (GMRES), the iterative 

method does not behave satisfactory or even does not converge without a suitable choice of the 

preconditioner. An extremely efficient, indeed  O N , iterative scheme for the discrete Stokes 

problem of Eq. (5) has been proposed by Silverster and Wathen (1994). This approach formulates a 

block structured preconditioner and uses appropriate techniques for each block system such that it can 

be solved with optimal efficiency. They employed the outer MINRES iteration along with the inner 

iterations of the algebraic multigrid and conjugate gradient (CG) methods.  

It is worthwhile to briefly introduce their Krylov subspace/multigrid method, as we will 

further extend their method in this work for much more complex highly constrained system with the 

presence of the immersed solid bodies or the periodic boundary condition. For the discrete Stokes 

problem, Silverster and Wathen (1994) introduced a finite element mass matrix as a block 

preconditioner for the pressure unknowns and the discrete Laplacian as a preconditioning block for 

the velocity unknowns. The mass matrix has been shown to be spectrally equivalent to the exact Schur 
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complement 1 TS GK G  and it can be solved by a diagonally scaled CG method within a fixed 

number of iterations (Elman et al., 2005). Also, the discrete Laplacian can be optimally inverted by 

the multigrid method for the preconditioning problem of the velocity unknowns. They showed that 

this combination of the approximate preconditioners clusters the eigenvalue spectrum independent of 

the mesh size and thereby the convergence of the Krylov subspace outer iterative scheme (MINRES) 

can be guaranteed within a fixed number of iterations. The CPU time as well as the memory usage is 

observed to scale linearly with the number of degree of freedom. That is, the ultimate  O N  

performance of the solution scheme has been established.  

In this work, we aim to develop a new efficient iterative solution technique for the highly 

constrained large sparse matrix system using specific choices of block-preconditioning. Augmented 

Stokes flow problems with the periodic boundary condition and the immersed solid body as additional 

constraints have been investigated. By solving the generalized eigenvalue problem in block matrix 

form, we propose an exact form of the block preconditioner to achieve the  O N  performance of the 

iterative solution technique. The exact Schur complement using the fundamental solution has been 

proposed to implement the block preconditioner with the constraints. The paper is organized as 

follows. In Sec. 2, we introduce the mathematical framework for the two highly constrained Stokes 

problem by presenting the weak form and the structure of the block matrices in their discretized form. 

Sec.3, we investigate the solution space of the discretized weak form by solving the generalized 

eigenvalue problem with block reduction and then propose an exact form of the block preconditioner 

that guarantees fixed number of iteration for convergence. In Sec. 4, we introduce the implementation 

techniques for this preconditioned iterative method, particularly the exact Schur complement method 

using the fundamental solution. Finally, the performance of the present solver will be presented 

through example problems in 2D and 3D, in comparison with the approximate Schur complement 

method. We show that the number of iterations to reach the convergence is independent of the 

problem size, which implies that the performance of the present iterative solver is close to  O N . 
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2. Highly constrained Stokes flow problems 

2.1. The augmented Stokes flow problem with periodic boundary conditions 

The first problem of the two highly constrained Stokes problems of interest in this work is 

the flow with the periodic boundary condition. Let us first consider a simple 2D problem in a 

rectangular domain of [0, ] [0, ]L H  with the periodic boundary condition in the horizontal direction 

such that the velocity on the left boundary is the same as the that on the right boundary: i.e.,  

    0, ( , ), 0, .u y u L y y H   (6) 

To combine the periodic boundary condition with the weak form, one usually introduces a Lagrangian 

multiplier λ  on the left boundary left : i.e.,  2

leftL λ  and the periodic boundary condition can 

be expressed as an additional constraint. Then the weak form for the Stokes flow can be rewritten as: 

Find  , ,pu λ  such that 

           2 : 0, , 0,
left

p d D d y L y d
  

         v D u v λ v v  (7) 

   0,q d


   u  (8) 

     0, , 0.
left

y L y d


    μ u u  (9) 

for all the admissible weighting functions  , ,qv μ . Comparing with Eq. (3) and Eq. (7), one can find 

the identity between the Lagrangian multiplier for the periodicity and the traction force. Introducing 

approximate interpolations for the velocity, the pressure and the Lagrangian multiplier, Eqs. (7-9) can 

be written as the matrix equation: 

 0 0 0 , 0 0 .

0 0 0 0 0

T T T TK G u f K G

G p A G



      
     

      
            

 (10) 

Dimensions and entries of the block matrix K , G  and   are determined by the choice of the 
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spatial discretization and we chose a quadrilateral element with the bi-periodic velocity and the 

discontinuous pressure interpolations (
2 1Q P  Crouzeix-Raviert element). Construction of the block 

matrices K  and G  is obvious in the standard Galerkin formalism and therefore we only consider 

the entries of the block matrix  . Among several possible interpolation schemes for the Lagrangian 

multiplier λ , we consider only two of them: (i) interpolation with the Delta function at every node 

(nodal collocation) and (ii) a linear continuous interpolation. (The implementation with the weak form 

of the integrals in Eqs. (7) and (9) involved with the periodic boundary is called the mortar element 

method (Laursen, 2002)). To deliver the idea easily, we selected a simple 2D model mesh as shown in 

Fig. 1. 

Nodal Collocation Using the nodal collocation, the collocation at all nodes, the boundary integral in 

Eq. (9) can be written as  

       
5

30

1

0, , , for all .
left

k k k

k

y L y d k




      μ u u μ u u  (11) 

Refer to Fig. 1 for example nodal numbering scheme used in Eq. (11). In this case the block matrix  , 

which is a 10 70  matrix, for this specific problem in a symbolic form can be expressed as follows: 

  10 10 10 50 10 10 ,I O I      (12) 

where the sub-block matrix 10 10I   indicates the identity matrix of the size 10 10  and 10 50O   is the 

null block matrix of the corresponding dimension. Considering the following product of the matrix   

 

10 10 10 50 10 10

10 10 50 10 50 50 50 10

10 10 10 50 10 10

2 and ,T T

I O I

I O O O

I O I

  

   

  

 
 

    
 
  

 (13) 

we notice that the matrix T  is a full-rank matrix, whereas T   is not with rank deficiency. 

 

Linear Continuous Interpolation  A standard mortar element discretization is much more involved 

in this case. Introducing the linear interpolation of the Lagrangian multiplier along the 1D element 

boundary (see Fig. 2), 
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   1

1 2

2

,N   
 

        
 

λ
λ

λ
 

the integral in Eq. (9) along the element boundary can be written as follows: 

              
,

2

, ,
1

0, , .
left e left

TT

e e left e right
e

y L y d N N d u u
 



        μ u u  (14) 

The symbol  N  is the interpolation function for the velocity unknowns and the subscript ' 'e  

indicates the variable defined within an element. Using the local numbering in Fig. 2, the block matrix 

  in the specific mesh of Fig. 1 can be expressed in a symbolic form as  

 
3 5 3 5 3 5 3 5 3 5

3 5 3 5 3 5 3 5 3 5

,
U O O U O

O U O O U

    

    

 
   

 
 (15) 

where a sub-block matrix 
3 5U 

 is 

 3 5

1 3 2 3 0 0 0

0 2 3 2 3 2 3 0 .

0 0 0 2 3 1 3

U 

 
 


 
  

 

Again considering the following two products of the block matrix  : 

 

   

   

   

   

2 2

5 5 5 50 5 55 5 5 5

2 2

5 5 5 50 5 55 5 5 52

3 3

50 5 50 5 50 50 50 5 50 52

3 3 2 2

5 5 5 50 5 55 5 5 5

2 2

5 5 5 50 5 55 5 5 5

2 0
and ,

0 2

T T

T T

T T

T T

T T

U O O U O

O U O O U
U

O O O O O
U

U O O U O

O U O O U

   

   



    



   

   

 
 
 

 
   

       
   


 
 

  

 (16) 

the matrix T  is found to be a full-rank matrix, whereas T   is not with rank deficiency. 

 

2.2. The augmented Stokes flow problem with immersed solid bodies 

The second highly constrained Stokes problem of interest in this study is the Stokes flow 

with immersed solid bodies. To model this problem, we use the so-called rigid-ring (or rigid-shell in 

3D) description, one of the fictitious domain methods, such that the interior of the solid body is 
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considered as a part of the fluid with the same constitutive equation as the fluid domain with the zero 

velocity condition on the solid boundary (Wang and Hwang, 2008; Liu and Hwang, 2009; Liu and 

Hwang, 2012). As fluid inertia is neglected in the Stokes flow, the zero velocity condition on the solid 

boundary ensures vanishing velocity inside the body. There are three advantages of the rigid-shell 

description with the fictitious domain method in simulation of flow in porous media: first, one does 

not have to consider the interface conditions between solid and fluid, as the entire problem is 

essentially the fluid problem. The second one is the easiness in discretization of the immersed body 

using its boundary information only and, as will be shown later, one needs just points on the solid 

boundary. Thirdly, as the entire problem is the fluid flow problem, one can use the regular mesh which 

facilitates simple implementation for the mortar element technique for the periodic boundary 

condition of the representative volume element. 

The zero boundary condition on the solid boundary B  can be expressed as 

 0, on .B u  (17) 

As was done with the periodic boundary condition, we define the Lagrangian multiplier λ  on B  

and the zero velocity condition on the boundary can be treated as the constraint in the weak form in 

exactly the same form as previous: Find  , ,pu λ  such that 

      2 : ,
tB

p d D d d d
   

           v D u v λ v t v  (18) 

   0,q d


   u  (19) 

 0
B

d


   μ u  (20) 

for all the admissible weighting functions  , ,qv μ . We employ the point collocation method to 

implement the integral over the solid boundary in Eqs. (18) and (20). For example, the integral in Eq. 

(20) can be approximated as 

  
1

,
M

k k
B

k

d




    μ u μ u x  (21) 
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where M , 
kx  and 

kμ  are the number of collocation points on B , the position of the k-th 

colocation point and the collocated Lagrangian multiplier at 
kx , respectively. The resulting matrix 

equation appears exactly the same as the previous periodic boundary condition in Eq. (10). Though 

not presented here, the product of the corresponding off-diagonal sub-block matrix   satisfies the 

same characteristics: the matrix T  is a full-rank matrix, whereas T   is not with rank deficiency. 

 

3. Block-preconditioning strategy and the generalized eigenvalue problem 

 For the solution of the matrix equation in Eq. (10), we propose a block preconditioner P  

similar to (or motivated by) the Schur complement in the discrete Stokes problem: i.e., 

 1 1

0 0

0 0 , with and .

0 0

T T

K

P S S GK G T K

T

 

 
 

    
 
  

 (22) 

The matrix K  is a square matrix of the size 
u un n  and is a full rank matrix   rank uK n ; the 

matrix G  is a non-square matrix of the size p un n  is of a full rank   rank pG n ; and the 

matrix   is a non-square matrix of the size un n   is of a full rank   rank n  . The symbols 

un , pn  and n  are the numbers of the velocity, pressure and Lagrangian multiplier unknowns, 

respectively. The adequateness and performance of the proposed preconditioner can be analyzed by 

the eigenvalue problem of the preconditioned system 1P A  and therefore the generalized eigenvalue 

problem, 1P Ax x   with the eigenvalue  , can be stated as follows: 

 

0 0

0 0 0 0 .

0 0 0 0

T TK G u K u

G p S p

T



 

      
     

     
            

 (23) 

To solve the generalized eigenvalue problem in Eq. (23), we divide the solution space of the 

discretized velocity vectors hV  into four subspaces. Now consider the following four subspaces (Fig. 

3):  
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◦ Space I:    I

hV N G N  , 

◦ Space II:    
cII

hV N G N  , 

◦ Space III:    
cIII

hV N G N  , 

◦ Space IV:    
c cIV

hV N G N  . 

We have some remarks on the four subspaces. 

(i) The space  N G  is the right null space of the matrix G , which satisfies 0Gu   for all 

 u N G , and the dimension of  N G  is  u pn n , since the matrix G is of full rank.  

(ii) Similarly, the right null space of the full rank matrix  , denoted by  N  , satisfies 0u   and 

has the dimension of  un n .  

(iii) The dimension of the subspace IV

hV  is no larger than n  or pn , which means that 

       dim min ,
c c

pN G N n n  . 

(iv) The number of unknowns related with the constraint (the periodic boundary condition or the zero 

velocity condition) can be safely considered much smaller than the primitive variables u  and p , 

since the dimension where the constraint is one-order lower than those of u  and p : i.e., 

p un n n  . 

 The eigenvalue problem in Eq. (23) can be solved exactly for the mutually exclusive four 

subspaces. The general procedures involve the block Gaussian elimination process and we summarize 

the results below. 

Subspace I  In this space, 0Gu   and 0u  . Therefore from Eq. (23) we have a single 

eigenvalue 1   and the corresponding eigenvector is 0 0
T

u    with u  satisfying 

0Gu u  . The multiplicity of the eigenvalue is       dim dimI

hV N G N  . 

Subspace II  In this case, 0Gu   and 0u   and the eigenvector can be expressed as 
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0
T

u  
   with 0Gu  . By using block Gaussian elimination with 0Gu   and 1 TT K   , 

the eigenvalue problem can be reduced to  

  2 1 0.T      (24) 

Since the matrix T  is symmetric and positive-definite, we have two distinct eigenvalues 

1 2 5 2  whose multiplicity is  dim II

hV . 

Subspace III  In this case, 0Gu   and 0u   and the eigenvector can be expressed as 

0
T

u p    with 0u  . Similarly to the space II, one can obtain the reduced eigenvalue problem 

with 0u   and 1 TS GK G  as follows: 

  2 1 0.Sp     (25) 

Again, we have two distinct eigenvalues 1 2 5 2  whose multiplicity is  dim III

hV , since the 

Schur complement matrix S  is symmetric and positive-definite. 

Subspace IV  This is the hardest problem. We notice that  u N G  implies  range Tu G  at 

least in the eigenvector space of u , since the null space and the row space are mutually orthogonal. 

In the same way  u N   implies  range Tu  . Further, as the space IV is    
c c

N G N  , the 

row space of the two matrices can be identified. 

    range range , when .T T IV

hG u V    (26) 

The eigenvector in IV

hV  has the form 
T

u p  
   and u  should satisfy  u N G  and 

 u N  . By the block Gaussian elimination with Eq. (26), one gets the reduced form of the 

eigenvalue problem in IV

hV : 

   
2

2 1 1 0.T       (27) 

We have four distinct eigenvalues  1,0,1,2 , whose multiplicity is  dim IV

hV , since the Schur 
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complement matrix T  is symmetric and positive-definite. 

 In summary, the preconditioned matrix 1P A  has only six eigenvalues 

    1, 1 5 2,0,1, 1 5 2,2    and therefore, once 1K  , 1S   and 1T   are computed exactly by 

any means, the solution of the iterative scheme converges to the exact solution within maximum six 

iterations, independent of the problem size. Further, if the solution methods to obtain 1K  , 1S   and 

1T   satisfy the  O N  performance, the iterative scheme for the entire problem will show the 

ultimate  O N  performance. 

 

4. Implementation techniques 

 Although the preconditioner P  in Eq. (22) is theoretically optimal, one cannot employ the 

preconditioner as is, since the Schur complement 1 TS GK G  and 1 TT K    involves the 

inverse of K  which is prohibitively expensive by themselves. Therefore one needs further 

approximation of the preconditioning matrix P . In this section, we seek implementation techniques 

for the preconditioning problem. As the preconditioners K  and S , which are related with the 

velocity and the pressure unknowns respectively, are the same as the Stokes flow problem, we can 

follow the approach outlined for the Stokes systems (Silvester and Wathen, 1994; Elman et al., 2005; 

Hwang et al., 2011a). For the approximation of the preconditioning block matrix , we employ the 

discrete Laplace operator K̂ , which can be inverted by an algebraic multigrid (AMG) V-cycle to 

provide a fast and efficient solution. Details of analyses on the choice of the discrete Laplace operator 

has been presented by the authors’ previous work (Hwang et al., 2011a). The block preconditioner S , 

the Schur complement matrix of the Stokes problem, is spectrally equivalent to a mass matrix M  in 

the pressure space (Elman et al., 2005). Therefore we adopt the mass matrix M  in the discrete 

pressure space as the approximation of the Schur complement S  in the present study and the mass 

matrix can always be easily solved within a fixed number of iteration with the diagonally scaled CG, 
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independent of the number of unknowns. 

 From the above statement, the approximation of the preconditioner, denoted by P̂ , can be 

expressed as  

  ˆ ˆdiag , , .P K M T  (28) 

The last remaining problem is the sub-preconditioning problem with T , which can be written as 

 1, with .TTz r T K     (29) 

The problem with Eq. (29) is that the block matrix   is not a square matrix and its inverse is not 

obvious. In this work, we propose an exact solution method for Eq. (29) using the fundamental 

solution and present the performance of our scheme in comparison with the approximation method for 

the matrix   proposed by Elman (1996). 

 

4.1. Implementation of block preconditioning with an approximate solution of the Schur complement 

First we start presenting the approximation method for the solution of Eq. (29), which was 

originally developed of Elman (1996) and is called as the ‘BFBt’ preconditioner. It is relatively easy 

to implement but at the same time the number of iterations for the convergence scales with  O N  

and therefore the CPU time scales with  O N N . Here we present a little bit modified 

implementation scheme to clearly show the procedures, which are composed of three steps as below. 

Step 1 [Solution of y r  ] This can be done by taking *Ty y  . Firstly solve for *y  

 * ,T y r   (30) 

and find y  from *Ty y  . As illustrated in Eqs. (13) and (16), the matrix T  is small and easily 

invertible for both the constrained problems. Especially with the nodal collocation, the matrix T  

is simply twice of the identity matrix.  

Step 2 [Solution of 1A x y  ] The solution x  can be obtained by a simple matrix-vector 

multiplication though hugh: 
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 x Ay  (31) 

Step 3 [Solution of T z x  ] This problem can be transformed into a trivial problem by multiplying 

  on both sides, since T  is easily invertible. 

 T z x   (32) 

 The whole solution process requires two matrix inversions in the form of T x b   and 

three matrix-vector multiplications among which one is hugh x Ay  and the other two are small. 

Though it looks concise and clear, the final solution of Eq. (32) is not exact but only an approximation. 

The reason is that x  in Eq. (32) does not reside in the range of T  in general and the equation in 

the third step T z x   does not have exact solution. Therefore, one may expect minor improvement 

in iterative performance and as will be seen later the number of iterations scales with  O N . 

 

4.2. Implementation of block preconditioning with the fundamental solutions 

 In the present work, we propose an exact solution of Eq. (29) using the fundamental 

solutions and with this method we start rewriting Eq. (29) as follows: Find z  satisfying  

 ,T z Ky   (33) 

subjected to the constraint of 

 .y r   (34) 

In this method, we represent the solution z  in terms of y  which resides in the column space of 

1 TK   , or range  1 TK   . Let i  be the i-th column vector of T , which is an un n  matrix. 

 1 2

| | |

.

| | |

T

n
  

 
 

   
 
 

 (35) 

We notice that un n  in the constrained problems of this study, since the Lagrangian multiplier is 

defined on the space which has one order lower dimension than the velocity unknowns. Note also that 
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the 
i  vectors are independent each other as the matrix T  is of a full rank. That is,  rank T n  . 

Now one can express the right-hand side of Eq. (33) as a linear combination of the 
i  vectors with 

the constant coefficient iz ’s: 

 
1

.
n

T

i i

i

z z





   (36) 

Let *

iy  be the fundamental solution of the problem. 

  * , 1, ,i iKy i n   (37) 

The name ‘fundamental solution’ seems to be proper for two reasons: one is that *

iy  is the solution 

for each column vector of T  and the other is that the solution of Eq. (34) can be represented as a 

linear combination of *

iy  such that 

 *

1

.
n

i i

i

y z y




  (38) 

Finally one can get the exact solution of Eq. (34) subjected to the constraint of Eq. (35) by solving the 

linear system below: 

 * * *

1 2

| | |

, with and .

| | |

nTz r T Y Y y y y


 
 

     
 
 

 (39) 

The matrix T  is the exactly Schur complement defined in Eq. (22) and is an n n   square matrix 

whose component is a simply inner product of i  and *

iy : 

  * , , 1, , .ij i jT y i j n    (40) 

From Eq. (40) one identifies that the matrix T  is unsymmetric and almost full matrix. We have 

several remarks on this method. 

(i) This scheme is based on the fact that the number of Lagrangian multipliers is much smaller that 

that of the velocity unknowns, which is valid in the periodic boundary condition and the immersed 

solid body problem with the rigid-ring or rigid-shell description.  
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(ii) The most time-consuming step is Eq. (37) for the solution of the complete fundamental solution 

set *

iy ’s. However one can construct the AMG matrix only once and use it repeatedly for all right 

hand side vectors 
i ’s with the splitted AMG method. This facilitates significant saving in 

computation time and moreover the AMG method has the  O N  performance. (The memory 

usage and CPU time scales linearly with the number of unknowns.) 

(iii) For the problems of interest in this work, the matrix   does not change even in the time 

dependent problem or problems with nonlinear material properties (e.g. shear-thinning viscosity) 

and this means that one can construct the Schur complement T  once and use it for all. 

(iv) As every fundamental solution *

iy  is independent, it is not necessary to build the matrix Y  

explicitly, which is a hugh matrix. In practice, one can introduce a temporary vector as a 

fundamental solution and use it to build the j-th column of the matrix T  by using Eq. (40). 

(v) As the Schur complement matrix T  is completely full, there is no advantage to use a sparse 

matrix storage and related solution technique in solving Eq. (39). We use a simple LU 

decomposition provided in LINPACK. The LU decomposition can be used for all repeated, which 

invokes significant reduction in computation time as well. Therefore, this method does not require 

any additional storage other than the matrix T  itself. 

 

5. Numerical examples 

 The first test problem is a 3D cubic channel Stokes flow of the size 1 1 1   with the 

pressure drop in one direction, where the periodic boundary condition is applied. We tested the two 

interpolation schemes for the Lagrangian multipliers, the nodal collocation and the linear continuous 

interpolation. Three different finite element meshes have been employed from coarse to fine: 5 5 5  , 

10 10 10   and 20 20 20  . Note that the number of unknowns increases by the factor of 64. In all 

the computational results presented here, the number of V-cycles in the AMG is set to six and the 

convergence tolerance for the norm of the residual vector has been set to 710  relative to the norm of 
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the original right-hand side vector b , i.e. 710r b   as the convergence criteria.  

 Plotted in Fig. 4 are the convergence behaviors of the iterative scheme based on the 

approximation of the Schur complement discussed in Sec. 4.1. In both the results, the number of 

iteration for the convergence is found to increase with the number of unknowns and more specifically 

results show that the number of iterations indeed scales with  O N , which is consistent to the 

result presented by Elman (1996).  

 Having validated the correctness of our code, we tested the proposed exact Schur 

complement method using the fundamental solution and the results are presented in Fig. 5. Plotted in 

Fig. 5 are the convergence behaviors for the same 3D Stokes problem in a cubic channel with the 

periodic boundary condition implemented with the exact Schur complement scheme using the 

fundamental solution for the linear continuous interpolation of the Lagrangian multipliers. Fig. 5 

shows monotonic exponential convergence (nearly straight line) and that the number of iterations of 

the outer MINRES algorithm to reach convergence is roughly constant irrespective of the problem 

size. As was already shown in Hwang et al. (2011a) and Eq. (28), the AMG algorithm for the 

preconditioning velocity unknowns  K̂z r  has  O N  expenses in both memory and CPU time 

and the preconditioning for the pressure variable  Mz r  with the diagonally scaled CG converges 

within a single iteration for this specific choice of the pressure discretization, the overall performance 

can be expected to be close to  O N  in both the memory usage and computation time. It is close to 

the ultimate  O N  convergence, since there is one exception in the proposed iterative scheme. The 

only exception is the solution of the preconditioning problem in (39) involving the LU decomposition 

and related full matrix construction. (A hugh problem with Eq. (37) involves the inverse of the 

matrix K but we employ the AMG as mentioned in Sec. 4.2 which has the  O N  performance by 

itself.) However, since the Lagrangian multiplier is defined in the space one order lower than those of 

the velocity and the pressure, the increase in memory and CPU time in the preconditioning for the 
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Lagrangian multiplier variables can be expected minor. In summary, the iterative solution technique 

with the fundamental solution for the exact Schur complement shows nearly the  O N  convergence, 

because the outer MINRES iteration converges within the fixed number of iteration and, among the 

three block preconditioning schemes, two large problems related to the velocity and pressure 

unknowns has the  O N  convergence. 

 Finally we present the convergence behavior of the Stokes flow problem with an immersed 

solid body in Fig. 6. A circle of radius 0.15 is centered in a domain of the size 1 1  in the 2D 

problem and a sphere of radius 0.15 is centered in a domain of the size 1 1 1   as for the 3D problem. 

The particle boundary is discretized with uniformly distributed (collocation) points and non-trivial 

task in obtaining uniformly spaced points on a spherical surface has been performed by using the 

spiral point-set method (Saff and Kuijlaars, 1997). The numbers of collocation points were 21 with a 

20 20  mesh in 2D and 81 with a 10 10 10   mesh in 3D and they were chosen to scale with the 

number of elements for larger or smaller problems. The same pressure difference boundary condition 

as previous is applied such that the circle (or sphere) is an obstacle for flow separation. In 2D problem 

(Fig. 6a), one can again observe monotonic exponential convergence along with the fixed number of 

iteration for both 10 10  and 20 20  meshes indicating mesh-independent number of outer 

iterations, as in the previous periodic boundary problems. However, we observed convergence stalling, 

around the residual value of 510 , though global convergence behavior is somewhat satisfactory. We 

need further investigation for the origin of the convergence stalling. From our previous experience on 

the Stokes flow, this phenomenon might be related with modification of the singularity behavior by 

introducing the (non-singular) preconditioner (Hwang et al. 2011a), where the pressure specification 

to remove singularity in all Dirichlet boundary conditions invokes adverse effects such as 

convergence stalling (delay in the convergence rate) counter to common wisdom. Similarly, Elman et 

al. (2005) reported that rank deficiency for an enclosed flow does not prevent convergence to a 

consistent solution for Stokes and Navier-Stokes problem. The optimal number of collocation points 
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in direct solver might yield additional constraints to the matrix system to be an over-constrained 

problem. 

 

6. Conclusions 

In this work, we have presented a new efficient iterative scheme to apply large-scale 3D simulations 

of flows in porous media, using on the optimal block-preconditioning and the combination of the 

Krylov-subspace/AMG method and the exact Schur complement method with the fundamental 

solution. The use of the exact Schur complement can be justified by the fact that the Lagrangian 

multipliers are defined in the space one order lower than those of the primitive variables, which is 

particularly true for the periodic boundary constraint and the zero velocity condition on the immersed 

solid body boundary which are the two main ingredients for successful flows simulations in porous 

media with the representative volume element (unit cell). The block preconditioner has been proposed 

by solving the generalized eigenvalue problem to result in only six different eigenvalues of the 

preconditioned matrix system. Further, we proposed the exact Schur complement method using the 

fundamental solution. We illustrated the performance of the present solver through example problems 

in 2D and 3D, in comparison with the approximate Schur complement method. We reported that the 

number of iterations to reach the convergence is independent of the problem size, which implies that 

the performance of the present iterative solver is close to  O N . 

 Further development of the iterative solution techniques of this class is necessary particularly 

for flow simulations with complex fluids such as viscoelastic fluids, particle suspensions, droplet 

emulsions and/or fiber suspensions, in which one always wants to solve large-scale 3D flow problems 

to understand hydrodynamic interactions, particle-particle/droplet-droplet interactions in various 

ranges. The next step would be the development of a similar iterative solution method for massive 3D 

simulations of particle or fiber suspensions (e.g., Hwang et al., 2011a). The periodic boundary 

conditions and the treatment of immersed solid body in this work can be extended to solve particle 

suspension flow simulations without any significant modifications.  
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List of Figure Captions 

Figure 1: A 2D model mesh (left) and local node numbering in an element (right). 

Figure 2: An example 1-D element for the linear interpolation of the Lagrangian multipliers.  

Figure 3: Subspaces of the solution space 
hV  of the velocity unknowns.  

Figure 4: Convergence behaviors of the iterative technique for 3D Stokes problem with the periodic 

boundary condition implemented with the approximate Schur complement scheme for both 

nodal collocation and linear continuous interpolation of the Lagrangian multipliers. ‘p1n’ 

indicates results from the nodal collocation and ‘p1c’ is for the linear continuous interpolation. 

Figure 5: Convergence behaviors of the iterative technique for 3D Stokes flow with the periodic 

boundary condition implemented with the exact Schur complement scheme using the 

fundamental solution for the linear continuous interpolation of the Lagrangian multipliers. 

Figure 6: Convergence behaviors for 2D (a) and 3D (b) Stokes flow with an immersed solid body 

implemented with exact Schur complement scheme using the fundamental solution. 
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Figure 1: Hwang et al. 
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Figure 2: Hwang et al. 
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Figure 3: Hwang et al. 

 

 

 



27 

 

Figure 4: Hwang et al. 
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Figure 5: Hwang et al. 
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Figure 6: Hwang et al. 
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