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Abstract 

This paper introduces a methodology to assess the level of vulnerability of road 

transport networks. A new technique based on fuzzy logic and exhaustive search 

optimisation is used to combine vulnerability attributes with different weights into a 

single vulnerability index for network links, which may be used to measure the 

impact of disruptive events. The network vulnerability index is then calculated using 

two different aggregations: an aggregated vulnerability index based on physical 

characteristics and an aggregated vulnerability index based on operational 

characteristics. The former uses link physical properties such as its length and the 

number of lanes, whilst the latter reflects aspects of the network flow. The application 

of the methodology on a synthetic network (based on Delft city, Netherland) 

demonstrates the ability of the technique to estimate variation in the level of 

vulnerability under different scenarios. The method also allows exploration of how 

variation in demand and supply impact on overall network vulnerability, providing a 

new tool for decision makers to understand the dynamic nature of vulnerability under 

various events. The method could also be used as an evaluation tool to gauge the 

impact of particular policies on the level of vulnerability for the highway network and 

highlight weaknesses in the network. 

 

Keywords: Highway network; vulnerability; fuzzy logic; optimisation; vulnerability 

attributes; policy. 
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1 Introduction 

According to Gaillard (2010) the concept of vulnerability was first introduced in the 

disaster literature as early as the 1970s and spread quickly in the 1980s to other 

disciplines. However vulnerability does not have a widely accepted definition based 

on the context (Jenelius et al. 2006). For example in the context of transport 

research, vulnerability is normally used to express the “susceptibility” or “sensitivity” 

of the transport network to threats or hazards (Berdica, 2002) that can lead to 

significant effects on road network performance. Jenelius et al. (2006) related the 

concept of vulnerability to risk theory. As a consequence they defined vulnerability 

using two components of risk assessment i.e. the probability of disruption and its 

consequences - in similar vein to risk evaluation. However, the probability of certain 

events could be very low in some geographic areas or not identified, which limits the 

potential of this approach. In contrast, Taylor and D’Este (2007) and Maltinti et al., 

(2011) suggested that the concept of vulnerability is more strongly related to the 

consequence of link failure, regardless of the probability of failure and the event 

itself. 

This paper therefore presents a method to quantify the vulnerability of the highway 

network. The main advantage of the proposed method is the ability to take into 

account link attributes such as link flow, free flow speed and capacity in estimating a 

link vulnerability index. A new method based on fuzzification and an exhaustive 

search optimisation technique is employed to combine a set of defined attributes with 

different weights into a single vulnerability index. The proposed methodology can be 

extended in principle to include further attributes to reflect a wider set of vulnerability 

related issues. 

2 Vulnerability assessment methods and indicators 

A number of different vulnerability assessment methods and indicators are available 

in the literature, e.g. (Jenelius, 2009, Jenelius, 2010, Berdica, 2002, Rashed and 

Weeks, 2003, Taylor and Susilawati, 2012, Brenkert and Malone, 2005), arising from 

different interpretations of the concept of vulnerability and the scope of analysis. In 

general there are two main methods; use of a network wide screen (Jenelius et al., 
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2006) and techniques based on pre-selection of potentially vulnerable links 

according to a set of of criteria (Knoop et al., 2012). The network wide screen 

approach gives a full analysis of the transport network by investigating the impact of 

the closure of each link on the overall network performance, measured by the total 

travel time. However, the high computional time of this approach is considered to be 

something of a disadvantage. To address this issue, Murray-Tuite and Mahmassani 

(2004) introduced a bi-level approach based on game theory in order to identify the 

most critical links in the road transport network. They defined a vulnerability link 

index to measure the importance of a particular link to the connectivity of an origin-

destination (OD) pair, then aggregated over all OD pairs to obtain a disruption link 

index. They did not demonstrate the application of the technique with an authentic  

road network however. Meanwhile Knoop et al. (2012) reviewed the link vulnerability 

attributes proposed by Tampère et al. (2007) and found that different criteria 

identified different links as the most vulnerable. Their conclusion was that attributes 

should be seen as a complementary set rather than singularly. 

Different approaches in the literature could also be classified according to the 

indicators used to assess vulnerability. For example Taylor and D’Este (2007) and 

Chen et al. (2012) used accessibility and network efficiency indices as metrics of 

vulnerability to identify the wider socioeconomic consequences of link closure. 

Meanwhile Scott et al. (2006) employed transport network perfomance indicators to 

identify the most “critical” or “important” link in the road network. Overall, the use and 

applicability of each approach appears to be heavily dependent on the scope of the 

research. 

Most of the previous research on vulnerability measures and methodologies has 

focused on assessing the impact of link closure for a particular origin-destination or 

at link level, but has not referred to the link characteristics that lead to vulnerability. 

This paper extends the work of Tampère et al. (2007) by introducing a new link 

vulnerability index developed on the basis of link vulnerability attributes. The 

vulnerability index could be used to measure the impact of disruptive events (e.g. 

manmade events such as accidents or natural events such as adverse weather 

conditions) on road transport network functionality. The network vulnerability index is 

then calculated using two different aggregations: an aggregated vulnerability index 

based on physical characteristics and an aggregated vulnerability index based on 

operational characteristics. 
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3 Modelling the vulnerability of the road transport network 

According to Srinivasan (2002), a vulnerability assessment may include deterministic 

factors (such as network capacity), quantitative time-varying factors (such as traffic 

flow and speed), some qualitative measures (for example event type and expected 

consequences), plus some random factors. There is therefore a need to develop an 

index in such a way that it can take into account various attributes of vulnerability. In 

the vulnerability model described in this paper, a number of vulnerability attributes 

are selected from the literature (e.g. Srinivasan 2000; Tampère et al. 2007) and 

combined with relative weights to assess the vulnerability of the road transport 

network. The calculated vulnerability index value is then compared with the 

generalized travel cost to test the ability of the method to identify the most critical 

links in a case study (see section 4). Section 3.1 below presents the vulnerability 

attributes adopted to develop the index, whilst section 3.2 introduces the fuzzification 

and exhaustive search optimisation techniques used to develop the link vulnerability 

index. 

3.1 Vulnerability attributes 

Ideally, the set of vulnerability attributes should be as complete as possible, 

capturing as many features as possible of the impact of link closures in reality. It 

should also be as orthogonal as possible, capturing different aspects with a minimum 

degree of duplication. According to Srinivasan (2002), several types of attributes 

may have a significant effect on link vulnerability and these could be classified into 

four main categories, namely; network characteristics, traffic flow, threats and 

neighbourhood attributes. Network attributes could include characteristics such as 

road types and physical configuration, whilst traffic attributes could cover link 

capacity, flow and speed. Attributes concerning ‘threats’ may include event types 

and their expected consequences, with neighbourhood attributes capturing the 

influence of adjacent subsystems such as land use and population. Whilst the traffic 

and network related attributes are the main focus in the current research, the 
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methodology developed  here allows the addition of further attributes to cover each 

of the four categories. 

A number of vulnerability attributes (VAs) were therefore selected from the 

literature in order to estimate a vulnerability index for each link of the network. The 

first three attributes (                  ) adopted here from Tampère et al. (2007) 

and Knoop et al. (2012), are dependent on link capacity, flow, length, free flow and 

traffic congestion density.      reflects the link traffic flow in relation to link capacity 

and is estimated by: 

        
        

        (1) 

where    
  is the flow on link   during period time   for a travel mode  ,     is the 

capacity of link   for a travel mode  . As the flow    
  increases with respect to  

capacity    , the number of vehicles experiencing higher levels of delay will 

increase. 

The second attribute      identifies the direct impact of link flow with respect to link 

capacity as defined below. 

        
      (2) 

The main difference between     and     is that the calculated value of     from 

Eq. (1) is scaled with respect to the highest and lowest    values for all links in the 

road network considered (see Eq. (7) below). This normalisation is not applied in the 

calculation of    . Therefore,     measures the relationship between     and     

for each link with respect to the whole network.     however is intended to reflect 

local values of     and     for each link. 

    represents the inverse of the time needed for the tail of the queue to reach the 

upstream junction and is estimated by: 

        
              

           (3) 

where    is the number of lanes of link   that have been used by travel mode  , 

      reflects congestion density for link  ,     is the free flow speed of link   for a 

travel mode  , and    is the length of link  . 

All the above attributes were derived based on accident scenarios (see Tampère et 

al. 2007 and Knoop et al. 2012). A number of other attributes were therefore also 
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added to capture the significance of network characteristics (such as link capacity 

and length) on vulnerability. As a result two further attributes,                 have 

been formulated and included in the vulnerability index. 

The fourth attribute,     , is calculated from the capacity of link   relative to the 

maximum capacity of all network links in order to reflect relative link importance, as 

presented in Eq. (4). 

     
   

    
 (4) 

where      is the maximum capacity of all network links. 

The fifth attribute,     , simply uses the link length as a physical property 

representing the level of importance of the link, as given in Eq. (5). 

        (5) 

Finally, the number of shortest paths that use the link is also considered due to the 

importance of this feature in link vulnerability analysis (Srinivasan, 2002), leading to 

the definition of attribute       This sixth attribute is calculated by Eq. (6) below 

reflecting the number of times the link is a component of the shortest path between 

different OD pairs. 

     ∑       (6) 

where     is given a value of one if link   is a component of the shortest path 

between origin   and destination   and a value of zero otherwise. Expert opinion may 

also be used to allocate a higher weight to the value of       for a particular link if the 

link is part of a strategic route. 

3.2 Link vulnerability index 

To develop a single measure for vulnerability based on more than one attribute, 

three approaches have been proposed in the literature (Srinivasan, 2002). The first 

approach is based on experts’ opinions in ranking or weighting each attribute and 

then combining these attributes using a simple linear regression model. This model 

can be calibrated using observed or reported vulnerability ratings for various levels of 

the contributing factors. In the second approach, a continuous vulnerability index is 

represented by a function that includes all the proposed attributes. The relative 
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weights are derived according to the best fit between the model prediction and actual 

ratings. The vulnerability index is then compared against a set of ordered thresholds 

that are estimated from empirical models. For example if the vulnerability index is 

below the first threshold then the vulnerability rate will be 1 or if it falls in the range 

between the first and second thresholds then the vulnerability rate will be 2. 

However, the determining these thresholds in an accurate way is a significant 

challenge and much further research would be needed in order to establish the 

threshold values. The third approach is based on operational experience whereby  

experts choose a set of weights for some attributes (such as spare capacity and 

flows) in order to evaluate vulnerability if a particular scheme is implemented. The 

main advantages of this approach compared with the previous two methods are 

simplicity and flexibility (Srinivasan, 2002), however it may be difficult to obtain the 

necessary data in practice. 

In the current research therefore, a new method based on fuzzification and an 

exhaustive search optimisation technique is employed to combine the various 

attributes (defined above) into a vulnerability index. Fuzzification is the process of 

converting a crisp quantity to a fuzzy one (Ross, 2005). It is adopted here to 

accommodate the complexity and uncertainty in traffic behaviour alongside 

randomised elements in both traffic data and the simulation process. Each attribute 

is evaluated according to four assessment levels represented by four fuzzy 

membership functions. An exhaustive search technique is then employed to identify 

the optimal weight contribution of each fuzzified attribute. This is determined by the 

level of weights at which the correlation between the vulnerability index (obtained 

from the weighted attributes) and the given total travel cost is the strongest. Travel 

cost could be estimated based on different factors such as travel time, distance or 

toll. In this research travel time is used as an estimate of travel cost, however, the 

method is flexible and could accommodate other cost measures. The full details of 

the technique are presented in the following sub sections. 

3.2.1 Data normalization 

A normalization process is firstly applied so that a standard method can then be 

used to allocate a membership grade value for each of the link attributes in the 
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fuzzification process. Each calculated VA for each link is therefore normalized using 

the following equation: 

           
             

               
 (7) 

where          and       are the normalized and non-normalized values of the 

vulnerability attribute   of link  .         and         are the maximum and minimum 

values of the vulnerability attribute set following normalization respectively. The 

normalisation process maps the value of each attribute into a closed interval [0, 1]. 

However given that the two vulnerability attributes,     and    , are already scaled 

between [0, 1], these are not subject to the normalisation procedure using Eq. 7. 

3.2.2 Fuzzy membership of vulnerability attributes 

Four assessment levels are proposed to evaluate each VA, where each level is 

defined by a fuzzy function having membership grades varying from 0 to 1. Various 

membership functions have been proposed in the literature (Ross, 2005). However, 

triangular and trapezoid membership functions were adopted to fuzzify the four 

normalized vulnerability attributes. The rationale was twofold: these functions are by 

far the most common forms encountered in practice and are relatively simply in 

terms of calculating membership grades (Torlak et al., 2011; Ross, 2005). Other 

membership functions such as a Gaussian distribution may also be used. However 

previous research (e.g. Shepard, 2005) has indicated that real world systems are 

relatively insensitive to the shape of the membership function. The membership 

grade value   of each normalised attribute          for link   is obtained from the 

following fuzzy triangular and trapezoidal functions: 
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The membership grade function outlined above can be adjusted or re-scaled to 

reflect real life conditions and expertise opinion. However a single membership 

grade function is assumed for each of the attributes in this paper. 

Membership grades for link   represented by a fuzzy relationship      for different 

VA for link   in the network are calculated based on the equations above and are 

shown below: 

      

[
 
 
 
 
 
 
                                              

                                              

                                              

                                              

                                              

                                              

  

]
 
 
 
 
 
 

 

Each row of the matrix above represents attribute membership grades, whilst the 

columns show the memberships grades for the four attributes for a particular 

assessment level. 

To obtain a single vulnerability index       for link  , based on VAs, the above matrix 

is modified by two vectors. First, a weighting vector    is introduced to reflect the 

importance of each    in the vulnerability assessment as expressed in Eq. (8) 

below. 

             

       ∑          
    (8) 

An optimization technique is used to identify the relative weight for each    as 

described in section 3.2.3. The outcome of this step is a fuzzy vector containing the 

membership values for each link at each assessment level. There are then two 

possible approaches to calculate a single value for       from the fuzzy vector. The 

first considers the maximum membership grade value whilst the second approach 
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involves multiplying the fuzzy vector by a standardising vector to take into account 

the effect of each assessment level (Ross, 2005). In this research, the second 

method is used as it allows for the accumulating effect of each assessment level on 

the calculated      . The standardising vector     shown in Eq. (9) is therefore 

proposed in order to obtain a single value, adjusted from 0 to 1. 

                        (9) 

The values of the standardising vector (s) are equal to those for     when        

  for low, medium, high and very high, as obtained from the membership grade 

function previously defined. 

3.2.3 Attribute weight identification 

The weight vector    for each attribute could be proposed by traffic experts and 

policy makers. It could also vary according to the modelled scenario. However in the 

current research, the weight value for each attribute is estimated by comparing the 

vulnerability index,      , for link   against the relative travel time per trip,         , 

with  the closure of link   –  a similar approach to that used by Knoop et al. (2012). 

The relative travel time per trip,         , is defined as the difference between the 

total network travel time during link closure and the total network travel time under 

normal conditions, with respect to the total network travel time under normal 

conditions. 

A linear regression analysis between       and          for the road network is 

then calculated and the weight vector is obtained when the coefficient of 

determination    is maximised: i.e. maximise    for the linear regression between 

      and           subject to the following constraint: 

∑    

 

 

In the above formulation    is implicitly included in       and is the only design 

variable. An exhaustive search is employed to find the weight vector    for each 

attribute, where each weight    is increased from 0.0 to 1.0 with an increment of 

0.01. For each weight combination, the vulnerability index,      , is calculated using 
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Eq. (8). A linear regression analysis is performed between       for each weight 

combination and         , with the coefficient of determination    estimated by: 

     
       

       
 

where         is the sum of the squared residuals from the regression and         is 

the sum of the squared differences from the mean of the         . 

The above approach is repeated for various combinations of    considering the  

weight constraint and re-calculating    for each combination. The weight 

combination achieving the highest    is then selected as the optimum weight set for 

the attributes. The flow chart in Fig. 1 illustrates the procedure for obtaining the 

optimum weight combination for the attributes on the basis of the strongest 

correlation between        and         . A constrained linear least squares 

approach could also be used to find the weights that achieving the best fit between 

       and         . However, no particular advantage would be anticipated 

through this alternative method as the exhaustive search optimisation was a 

straightforward and low resource task with the search space limited between [0, 1]. 

3.3 Network vulnerability index 

Based on the steps described above a vulnerability index for each link can then be 

calculated. Despite the importance of this link based index in identifying the most 

critical links, there is still a need however for an aggregated vulnerability index in 

order to evaluate the vulnerability of the overall network under different conditions. 

Two aggregated vulnerability indices are proposed i.e. a physically-based 

aggregated vulnerability index and an operational based aggregated vulnerability 

index. The physical based aggregated vulnerability index      is calculated using the  

length and number of lanes of each link as follows: 

      
∑        

 
 

∑     
 
 

  (10) 

where   is the number of links in the road network,    is the number of lanes in link   

and    is the length of link  . The operational based aggregated vulnerability index 

     is calculated based on link capacity as follows: 
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∑      

 
 

∑   
 
 

 (11) 

where    is the traffic flow using link  . 

4 Case study 

A synthetic road transport network of Delft city is used to illustrate the vulnerability of 

road network under different scenarios using the proposed methodology. Delft is a 

city and municipality in the province of South Holland in the Netherlands. The total 

population of the Delft city is 98675 with 4,324.1 per km2 density (Statistics 

Netherlands 2012). In general, cars are widely used in the Netherlands where people 

use this mode for almost half their trips (Statistics Netherlands, 2012). The synthetic 

Delft road network model is supplied with the OmniTrans modelling software (6.022). 

The network used for the case study here is based on the authentic city network 

features, but has undergone some simplification and modification and as a result 

may deviate from the current network for the city of Delft. An relatively uncomplicated 

but still representative network was needed to demonstrate the method and, for the 

Delft study case, data were readily available. The main purpose here is not to carry 

out an empirical study of Delft, but rather to demonstrate and test the approach using 

sufficiently realistic data. It should be emphasised that at this stage the research is 

focused on the development of the methodology and in principle, it could be applied 

with any road transport network. 

The Delft road transport network consists of 25 zones, two of which are under 

development (24 & 25) and 1142 links. 483 links are bi-directional and 176 are one-

way including connectors and different road types as shown in Figure 2.  

In the case study undertaken here, user equilibrium assignment (UE) was chosen to 

obtain the spatial distribution of the traffic volume. UE is based on Wardrop's first 

principle, whereby no individual trip maker can reduce his/her path cost by switching 

routes. This principle is also known as the user optimum (Wardrop, 1952). The 

suitability of the UE method for identifying the most critical link is based on two 

issues (Scott 2006). Firstly, the ability of the method to take into account the level of 

link functionality by allocating the user to the best route in terms of travel time, i.e. 

users can not improve their travel time by changing their route. Secondly, the use of 
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user equilibrium assignment allows the impact of removing the link to be calculated 

for both the link user and non-users (due to rerouting the link user). The 

mathematical formulation of UE is explained in detail in Ortúzar and Willumsen 

(2011). 

However, traffic data obtained from simulation based on static UE assignment 

without any junction modelling (as opposed to ‘real-world’ observations) cannot 

capture the full effects of unexpected link closures, as this process is not able to 

capture queuing, imperfect information, etc. As a result the optimum attribute weights 

arising from the highest R2 criteria may be different from the weights that may arise 

from the best fit against observed data. However, real world measurements may also 

vary, for example according to individual traveller behaviour and this is not covered 

in the scope of the model presented in this paper. In order to examine the effect of 

queuing on the travel time, junction modelling was undertaken using the OmniTrans 

software for a case involving the closure of a small number of links. Junction 

modelling with OmniTrans generates outputs including queue lengths alongside a 

number of performance measures for the junction as a whole. The results indicated 

that travel time increased slightly and by a maximum of 1%. 

For the case study as a whole, three different scenarios were considered. The first 

calculated VAs for each link in the network and estimated VI for each link. In the 

second scenario, the impact of demand variations on      and      were 

investigated using different departure rates during the morning peak. The impact of 

network capacity reduction under the same demand variations were then studied in 

the third scenario. 

4.1 Results and discussion 

4.1.1 Group one scenarios 

All VAs were calculated for each link in the network based on the steps described in 

section 3, using a static assignment model for the morning peak. 1068 simulations 

(equivalent to the number of links in the network) were carried out to check the 

impact of each individual link closure on the network travel time. In each case, only 

one link was blocked, i.e. to represent a closed link due to a road accident or 

roadworks. 
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As OmniTrans does not allow “en-route” route-choice modelling, closure of the link is 

implemented at the start of simulation, resulting in a subsequent new equilibrium 

state. This implies that drivers would need to be aware of the link closure and of 

alternative routes. To overcome this shortcoming, a deterministic user-equilibrium 

(UE) assignment was used for the base condition scenario, assuming  drivers have 

previous experience and knowledge of their shortest paths. A stochastic 

'randomising' term (   was also added to the generalised cost in order to reflect the 

uncertainty associated with traveller behaviour under a link closure scenario. 

However, the use of this stochastic 'randomising' term (   leads to instability in link 

flows even with large number of iterations (up to 1000). Consequently, the stochastic 

'randomising' term (   was abandoned and a deterministic UE assignment used for 

all scenarios instead. This implies that the perceived travel times are very accurate 

and therefore all vehicles on each link would experience the same travel time. In this 

case, the simulation results may underestimate the impact of each link closure in the 

new equilibrium state. To obtain more realistic impact results two issues should be 

considered; traveller behaviour (e.g. the proportion of travellers who will change their 

route with a link closure) and the availability of an en-route choice model 

implemented within the traffic assignment software. However, the main aim of the 

analysis reported here was to investigate the ability of the attributes to reflect link 

importance under different conditions. The results obtained and reported therefore 

assume that all drivers have good knowledge about the link closure and the 

availability of alternative routes. As the modelled period is the morning peak it would 

be quite reasonable to assume that a high proportion of the road users are regular 

commuters/travellers and nearly all the users have a high level of knowledge about 

route availability and traffic conditions. Alternatively, in practice a variable massage 

sign or in-vehicle intelligent transport system may update travellers knowledge of the 

link closure and alternative routes. 

Figure 3 introduces the variation in     for each link for the base condition, i.e. no 

link closure. It should be noted that each    highlighted a different set of critical links 

(in terms of highest values) in line with the findings of Knoop et al. (2012). Figure 4 

shows the correlation of each attribute with relative travel time per trip,          

arising from individual link closure. The coefficient of determination, R2, for each 

attribute reflects its strength of association with         . As an example, VA1 has 
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the highest R2 (=0.5447) followed by VA3 (=0.4403), then VA4 (=0.4206). Meanwhile, 

VA2 has a low R2 (=0.191). Both VA5 and VA6 have a negligible correlation, with R2 

equal to 0.0039 and 0.0148, respectively. These findings highlight the need to 

develop a single vulnerability index taking into account all the four main attributes 

proposed in this research, whilst VA5 and VA6 would contribute little to the index. 

The set of weights calculated above are not universal but network dependent. 

However, they can be used for the same network to consider different scenarios, for 

example to test the effectiveness of different policy or the impact of implementing 

new technology. 

Figure 5 shows the correlation between the calculated vulnerability index, VI, for 

each link based on the combined weights of the four vulnerability attributes VA1 to 

VA4 and the relative travel time per trip. VA5 and VA6 are not considered in the 

derivation of VI as their correlation with       is very weak, as described above. 

The relatively low value of R2 presented in Figure 5 reflects the fact that the increase 

in the total travel time may not be the only consequence arising from link closure. For 

example, the closure of some links is likely to lead to the disconnection of some 

zones creating unsatisfied demand and a misleading value of reduced total travel 

time as a result of a lower overall load on the network. However this is a feature of 

the physical layout of the network and would therefore vary in magnitude for different 

links and with the application of the method in different cities. Figure 6 further 

illustrates the relationship between the relative travel time for different link closure 

scenarios with associated unsatisfied demand and the vulnerability index. Links with 

high VI and low       are associated with unsatisfied demand. 

When the results of the ‘cut’ links (i.e. links that when closed result in zone 

disconnection, creating unsatisfied demand) are removed from the data regression 

analysis, the coefficient of determination R2 increases to 0.8667 as depicted in Figure 

7. 

However, excluding cut links from the estimation of VI could also be undesirable due 

to their importance in the vulnerability of the overall network - cut links create 

unsatisfied demand which in turn (intuitively) increases network vulnerability. As a 

result, modelling the impact of unsatisfied demand is essential to give a more 

realistic VI. From the literature there are two possible ways to overcome this issue, 

the first is to quantify the impact of link closure by two indicators; one for the cut links 
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and the other for the remaining links (Jenelius et al., 2006). The other approach is to 

estimate the cost of time due to a particular link closure (Jenelius, 2009). In the 

current research, the second approach is adopted to obtain the total impact for all 

links in the network. The increase in total travel time due to the closure of links (cut 

links) is then modelled by adding the proposed unsatisfied demand impact (UnSDI), 

calculated by Eq. (12) below, to the total travel time. 

             
     

  
     (12) 

where   is the percentage of unsatisfied demand,    is the link flow,   is the closure 

period,       is the total travel time per trip during the closure of link  ,    is the 

length of link   and    is the total network length without link  . 

The inclusion of the UnSDI in the total travel time calculation leads to an 

improvement in the correlation between VI and the modified relative travel time, 

increasing R2 to 0.9125 as shown in Figure 8. 

The influence of network configuration is implicitly included by considering 

unsatisfied demand, as the percentage of unsatisfied demand reflects the ability of 

the network to offer alternative routes during a certain link closure. For example, zero 

unsatisfied demand highlights the ability of the network to offer alternative routes for 

all OD pairs during a link closure. 

4.1.2 Group two scenarios 

Here the impact of variations in demand on      and      is investigated using 

different departure rates during the morning peak.      and      are calculated using 

Eqs. (10) and (11). Figure 9 shows both      and      under uniformly distributed 

departure rates, whilst Figure 10 plots the variations of      and      under different 

departure rates, with and without UnSDI. The vulnerability level is measured by both 

indices (     and     ) and increases in line with the rate of increase in the 

departure rate, as depicted in Figure 10. It is also apparent that the inclusion of 

UnSDI increases the vulnerability level. This leads to the conclusion that both indices 

are able to reflect the impact of increases in demand on the level of vulnerability. 
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4.1.3 Group three scenarios 

In this analysis the ability of VI to capture the impact of reductions in network 

capacity under the same variations in demand is investigated. Overall network 

capacity could be reduced in practice due to the effects of network wide events such 

as heavy rain or snowfall. The level of reduction in network capacity and speed were 

assumed based on evidence in the literature (Enei et al., 2011; Pisano and Goodwin, 

2004; Koetse and Rietveld, 2009). This group of scenarios was undertaken using 

reduced capacity in addition to a reduction in saturation flow or free flow speed by 

10%, in order to model the impact of a weather related event. Figure 11 shows the 

variations of      and      under different departure rates and variations in supply. 

The vulnerability level measured by both indices,      and     , increases in the 

case of reduced capacity compared with full network capacity. Furthermore the 

difference between the vulnerability indices (i.e. full network capacity and reduced 

capacity) increases with increased in demand and diminishes at low demand. This 

leads to the conclusion that the      and      indices are both able to reflect the 

impact of varying reductions in supply and demand on the level of vulnerability. 

5 Conclusions 

A new methodology for assessing the level of vulnerability of road transport networks 

has been introduced which is able to reflect the importance of network links. The 

proposed technique is a two-stage process where a link vulnerability index is first 

developed and subsequently network vulnerability indices are estimated. The 

development of the link vulnerability index is based on a fuzzy membership grade 

and exhaustive optimisation search. It allows the identification of the relative weights 

of vulnerability attributes when combined in a single vulnerability index for each link 

in the network. The proposed methodology is able to accomodate further attributes in 

order to reflect wider vulnerability related issues, such as road type and the 

economic value of the traffic flow. Two overall network vulnerability indices, namely 

physical and operational vulnerability indices, are then developed. The technique 

has been successfully demonstrated on a representative road transport network. 
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Correlations between each attribute and the total travel time due to link closure in a 

synthetic Delft city network are investigated. It was found that none of the attributes 

on its own is able to justify the full impact of link closure. These findings reveal the 

need to develop a single vulnerability index that is able to take into account a 

number of attributes. A term to reflect the impacts of unsatisfied demand has also 

been proposed to model the decrease in the total travel time that arises when 

particular cut links result in unsatisfied demand. An exhaustive search optimisation 

technique for attribute weight identification produced a high correlation between the 

single vulnerability index and the total travel time, with an R2  value of 0.9125. Two 

attributes (related to link length and the shortest paths) yielded a low contribution to 

the single vulnerability index as they are heavily dependent on the network 

configuration and infrastructure characteristics. It is therefore suggested that the 

number of link lanes may be combined with the link length in order to enhance their 

overall contribution to the vulnerability index. 

It should be noted that the relative weights of the vulnerability attributes are not 

universal but network dependent. However, the weights calculated for each attribute 

can be used with a particular network in order to consider the impacts of different 

scenarios - for example to test the effectiveness of different policies or the impact of 

introducing new technology. 

Finally, the estimated network physical and operational vulnerability indices show a 

good correlation with variations in both supply and demand. These indices represent 

a potential tool that could be used to gauge the total network vulnerability under 

different scenarios. It can also be used to assess the effectiveness of different 

policies or technologies to improve the overall network vulnerability. 
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Figure 1 A flow chart for the optimum weight combination for the four attributes. 
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Figure 2 Delft road transport network. 
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(e) VA5 (f) VA6 

Figure 3 Variation of VAs per link. 
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(e) VA5 (f) VA6 

Figure 4 Correlations between VAs and        for each link closure. 
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Figure 5 Vulnerability Index and        for all links. 

 

 

 

Figure 6      , unsatisfied demand and vulnerability index for the network links. 
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Figure 7 Correlation between vulnerability Index and       excluding cut links. 

 

 

 

Figure 8 Correlation between VI and modified relative travel time. 
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Figure 9      and      under uniform distributed departure rates. 

 

 

Figure 10      and      under different departure rates with and without UnSDI. 
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Figure 11      and      under different departure rates and network capacity 
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