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ABSTRACT

New parametric algorithms for estimating the
frequency response for linear systems and genera-
lised frequency response functions for nonlinear
systems are described.

NOMENCLATURE

d time delay

£ process model order

m noise model order

n degree of nonlinearity
E

Laplace operator
sampling interwval

e(k) coloured noise

u(k) input

x(k) noisefree process ocutput
y{k) measured process output
£(k) white noise

H

INTRODUCTION

The frequency domain or spectral analysis of
linear systems is now well established and finds
wide application in all branches of science and
engineering. Traditionally spectral densities
have been estimated using FFT algorithms and win-
dow functions although recently new parametric
methods of estimating power spectra using auto-
regressive models have been introduced. Parame-
tric methods for estimating the cross-spectra and
frequency response function of a linear system
appear to have been largely neglected however and
new methods of achieving this objective are dis-
cussed in the present paper and shown to offer a
significant improvement compared with the classi-
cal approach.

Spectral analysis of nonlinear systems has been a
neglected area of study largely because of the
inherent difficulty in estimating generalised
frequency response functions by extending the
FFT/windowing algorithms to work in many dimen-
sions. However, b¥ estimating the coefficients
in a NARMAX model (* (Nonlinear AutoRegressive
Moving Average model with eXogenous inputs) rep-
resentation of the nonlinear system any order of
generalised transfer function can be computed
directly. The evolution of the linear frequency
response as a function of input operating point
and many other properties can also be readily
computed to aid the interpretation of the in-
~fluence of the nonlinearities on the system

frequency content. Several examples are included
to illustrate the advantages of these new algori-
thms.

PARAMETRIC SPECTRAL ESTIMATION FOR LINEAR SYSTEMS

Although the traditional approach to spectral ana-
lysis which uses an FFT based algorithm coupled
with windowing functions and smoothing procedures
is widely used the autoregressive method of esti-
mating power spectra has become well established
and in many cases yields improved estimates (2.
The analysis of linear systems however requires
the computation of cross-spectral densities in the
expression

Suy(jm) = Hl(w)suu(m}+sue(jm) (1)

in order to compute the system frequency response
and parametric estimators for this type of analy-
sis has rarely been considered (3}, This is sur-
prising because the development of such an esti-

mator is relatively straightforward.

Consider a system which can be represented by the
pulse transfer function model

~1;
xi =2 ¢ AE Ly 2)
B(z ™)
where A(z 1) = l+alz_ +otaz k
Bla Ny - g . dh g
1 n
z = EST. In practice the measured system output

y(k) consists of x(k) plus noise
yvi(k) = x(k)+te(k) (3)

where e(k) is described by an AutoRegressive
Moving Average (ARMA) model

-1
el = 221 apq) (4)
C{z ™)

driven by discrete white noise £ (k) where
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and the roots of C(z-l) lie within the unit circle
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in the z-plane. Substituting eqn's (2} and (4)
into (3) yields the combined process and noise
model

-d = =1
22 ) k) (5)

Blz ) ciz ™t

yk) =

Numerous parameter estimation algorithms are
available which provide estimates of the process
parameters ai,bi, i=1,2,...% given measurements
of y(k) and u(k). Although the algorithms differ
in the detail of implementation they can almost
all be classified as prediction error methods and
are well documented in the literature(4)., Esti-
mates of the noise model parameters 4, ,c,,

i =1,2...m are often provided either to ensure
unbiased process parameter estimates or for use
in the design of stochastic controllers. Often
the model orders £,m and time delay d are unknown
a priori but numerous methods are available for
determining these (4) |

If unbiased estimates of the parameters a,,b, ,
i=1,2,...% are available the system frequency
response can be cbtained by substituting z = eJ¥T
in eqn (2). This is analogous to the auto-
regressive methods of estimating power spectra

and yields an alternative to the classical approach
based on egn (1). Notice that estimates based on
eqn (1) involve averaging, windowing and smoothing
with the assumption that S (jw) will tend to zero
for a large enough sample provided u(t) and the
noise e(t) are uncorrelated. In contrast to this
the parametric approach using eqn (5) is based on
estimation in the time domain and allows the
estimation of the system frequency response with-
out any noise. The noise, the right hand term

in egn (5) is discarded, not averaged out before
estimating the frequency response using eqn (2)
and it might be anticipated that this will result
in smoother frequency response estimates parti-
cularly for short record lengths.

To illustrate these ideas the system S

-1 -2 =1
z 40.5z wlic = iiglé&:f-g(k) (6)

yik) = 1 )
1-1.5z "+0.7z 1+0.6z

was simulated to generate 500 data pairs y(k),
ulk), k = 1,2...500 where u(k) was a sixth order
prbs and £ (k) was random signal uniformly distri-
buted between -1.0 and 1.0.

The parametric spectral estimates were obtained by
using a generalised least squares algorithm which
for a second order process model, zero time delay
and tenth order noise model yielded the process
model
1.0122 Y +0.48842 72

x(k) = ) . u(k) (7)

1-1.498z2 +O.g6982

which is very close to the actual system egn (6).
The choice of model order and time delay were
identified using loss function analysis, pole-zero
cancellation, autocorrelation of the residuals and
cross-correlation between the input and residual
tests(4 The system frequency response was
computed by sbbstituting z = e3%T, T = sampling
interval, into eqn (7). :

Estimates of the spectra using egn (1) were cb-
tained by padding the 500 data pairs with twelve
zeros, applying a Hamming window and smoothing the
estimates.

The frequency response function for the system of
eqn (6) was also estimated using the forward/back-
ward autoregressive spectral estimation method of
Marple(S). This is a somewhat unfair comparison
because by necessity this estimate was computed by
estimating the power spectra of y(k) and u(k) and
using the expression

2
S (w) = |H(@W]|%s () (8)
vy uu
The order of autoregressive models which were fit-
ted to the input and output series were selected as

zero and two respectively using the AIC criter-
ion(4,3),

The estimates are shown in Fig.l superimposed on
the theoretical frequency response function.
Notice that the generalised least squares (GLS)
estimate is virtually coincident with the theore-
tical gain for all frequencies whereas the FFT
based estimate becomes ragged for higher frequen-
cies. The autoregressive forward-backward esti-
mate (ARFB) based on eqn (B) is considerably in
error. Numerous simulations have consistently
produced similar results; the parametric GLS
estimate tends to be much more accurate for higher
frequencies and this beccmes more evident for
lower S/N ratios and shorter record lengths. This
can be illustrated by considering a spring-mass-
damper system 52 described by the equation

m¥ (t) +Cx (t) +kx (£) = ul(t) 2 (9)

where m = 0.0025kg, C = 0.15 Ns/m, k = 1 N/s.

This system was simulated on an analogue computer
with an input prbs excitation of 5th order and
16.65 mS bit interval. Coloured noise was added
to the output to give a S/N ratio of 7.7dB and the
signals were sampled at 5.2mS to yield 1000 data
pairs.

A generalised least squares routine was used to
estimate the process model given by
e -2
o. 5 53
wlic) = 005186fl +0 0061_ z i B3
1-1.645z "+0.6577z

The FFT based estimate was computed by padding the
data with 24 zeros, applying a Hamming window and
smoothing over a record length of 15. The auto-
regressive forward-backward estimate was computed
using egn (8) with autoregressive model orders of
two and four for the output and input processes
respectively. Estimates of the gain plot com-
puted using the GLS, FFT and ARFB algorithms are
compared with the theoretical result in Fig.Z.
Inspection of Fig.2 confirms the conclusions of
the previous example.

PARAMETRIC SPECTRAL ESTIMATES FOR NONLINEAR SYSTEMS

The application of linear spectral estimation
procedures to data generated from nonlinear systems
can introduce significant errors. For example,
estimation of the frequency response function for



a system represented by the model

2
x(k) = ax(k-1) + bu(k-1) + cu (k-1) (10)
where u(k) is a signal whose third order moments

are zero (eg zero mean Gaussian or sine wave in-
puts) yields

S ()
= \]b.‘vi

% _ _ux _ b

Hl(m) T s (w Jw . (1)
uu e” -a

The estimate of the frequency response function

H. (w) is completely independent of c the nonlinear
térm in egn (10). This and other examples which
can readily be constructed demonstrates the limita-
tions of linear methods applied to nonlinear sys-
tems.

Efforts to resolve these problems have to date con-
centrated on the funcrional series approach and
higher order spectra(e). Although a considerable
body of theory has been developed for these ap-
proaches the computation involves the design of
multidimensional window functions, produces results
which are input dependent and is limited by the
encrmous computational effort required. Conse-
quently only a handful of papers describe the prac-
tical computation of the bispectrum and none des-
cribe the computation of higher order spectra or
generalised frequency transfer functions.

The traditional description for nonlinear systems
has been based on the Volterra series model

oo fes n
©fe) = § [ .o [ b (ryrtgrenet ) Toult-t)dr,
n=l - 2=k (12)

where hn(r ,...Tn) is the n'th order Volterra ker-

1
nel which can be visualised as a nonlinear impulse
response of order n. The Fourier transform of
the Volterra kernels which are called generalized
transfer functions are defined by

Hn(wl,mz,...mn) = f.‘f hn(Tl,...Tn)

exp[—j{m T +...wnTn)]dT

1T dTn (13)

1o
If the system under investigation were linear only
the first term, the standard convolution integral,
would exist in egn (12) and egn (13) would yield
Hl(w) which is the linear frequency response func-
tion of egn (1). when the system under study is
nonlinear there is no single function which charac-
terizes the frequency response behaviour and gen-
eralized frequency response functions of the form
of eqn (13) must be evaluated up to order n the
degree of nonlinearity. Several methods have been
proposed for estimating the generalized transfer
functions but all of these are based on multi-
dimensional FFT /window algorithms and involve the
computation of polyspectra(G). Unfortunately, all
of the algorithms require an excessive length of
data, work only on the premise of unrealistic
assumptions regarding the system under study or
require a special input excitation, and produce
results which are input dependent.

Many of these difficulties can be avoided by dev-
eloping a parametric approach for estimating
frequency response characteristics for nonlinear

systems. The recent introduction of the NARMAX
model (1) (Nonlinear AutoRegressive Moving Average
model with eXogenous inputs)

y(t) = Fly(t-1) ,...y(t-ny)u(t—d) ,...u(t—d—nu+l),

e(t—l}...e(t—ns)} + e(t) (14)
where F{*} is some nonlinear function provides an
alternative representation for nonlinear systems.
Difference equation models arise naturally from
physio-chemical laws and yield expressions which
map past inputs and outputs into the present system
output. This considerably reduces the computa-
tional burden and excessive parameter set associa-
ted with the functional series approach, egn (12)
which maps only past inputs into the present out-
put. Notice that discrete-time bilinear systems
cannot approximate to all nonlinear systems. Con-
ditions for the existence of the NARMAX model have
been derived(l) and these show that they represent
a broad class of nonlinear systems. Methods of
detecting nonlinearity in data, detecting the
structure of the model or which nenlinear terms to
include, estimating the system parameters and vali-
dating the models obtained have been derived(1,7:8),
These results have recently been extended to in-
clude a new orthogonal estimation algorithm for
the NARMAX model (9], This algorithm allows each
coefficient in the model to be estimated recur-
sively and quite independently of the other terms
in the model because of the orthogonal property
which holds for any input and automatically shows
the contribution that each term makes to the output
variance. This provides an alternative to the
prediction error stepwise regression algorithm( ).

The system described by egn (10) is for example in
the form of a NARMAX model. Estimation of the
parameters (a,b,c) completely characterizes the
process, the presence of a nonlinear term is ob-
vious and Hl(m) and the higher order generalized

transfer functions H (w.,w.,...w ), n = 2,3... can
n 12 n

be estimated directly for any input. This method
is therefore a direct extension of the linear
results presented above to the nonlinear case and
is best illustrated by examples.

Consider the Hammerstein model S, illustrated in
Fig.3 where the noise e(t) was N(0,0.08) and

1000 data pairs were considered. In the early
stages of any identification procedure it is im-
portant to establish if the process under test
exhibits nonlinear characteristics which will war-
rant a nonlinear model. This can readily be
achieved using a simple correlation test (8), IE
an input u(t)+b, b # 0 is applied to the process
where the third order moments of u(t) are zero and
all even order moments exist (a sine wave,
Gaussian or ternary sequence would for example
satisfy these properties) then the process is
linear iff

- = 2

o L0 =E[®-y) k-] = 0¥t (15)
b

[} 2(1') for the system of Fig.3 computed for the

input N(1,1) is illustrated in Fig.4 and clearly
shows that the system is highly nonlinear.



From Fig.3 the true system model can be expressed
as a NARMAX model

x(k) = O.9x(k—l)+0.5u(k—l}+u2(k—l)

y(k) = x(k)+e (k) (16)

One thousand data pairs were generated for an input
excitation N(0,1.0) and a NARMAX model with first
order dynamics and second degree nonlinearity de-
fined by

yv(k) = uc+a y(k-1)+a yz(k—l)+ﬂ3u(k—l)

1 2
+a4u2(k-l)+a5u(k—l)y(k—l)+e(k)

2 2
+Ble(kw1)+82e(k—2)+33e (k—l)+qu (k-2)
+85e(k~l)e{kv2) (17)

was postulated as a model to represent the system.
The orthogonal estimation algorithm produced the
following estimated model

v (k) = 0.001582+0.8997y (k-1) +0.5007u(k-1)
+l.OOlu2(k—l)+e(k)—O.8746e(k-l) (18)

Estimation using the prediction error/stepwise re-
. gression alqorithm(7) produced virtually identical
results., Notice that in estimating egn (18) the
algorithm has both detected the significant terms
in eqn (7) and estimated the unknown coefficients
associated with them. The algorithm estimated
that the terms in egn (18) contributed 99.954% to
the variation in y(k) thus indicating why several
of the possible terms in egn (17) were omitted
from the final model eqn (18). A comparison of
the estimates in egn (18) with the true system
model eqn (16) demonstrates the effectiveness of
this algorithm.

The generalized transfer functions Hn(wl,i..mn)
defined in eqn (13) can now be computed using the
probing or harmonic input method (10}, probing
egn (18) with a single exponential u(k) = eJ®kT
ignoring the almost zero constant term all the
noise terms and setting T = 1 yields

' jw (k-1 i (k=
Hl(w)ejwk = 0.8997Hl(w)e3“( ) v0,5007e30 K1)
jw (k=1) 72
+l.()0|:ejm(k l)] (19)
Juk

Equating coefficients of e yields the first
order frequency response function

0.
H) () = —o20T (20)
e?"-0.8997 .
}wlk jmzk
Probing with the input u(k) = e +e yields,

in a similar manner, the second order generalized
transfer function

L.
T (21)
wal+w2)
e -0.8997

Hy () 0,

It can easily be shown that for this system all the
higher order, functions Hn(wl,wz...mn) n>2 are zero.

The gain‘and phase plots associated with the esti-

mates Hy (w) and Hp(w, ,w,) are illustrated in Figs.

5 and 6 respectively. 2
By linearizing the estimated model egn (18) about
different input oparating points a plot showing
the gain or phase versus frequency versus opera-
ting point can be constructed as illustrated in
Pig.?.

As a second example consider a nonlinear electronic
circuit S4 which can be represented by the equation

dv (t)

= + 5v(t) + O.8v2{t) = 5i(t) (22)

This system was simulated on an analogue computer
and 1000 data pairs were recorded by sampling the
system at 16 ms in response to a Gaussian noise
input of 5 Hz bandwidth. A NARMAX model repre-
sentation of the form

vik) = Fz{v(k*l),v(k—2),v(k—3),i(k—l),i(k—2),i(k-EL

e(k-1),e(k-2),e(k-3) ,ek-4),e(k-5) }+e (k)
' (23)

was postulated where Fz{-} indicates a second
order polynomial expansion of the terms within the
brackets. The number of possible terms in the
model is therefore very large. Using the ortho-
gonal estimation algorithm most of these terms
were found to be redundant and the final model
fitted was

v(k) = 0.001092+0.58v(k-1)+0.221v(k-2)
+0.08455v (k-3) +0.14981 (k-1) -0.06371 (k-2)
+O.O26871(k—3)—0.01824v2(k—l)+e(k)
+0.164e (k~1) -0.0523e (k-5) (24)
The first and second order generalized transfer

functions egn (13)were then computed from egn (24)
to yield

i 0.1498¢ %" o, 0637 239 10, 02687 27T
iy lw) = “JuT B30T G
Tlubbe 20 e -0.08455¢e
) —j(ml+w2)T )
H ] = =L
z(wl mz} (-0.0182e Hl(ml)Hl(mz))/
—j(ml+m2)T =23 (w +u2)T
(1-0.58e -0.221e T
-3j(w +m2)T
0.0845e ) (25)

where T = 0.0l6 secs.

The gain and phase plots asscciated with the
estimates of eqn (25) are illustrated in Figs. 8
and 9. A comparison of the estimated H (w) and
H (ml,m ) with the true wvalues, which cafi be com-
puted from eqn (22), showed that they were virtu-
ally coincident.

CONCLUSIONS
New parametric methods of estimating the frequency

response characteristics of both linear and non-
linear systems have been introduced. The new



algorithms are easy to apply, appear to be largely
insensitive to measurement noise and provide esti-
mates that are often better than those obtained
using classical i'p"i'/windowing methods. The non- “_f&i\>
linear algorithm permits, for the first time, the
experimenter to estimate any order of generalized AT
transfer function from short data record leagths. ‘abi

REFERENCES

1. Leontaritis, I.J., Billings, S.A.: Input-
outpht parametric models for nonlinear 3
systems, Part I - Deterministic nonlinear
systems, Part II - Stochastic nonlinear systems; 44 .,

Int. J. Control, 41, 303-344, 1985, A T Tmeesme = ARFB

oE [ 813

BT

"\ & -

| e IOLS

2. Haykin, S.: Nonlinear Methods of Spectral u\
Analysis; Springer-Verlag, 1979.

3. Cooper, J.E., Wright, J.R.: Comparison of ' Theoretical
some time domain methods for structural system
identification; 2nd Int. Symp. on Aero-

Fig.l. Gain estimates for S
elasticity and Structural Dynamics, 1985, 9

1

4. Ljung, L., Scderstrom, T.: Theory and Practice

5
of Recursive Identification; MIT Press, 1983. T
[]
5. Marple, L.: A new autoregressive spectrum
analysis algorithm; IEEE Trans., ASSP-28, Gain .4
441-454, 1980. . (dB)

6. Brillinger, D.R., Rosenblatt, M.: Computation
and interpretation of K'th order spectra; in
Spectral Analysis of Time Series by B.Harris ) 2
(E4d) , Wiley, 1967.

134

7. Billings, S.A., Voon, W.S.F.: A prediction
error and stepwise regression estimation al-
gorithm for nonlinear systems; Int. J. Control,
44, 803-822, 1986.

8. Billings, S.A., Voon, W.S.F.: Correlation
based model validity tests for nonlinear models; G
Int. J. Control, 44, 235-244, 1986.

sl

9. Korenmberg, M.J., Billings, S.A., Liu, Y.P.:

Fig.2. Gain estimates for S2
Orthogonal parameter estimation algorithms for

nonlinear systems; (in preparation).

16. Bedrossan, E., Rice, S5.0.: The output proper-
ties of Volterra systems driven by harmonic
and Gaussian inputs; Proc.IEEE, 59, 1688-1707,
1971.

e (k)

S 5 z
+u” (k)

1 % (k) y (k)

Fig.3. The system S



¢ (] 2 (T)
Yy
minﬁx—ﬁﬁiq““*—a~ﬁ_“ T
s e —— i et J—
12
‘Fic.4. ¢ 2 test
y'y'
0.150e+02
Goin
(¢3)
b —us
e
~150e+02 Harmelised frequency V
0.050e+00 oy .
Phase
—160e+03
Fig.5. ﬁl(m) for S3

Gain

(dB)

0.200e+02

7
= s
: 0.5
- 100e+02 %
0.0 0
1 05 0.0
Phase
0.180e+03

Fig.6. Hz(wl,wz) for

0.5

5.

Gain
(dB)

TR
_ ‘\;:;

Fig.7. Evolution of linearized spectra

[

s Twe e nr oze oz 1e 3s « £ st
: - . Hz
Gain=1 (dB)

] ~.

o T

—
Tee—

- ~——

il

: O 13 L] 2c H b ] .t - ]

i SN

- \

£ ~

p Phas;\\\\\H%‘

o e

Fig.8. H
g l(w) for 54



R
Gain (dB)

o

~h
~Fr o~
Ve
phase
~150.0
.H"L
S,
T
0.Co -
-h-"“-\.
& \-—\""--..___
T -~
=. 0
Fig.9. H,(w ,w,)
2 2( 1’72

W

e ans
AN \é\”&?\*\"\‘?‘{ﬁg‘\

T

5
N
BN

L% W - 5 gt K
AN
5 \;ES%%:*QQEQér‘
TR =
AR SRR

-~ e
.-"'-.
/"" £

I//f

v I

g C.Cco

»

for 8§

4



