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Abstract

_ An orthogonal parameter estimation algorithm is derived which
allows each parameter in a nonlinear difference equation model to be
estimated recursively and quite indeéendently of the other parameters
in the model. The algorithm can be applied for any persistently
exciting input and provides both unbiased estimates in the presence
of correlated noise and an indication of which terms to include in
the model. Several simulated examples are included to demonstrate

the effectiveness of the algorithm.
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Y Introduction

The successful development of identification and contreoller design
procedures for nonlinear systems critically depends upon the model which
is used to represent the system under investigation. Traditionally
the functional series descriptions of Volterra and Wiener have been
used and an extensive literature describing the identification and
analysis of such models exists [hillings, Gray and Owens 1984;
Marmarelis and Marmarelis 1978; Schetzen 193cﬂ " Unfortunately,
functional series models require an excessive parameter set, often
extending to over 500 kernel values, to describe even simple nonlinear
systems aﬁd consequently few practical applications of the identification
algorithms and virtually no controller design studies have been
reported. However, by expanding the system output in terms of
past inputs and outputs using a NARMAX model [Leontaritis and Billings
1985a,bJ (Nonlinear AutoRegressive Moving Average Model with eXogenous
inputs) a very concise representation for a wide class of nonlinear
systems can be obtained which allevaites many of the problems associated
with functional series methods. Several parameter estimation
algorithms have been derived for the NARMAX model [Billings and Voon
1984, 1986a; Korenberg 1985] and it has been shown that provided the
significant terms in the model can bg detected models with less than
ten terms are usually sufficient to capture the dynamics of highly
nonlinear processes.

In the present study a new orthogonal parameter estimationr
algorithm is derived for stochastic nonlinear systems which can be
represented by a NARMAX model. By introducing an auxiliary model
defined such that the terms in the model are orthogonal over the data

set [korenberg 1985] for any input it is shown that each coefficient



can be estimated recursively and quite independently of the other

terms in the model in the presence of correlated measurement noise.

Repeated application of this simple algorithm not only provides unbiased
estimates of each coefficient in turn but also provides an indication of the
contribution that each term makes to‘the output variance and this assists the
user to detect the structure of the system under investigation and yields

a parsimonious system model. Details of implementation including
pretreatment of data, the input sensitivity problem, data segmentation

and the interactive application of the orthogonal algorithm with

nonlinear model validity tests are included together with numerous

simulated examples for both linear and nonlinear systems.

2. The NARMAX Model

A wide class of nonlinear systems can be represented by the NARMAX
model [Leontaritis and Billings lQBSa,hﬂ (Nonlinear AutoRegressive

Moving Average model with eXogenous inputs)
2
y(t) = F [y(t—l),...y(t—ny),u(t),...u(t—uu),

€(t-1),...e(t-N)] + e(t) | (1)

where u(t) and y(t) represent the measured input and output respectively,

e(t) is the prediction error defined as
e(t) = y(t) - ¥(t)

where E[e(t)|yt_1,ut] =0

yt-l = (y(t—l),y(t-z),...y(l))T (2)

of = @ (e),ult-1),...0@N"

y(t) = Ery(t)|yt—1,ut]

Nu,Ny and NE represent the number of lags in the input, output and
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prediction error respectively, and F [-] is some nonlinear function.

A time delay in the input and a dc level can easily be accommodated
by rewriting egn (1) as

y(£) = ac+F [y (t-1),...y (£ ) u(t-a) .. .u(£=8-N +1),

e(t-—l),...e(t—NE)] + €(t) (3)

The NARMAX model of egn (3) will be used in the present study and
this can be shown to represent a large class of finite dimensional
nonlinear systems [Leontaritis and Billings 1985a,b].

Expanding eqn (3) by defining the function Fl[ﬂ to be a polynomial

of degree % gives the representation

M
y&) = ] 68p (t) + e(t) (4)
Ly nfm
where Pb(t) =1
pm(t) = y(t—nyl)...y(t-nyk)U(t—d+lnul)...u(t—d+lnuj)
e(t-nal)...e(t~neq)
form=1,2,...M

“k > 0, h] 2'0, q>0

1< nyl < Ny eee 1 < nyk < N&
o<n, <N ... 0Sn, <N (5)
1< nel < NE ees 1 < nsq < Ne
and
k = O indicates that pm(t) contains no y(°*) terms
j = O indicates that pm(t) contains no u(¢) terms
g = 0 indicates that pm(t) contains no €(°) terms



Notice that 80 represents the dc value.

For example the NARMAX model
y(t) = dc+91y(t—l)+62u(t—l)+93u(t-1)y(t—l)

+64u(t-l)e(t~1)+65€(t—1)+€(t) (6)

could be described by egn (4) by defining

P, (t) = y(t—l),pzft) = u(t-l),p3 (t) = u(t-1)y(t-1),
p4(t) = u(t-1)e(t-1), Pg (t) = e(t-1), po(t) =1,

8 = dc

(o]

If N measurements of the input and output are available egn (4)
can be expressed in matrix form as
Y =P8 + g- (7

where

[y ,y@),...ym]

T =To,.0,,--0,]

w
n

@
|

e = [e@),e(2),...e]

(

Pc(l) Pl(l) R PM(l)
e me @

° Ll -

kpo(N) Pl(N) PM(N) 3

The parameter vector 6 in eqn (7) could now be estimated using a
least squares based or a prediction error routine [ﬁillings and Voon l986a].
However, by reformulating the problem such that each parameter in 6 can
be estimated independently using an orthogonal algorithm considerable

advantages can be achieved [Koreﬁberg 1985].



3. The Orthogonal Estimation Algorithm

The orthogonal estimation algorithm can be derived in two ways.
Initially a simple derivation which is very transparent and amenable
to computer simulation is formulated. This is then augmented by
rederiving the algorithm using matri# notation.

Although the objective is to estimate the parameters Bi, i=0,...M

in eqn (4) or eqgn (7) the algorithm is formulated for the auxiliary

model

M
y) = ] guw () +elt)
m=0

(8)

where wi(n), i =0,...M are constructed to be orthogonal over the data

record such that
N

)

t=1

wj{t)wk+l(t) = 0 j=0,1,...k (9)

A ﬁamily of orthogonal polynomials could be constructed by applying
the Gram-échmidt procedure but this can be shown to be very sensitive
to rounding errors [Blum 1972]. A simpler scheme which makes use of
the algebraic polynomial structure is the three-term recurrance method

which can be adapted to the éynamic model of eqn (8) by defining

wo(t) = po(t) =1
m-1
wit) =p (t) - J o _wi(t) m=1,...M (10)
m m rm r
Y=o
N N g
and o__ = ) P (t)wr(t)/ ) W (t) 0<r <m-l (11)
m g M t=1
Setting
. N
§ =% L v (12)

® =1



and using egn (8) and the orthogonality of the wm(t) gives the
parameter estimates

N N 2
g = I yw &)/ ] w (£ (13)
t=1 t=1
Once the parameters_gm, m=0,1,...M have been estimated using egn (13)

the parameters Bm, m=0,1,...M in the NARMAX model egn (7) can be

computed as

" M :
o, = I 4,y (14)
i=m
where v =1
m

.
" Z a_.Vv m<i<M (15)
1 rL r -
r=m

v

Notice that the prediction errors e(t) are not known a priori and

must be estimated from eqn (8) as

N
E(t) = y(t) - ) guw (t) (16)
m=Q w1

The algorithm consists of the following steps
(i) Assume the prediction errors are zero and estimate all the
parameters which do not include e(*) terms using egn's (10)
to (13)
(ii) Estimate the prediction errors using egn (16)
(iii) Using E(t) estimate the parameters associated with prediction
error terms using egn's (10) to (13)
(iv) Go to (ii) and continue until convergence

(v) Estimate the NARMAX model coefficients using egn's (14) and (15).



Convergence of the algorithm can be detected by monitoring

parameter change

| ~s+1l &
l‘zﬂ 657 - gl
o s+l
m=o g |

at the (s+l)th iteration. The test value is typically chosen to be

- -5
10 % 10 ° and simulation has shown that convergence is achieved in

typically ten iterations.

The orthogonal estimation is easy to implement yet offers considerable
advantages compared with existing parameter estimation routines.
Because of the orthogonality property the parameter vector can be
estimated by computing each parametexr gj, j =0,...M one at a time.
This simplifies-the implementation, allows additional terms to be
added to the model without the need to re-estimate the parameter vector,
and allows the estimation of the process and noise parameters to be
decoupled. Consequently, the estimates in step (i) will not change
or be affected by the inclusion of noise terms in step (1ii).

Notice that for any non-negative integer Q<M the mean square error

N 5
1 () - g W, (£)) (17)
t=1 n=0
is minimised by the estimates in egn (13). This shows that if the

right hand side of egn (8) is truncated by including only terms m = O

to m = Q, the NARMAX model terms corresponding to % gmwm(t) will
m=0

similarly minimise the mean square error for this value of Q.

3.1. Matrix Formulation

Although it is probably easier to implement the algorithm using
the formulation given above the derivation of the results can be tidied

up considerably by using a matrix notation.



The matrix decomposition theorem [fox 1964J states that a positive
defi5ite square matrix A can be decomposed as
A = LDU (18)
in which L and U are unit lower and upper triangular, D is diagonal
with all positive elements and the expression is unique. If the

additional constraint that A is symmetric is imposed then it is easily

shown that
L=0" - (19)
and hence egn (18) becomes
A =UDU (20)
Since the correlation matrix PTP associated with the model egn (7)

is symmetric and positive definite the matrix decomposition theorem

shows that this can be expressed as

p'p = T'DT (21)
where T is a unit upper triangular matrix and D is diagonal with all
positive elements. Since T_lT = I the model of egn (7) can now be

written in the form of the auxiliary model

P (T—lT) 6 + g

Y =
or Y =Wg+e (22)
where W= prt , g =T0 (23)
and W is an orthogonal matrix
ww = erHTerh = (@ hHTeTnT
= ") ot - p (24)
Defining W as
(w @) w @) oo Wy (1) 1
w0(2) w1(2) wM(2)
: : : (25)

I wO(N) wl(N) WM(N) )




specifies D egn (24) as

/
i N 5
Z W (t)
t=1
N
}: Wy (t)
D = el ' (26)
° N
O I w,” (®)
( t=1 )
-1 1
and clearly D = = diag N i o,l,...M
Zwi (t)
=1
-1
From eqn (23) W= PT

T
and premultiplying by W and postmultiplying by T gives

WWT = WP
or T = (ww ‘wp (27)
= p'lep

Using the definitions of P egn (7), W egn (25) and D egn (26) shows

that egqn (27) can be expressed as

B ) ) |
w._(t)p (t) w_(t)p, (t) Yw (t)p (t)
£=1 o o £=1 o] 1 t=l° M
N N YN
) woz(t) ) woz(t) T ow 2t
t=1 t=1 t=1 °
T =
I ] i
w_(t)p (t) w (t)p., (t) ) w_(t)p  (t)
flg M o o5 M 1 ay M M
N N " N
2 i 2
1w, () Y ow S (t) Y ow S (t)
o . i, P




- o =

= U-OO 0'.01 .. (IOM
Uiy By %M
: : (28)
L By G1 Yy )

To satisfy the requirements of egn (21) T should be unit upper triangular,

and this can be achieved by defining

o ¥ i>3j
aij = 1 y i=3 (29)
N
tzlwi (£)p, (£)
$i<d
¥ 2
Z vy (t)
t=1
Substituting eqn (29) in eqn (28) gives T the required form
r Y
1L oy @ - -t Gy
: g %1m (30)
T =
1
4 1)

and the definitions of uij in egn's (29) and (11) coincide. The

elements of the W matrix eqn (25) can now be determined from egn (23)

WL = P (31)

or W="P - W(T-I)

which can be expressed as
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wo (L)W (1) p (1)...p, (1) wo(L)...w (1) ] Oa ..o

w_(2) " _ | B @ ep @) || W (el o) o

| wo(N)...wM(N) pO(N)...pM(N) wo(N)...wM(N) (o]
(32)

Multiplying out egn (32) yields the definition of wj(t), j =0,...M
given in egn (10).
An estimate of the auxiliary model parameter vector g in egn (22)

can now be determined by minimising the mean squared error to yield

g = (WW “1uTy
= D lw'y (33)
or ; - R
n z w (t)Y(t)
g (o]
(o] t=1
- N
G _ | Iv’w
. £=1
: )
° w (t)y(t)
: g=1 ¥
g N
. M) 2 wM2(t)
L t=1 J

The relationship between the NARMAX model parameter vector of
egqn (7) and the auxiliary model parameter vector can be obtained from
egn (23)

g = Tb | (23)

§ - (T-1)6

.5
li



-1 -

or
T ey r ) i 3
80 9, o] %51 Gop tor Yoy ( 60
1% 9 ° % “m || %
. = ‘ = o . (34)
. eM J . gM J . ) 0 J . BM J

which is equivalent to egn's (14) and (15).

3.2. Properties of the Algorithm

An analysis of the properties of the estimates is almost identical
to the analysis for an extended least squares algorithm [Norton 1986].

Assuming that sufficient noise terms are included in the model to
account for correlated_noise and assuming that the estimates converge
then the prediction error sequence £(°) in egn's (7) and (8) will be

reduced to a white noise sequence. Thus from egn (33)

substituting for Y from eqn (22)

1

D MW (Wg + )

g

-1 T
g+ D TWe (35)

Rearranging egn (35)
DG -g) =We
and taking expected value
E{D(g-g)} = E{W'e) (36)
Providing e(t) is a zero mean white noise sequence which is independent

of the input then expansion of egn (36) shows that E{WTg} = O and

consequently the estimates will be unbiased E[g] = g.



e

. i

The covariance of the auxiliary model parameter vector is given by

cov(§) = E{ (§-g) (§-g) T} (37)

Substituting from egn (35) and using the result E{seT} = 021 yields
Bovls) = o°p . (38)

2 -1 ~ -1.T
and hence Cov(®) = T "Cov(g) (T ™) (39)

: " : . . )
Since T is a unity upper triangular matrix the inverse T o {tij} can

be computed directly from the elements of T = {aij} egn (30) by

- % a,. t . i<
kb, T
ti. =
J 1 i=3 (40)
o i>

The i'th diagonal element of Cov(f) defines the variance of éi’

i=0,1,...M which can be evaluated by substituting egn (40) in (39) to

give
2 ® 2
Var{éi} =0 (d + ) t;.d.) (41)
j=i+1 *JJ
M
=0 (] e
j=i 1]
where from (26)
¥ ooz
d; =1/ F w. (t) (42)
t=1

and ¢ can be estimated from egn (8)

. V/ 1 § 3 s 2
o = _— (y(£) = ) gw (t) (43)
N-(MD) =Ny N 41 m=o © "

y
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4. Selection of Variables

The determination of the model structure or which variables to
include in the NARMAX model expansion egn (3) is vital if a parsimonious
representation of the system is to be identified. Simply increasing
the order of the dynamic terms (Ny,Nﬁ,ﬁe) in egn (3) and the order of the
polynomial expansion (L) to achieve the desired prediction accuracy will
in general result in an excessively complex model and possibly ill-

conditioned computations.

The maximum number of terms in the NARMAX model of egn (3) is given

by
n=M+ 1
where '
2
M= ]} n
i=1 (44)
= +N +N +i- i =
ny {ni—l(Ny Nu NE i-1) }/i P n 1

qu example a first order dynamic prﬁcess model (Ny = Nu = 1) with a

third order noise model (Ne = 3) expanded-as a cubic polynomial (2 = 3)
would contain 56 possible terms. This is clearly excessive but
fortunately simulation has shown that only a few of these terms (typically
less than ten including the noise model) are sigﬁificant and the remainder
can be discarded with little deterioration in prediction accuracy.

There are several possible ways to determine which are the
significant terms which should be included in the model. Most of these
including a stepwise regression algorithm [Billings and Voon 1986a] and
a log determinant ratio test [Leontaritis and Billings 1987§1 have been
described in earlier publications. Whilst these methods are extremely
effective an alternative and much simpler method can be derived as a

by-product of the orthogonal estimation algorithm.
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Multiplying the auxiliary model egn (8) by itself and taking the

time average gives

N N (M N
1 2.1 % 2 2 1 2
% 21 yoe) = 3 t£1 mZO g “w_ (t;l 5 tzl e“ () (45)

assuming that e(t) is a zero mean white noise sequence and the orthogonality
property of egn (9) holds. The maximum mean squared prediction error is

achieved when no terms are included in the model (M = 0) to give

2z

N
7 &2

=1
M=0 L

Y2(t) (46)
1

]
2

Il o~

N

From egn's (8) and (45) the reduction in mean squared error by including

a term Bipi(t) in the model will be equal to

N
APRK: &

2|~

t

Thus the reduction in the mean squared error eqgn (47) as a result of
including the term Bipi(t) can be expressed as a percentage reduction in

the total mean squared error egn (46) by defining
¥ 2-2
X g, w, (t)
o
x 100 (48)

N
Y v ()
t=1

for i = 0,1,2,...M. In practice a constant or dc level is always

included in the model egn (3), where from (12)

1 oy (49)

The influence of 9, can be removed by rewriting egn (45) as



=z
=
b

&) (50)

Il ~

and redefining egn (48) with the effects of the dc term eliminated to yield

N
2
¥ & %% gl
= i i
ERRi = = ; ) W 7 X 100 (51)
Iviw - 54 Ly
t=1 t=1

for i = 1,2...M. The quantity ERRi which wi}l be called the Error
Reduction Ratio provides an indication of which terms to include in the
model . Insignificant terms can then be discarded by defining a value of
ERRi below which terms are considered to contribute a negligible reduction
in the mean squared error.

The threshold value of ERR for process model terms called Cd (all
terms which do not include €(°¢)) is typically set to 0.05 to 0.5. For
terms which involve the prediction errors the threshold value of ERR is
called Cde and a lower value of 0.000l1 to 0.001 is selected to ensure that
sufficient noise terms are included so that the prediction errors are
reduced to a white noise sequence.

Notice that ERR only gives an indication of which terms should be
included in the model. The ERR value is however dependent upon the order
in whigh the term enters the equation. To overcome this problem a search

algorithm which provides a type of ERR test which is independent of the

order of inclusion of terms is required. This is currently under

development.

54 Implementing the Algorithm

The orthogonal estimation algorithm given in section 3 can now be
extended to include the error reduction ratio test and several other
minor modifications to give a combined parameter estimation and

structure detection algorithm. The algorithm is given for the



= 19 =

summation notation of section 3 with the corresponding matrix notation
of section 3.1 given in brackets:-
(i) Select wvalues for Ny’ Nu, Na' d, & in egn (3) and set e(t) = 0O,
t=1...N.- Select C_ and C__.
elec a de

(ii) Estimate all the parameters which do not include e(-) terms using

eqn's (10) and (13) {compute the elements of the matrices W eqn (25),

T eqn (30) and g eaqn (33)}

It

(iii) If é(t) =0, t 1,2...N go to (iv) otherwise use g(t) to estimate
the parameters associated with the prediction error terms using
eqn's (10) to (13) {compute W, T and g}
(iv) Compute ERRi eqn (51), test against the thresholds Cd, Cde and
delete insignificant terms
(v) Estimate the prediction errors using egn (16)
(vi) If any process model terms were deleted in (iv) then go to (ii),
otherwise go to (iii) and repeat until convergence.
(vii) Estimate the NARMAX model coefficients using egn's (14) and (15)
{compute 8 from eqn (34)}.

In step (i) suitably large values of Ny, Nu' Ne and £ should be
selected to ensure that the c%ass of models which this choice defines
is large enough to include the model of the process under investigation.
If Nu is selected large enough the value of d will not be crucial and
it is often set to d = 1.

Estimates of the_§i terms in steps (ii) and (iii) can become ill-
conditioned if the numerator in egn (13) becomes very small. This can

be avoided by including an additional criterion in steps (ii) and (iii)

such that if for any specific i

ifin
w?e) < 107 (52)

t=istart



e A8 =

then set aij =0 ¥ j > 1i; (this is equivalent to setting elements
of the i'th row of T egn (30) to zero) gi = 0 and hence ERRi = 0,

where istart = max {(Nu+d-l), Ny' Ne} + 1 and ifin = record length
of the estimation set. It is also important to emphasise that the

next term w +1(t) should not be orthogonalised against the previous

i
offending wi(t) term since this would only compound the problem. The
solution is to go back and choose a new pj(t) term in egn (4).

It is also important to ensure that identical pm(n) terms are not

formed for two different values of m.

In situations where no process model terms (terms which do not
involve €(t-j), j>0) are deleted using ERR there will be no need to
re-estimate the process parameters in step (ii). However, the terms
in the model are orthogonalised in the order that they are introduced
and this means that if any process model terms are deleted as
insignificant in step (fv) then all the subsequent terms will need
to be re-orthogonalised. Hence when this siﬁuation arises, usually
on the first iteration only, it is necessary to return to step (ii)
following step (vi).

ARMmhmed@ﬂmm&weMmuﬁ%orﬁmdsﬁemmuue
of the model and then estimates the unknown parameters the model
obtained should only be accepted after model validity tests have
confirmed that the fit is adequate. Although the ERR test provides
an indication of which terms to include in the model
situations do arise where terms which are insignificant according to
ERR will induce bias if they are excluded from the final model.
Simulation has shown that this situation usually only occurs with
the noise model or prediction error terms. The majority of the

prediction error terms often have a very low ERR value, if these
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terms are deleted however e(t) may become a correlated sequence instead
of a white noise sequence and this will induce bias in the model
parameters. Fortunately, this situation can be readily detected
because the prediction errors will have the required properties iff

the following results hold [ﬁillingsland Voon l986b]

= §
¢££(T) (1)
¢u£(T) = O¥n1
¢ 20 2(1‘) = oV¥r ' (53)
u g
$ 5, (1) = oVt
u g
¢€EH(T) = 1>0 L

where E(t) represents an estimate of the prediction error sequence and
the ' indicates that the mean has been removed from a signal. The
model validity tests of egn (53) often indicate which, if any, terms
have been omitted from the model [billings and Voon 198651. These
terms can then be forced into the model to rectify the discrepancy.
Whenever nonlinear models are to be estimated mean levels should
not be removed from the data, Fhe data should be split into an
estimation énd a testing set and input excitation signals must be
carefully chosen [Leontaritis and Billings 1987&]. Removing mean
levels can induce input sensitivity when estimating nonlinear models
[?illings and Voon 1984] and it is therefore preferable to include a
dc level as part of the parameter vector egn (3). Splitting the data
into an estimatién set which is used to estimate the parameters, and
a testing set which is used to judge the predictive capability of the

fitted model can reveal severe model deficiencies which would otherwise

go undetected.
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6. Simulation Results

Several linear and nonlinear models were simulated to illustrate

the orthogonal parameter estimation algorithm.

6.1. Linear Systems

The linear system S1 described by

o1
yit) = —E—— u(t) + (140.4z NyE(R) (54)

1--0.5:3:_l
was simulated where u(t) was a sixth order prbs and £E(t) a zero mean
white noise sequence. The estimation set was defined over the points
(1,700) and the testing set over the points (701,1000). The orthogonal
estimation algorithm of section 5 with initial values Ny =N =N =4,

u E

£=1,d=1C_=0.5, C,_ = 0.0 produced the following model after

d de
ten iterations
y(t) = 0.0097 + 0.49y(t~-1) + 0.9967u(t-1)
{22.1} {71.4)

+ £(t) - 0.0384e(t-1) - 0.187¢(t-2)

{0.06 } {0.21
- 0.0352¢ (£-3) - 0.07462¢ (t-4) (55)
{ 0.00% {0.03}

where the number in {} under each term is the error reduction ratio
associated with that te;m. The model wvalidity tests of egqn (53) were
all satisfactory and clearly the ERR test has detected the correct
model structure. Notice that setting Cde = 0 forced all four noise
terms into the model. Even though ERR the percentage contribution of
the noise terms to the output mean squared error was very small they

would induce bias if they were omitted. In contrast ERR for the y(t-1)

and u(t-1) terms shows that they contribute 22.1% and 71.4% respectively

to the output mse.
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A second linear system 52 described by
-1 -2 =1
+0. +0.
y(t) = =2 IO gy ¢ 200 (56)
1-1.5z "+0.7=z 1-1.5z "+0.7z

was simulated with u(t), E(t) and the estimation and testing sets defined
as for Sl. The orthogonal estimation algorithm with initial values

Ny = Nu =N =4,d=1, 2 =1, Cd = 0.5, Cde = 0.0 produced the

following model after ten iterations

y(t) = 0.010 + 1.937y(t-1) - 1.426y(t-2) + 0.3699y(t-3)
{78.6} - {14.7} {0.838}

4+ 0.99%u(t-1) + e(t) - 0.012e (t-1) = 0.099¢ (t-2)

{5.10} {0.00004} {0.0065}
+ 0.029¢(t~-3) - 0.013c(t-4) (57)
{0.00058} {0.0001}

Inspection of eqn (57) shows that ERR has incorrectly selected three
lags in y(t-i), i = 1,2,3 and only one lag in the input uﬁt-l).
However the model validity tests illustrated in Fig.l clearly show
that the model egn (57) is not of the correct structure. A u(t-2)
term was therefore forced inté the model to yield
y(t) = 0.02 + 1.513y(t-1) - 0.7385y(t-2) + 0.02421y(t-3)
{78.6} {14.7} {0.838}

+ 0.9906u(t-1) + 0.4857u(t-2) + noise

{5.1) {0.114} (58)

Clearly

the u(t-2) term was deleted in the initial estimate eqn (57) because

ERR for this term is 0.114% below the threshold of Cd = 0.5. The
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model wvalidity tests eqn (53) were now all within the 95% confidence
bounds.

. Although ERR for y(t-3) is above the threshold and greater than
"ERR for u(t-2) the coefficient of y(t-3) has now become very small and
consequently the latter was deleted from the model to see what effect
this would have. With this additional constraint the estimated model
was

y(t) = 0.02 + 1.485y(t-1) - 0.6929y(t-2)

+ 0.9913u(t-1) + 0.5119%u(t-2) + noise (59)
The model validity tests associated with the model of egn (59) were all
within the 95% confidence bands and this was accepted as the final
model, Thus by an interactive use of the orthogonal estimator together
with the model validity tests the correct model structure has been
deteimined. Other simulations have indicated that when fitting linear
models (& = 1) it is often appropriate to force an equal number of
lagged u(°) and y(°*) terms into the model and to set Cde = 0 to ensure

sufficient noise model terms are included.

6.2, Nonlinear Systems

The nonlinear system S, described by

0.8x(t-1) + 0.4{u(t-1) + ul{t-1)**2 + u(t-1)**3}

x(t) =
e(t) = £(t) + 0.6&(t-1)
y(t) = x(t) + e(t) (60)

was simulated where u(ﬁ) was a zerc mean uniform random sequence (-3,3)
and £(t) was a uniformly distributed zero mean white noise sequence (-0.3,0.3)
The estimation set was defined over the points (1,700) and the testing

set over the points (701,1000). The orthogonal estimation algorithm



with initial wvalues NY =N =N =2,4d=1, L =3, Cd = 0.5,

Cde = 0.001 produced the following model after ten iterations

y(t) = -0.015 4+ 0.8y (t-1) + 0.39%u(t-1) + 0.40u(t-1)**2
{5113 {38.5) {2.4}
+ 0.40u(t-1)**3 + g(t) - 0.229¢ (t-1)

{4.8} {0.0027} (61)

The model validity tests which are illustrated in Fig.2 show that
¢ (t) # 8(1). This indicates a deficient noise model so additional

linear noise terms were forced into the model by setting Ns = 3,

Cde = O with a polynomial order for the noise of one to yield after

ten iterations

y(t) = -0.0l1 + 0.80y(t-1) + 0.3%u(t-1) + O.4u(t-1)**2
{57.13} ' {35.5} {2.4}
+ 0.4u(t-1)**3 + e(t) - 0.25¢ (t-1) - 0.135¢ (£-2) - 0.024e (£-3)
{4.8} {0.003}  {0.0009} {0.00003}

(62)

All the model wvalidity tests were now within the confidence bands and
the model was accepted. Notice that if Cde had been set to zero at
the initial estimation stage a large number of both linear and nonlinear
terms in e(-) would have been forced into the model. It is preferable
therefore whenever £>1 to set Cde = 0.001 initially to determine if
there are significant nonlinear noise terms. If the model validity
tests then indicate that the noise model is incorrect, as in the above

example, linear noise terms can be forced into the model.

The nonlinear system 84 described by

x(t) = 1l.4x(t-1) - O.1lx(t-1)**2 - 0.4x(t-2)
+ 0.2u(t-1) + 0.4u(t-1)**2 (63)
yi(t) = x(t) + E(t)
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was simulated where u(t) was a zero mean uniform random sequence with
variance 2.5 and £(t) was a Gaussian sequence N(0,0.1). The
estimation and testing sets were defined as in 53 above.

The orthogonal estimation algorithm with Ny = Nu =N = 3,
d=1, & = 3, Cd = 0.5, Cde = 0.001 broduced the following model
after ten iterations
y(t) = 0.0055 + 1.398y(t-1) - 0.099y (t-1)**2

{31.5} {3.43}
- 0.40y(t-2) + 0.199%u(t-1) + 0.398u(t-1)**2
{6.8} {10.4} {46.7}
+ g(t) - 1.198e(t-1) + 0.245e(t-2) + 0.142e(t-3)
{0.33} {0.36} {0.013}
+ 0.1594¢ (t~1)y (t-1) (64)

{0.026}

All the model wvalidity tests were inside the 95% confidence bands and
the model was accepted. A comparison of eqn (64) with the model
eqn (63) shows that of the 220 possible terms in the model, eqn (44),

the algorithm has selected the correct model structure.

-

1

estimated model over both the estimation and testing set was virtually

In all the examples, S, to 54, the predicted output of the

coincident with the measured process output.

T Conclusions

An orthogonal parameter estimation and structure detection routine
has been derived for both linear and nonlinear stochastic systems.
The orthogonal property of the algorithm allows each parameter in

the auxiliary model to be estimated one at a time by repeated application
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of a very simple formula. Additional terms can be added to the
model without the need to re-estimate all the previous coefficients
and the percentage reduction that each term makes to the output mean
squared error, the ERR test, provides an extremely sigple indication of
the significance of each term in the model.  Other advantages of
the algorithm are that the estimation of the process and noise model
parameters can be decoupled and that implementation on a microprocessor
should be straightforward.

The extension of the algorithm to other linear least squares
based estimators and to multivariable linear and nonlinear systems
is now complete and will appear in forthcoming publications.

.
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