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IDENTIFICATION OF NONLINEAR OUTPUT-AFFINE SYSTEMS
USING AN ORTHOGONAL LEAST SQUARES ALGORITHM

Abstract

The identification of a nonlinear output-affine difference equation model is considered.
An orthogonal least squares algorithm is derived which can determine which term to regress
upon, detect significant terms in the model expansion and provide the final parameter estimates.
It is shown that the orthogonal property of the algorithm results in a particularly simple estima-

tion routine and simulated examples are included to illustrate the techniques.

1. Introduction

The output-affine difference equation model which relates sampled output signals to sam-
pled inputs was introduced by Sontag (1979) following a study of polynomial response maps
for nonlinear systems. The advantage of the output-affine model is that it is globally valid.
Howéver, the lack of practical identification algorithms for this model has to date limited its

usefulness in control.

The internal behaviours of a wide range of nonlinear discrete-time systems are governed
by state-affine models (Sontag, 1979). Cyrot-Normand and Dang Van Mien (1980) demon-
strated that state-affine models can be constructed by combining several linear state-space
models identified from different plant operating points and input variations. Several processes
were modelled using this approach and the technique was shown to work well for slowly vary-

ing levels of plant operation.

In the present study, the least squares method is used as a basic identification tool for
obtaining estimates of the unknown parameters in an output-affine difference equation model
based on input-output data measurements. To overcome the excessive computational burden, an
orthogonal estimator (Korenberg, 1985; Korenberg, Billings and Liu, 1986) derived originally
for the NARMAX model (Leontaritis and Billings, 1985) is extended to the output-affine case
which is considerably more complex because the term to regress upon has to be determined
prior to final estimation. The technique provides both the important structure information and

the final parameter estimates in a very simple and efficient manner.

After a brief description of the output-affine difference equation model, the problems
associated with using the least squares method are discussed, and an orthogonal regression pro-
cedure is introduced. Finally, it is shown that bias occurs using the least squares method when-
ever outputs are corrupted by noise. Further research is proposed in order to overcome this

difficulty.



2. Output-affine difference equation model

Let U be the input set and Y be the output set. Denote as U™ the union of all Ut, =1,
where Ut is the set of all sequences (u(l),...,u(t)) of length t

U (1), ...u(): uie Usi=1,....H)
A polynomial input-output map or response function is a function f:UT—Y such that, for each
t, f U'SY is a polynomial of finite degree on all variables, although this degree may tend to
o0 as t—roeo. A strictly causal response function is such that, for each t, ft(u(l),...,u(t)) is
independent of u(t). f is said to be bounded if there exists an integer d such that, for all t, the
maximum power which any individual input is raised to in ft is less than d. f is finitely realiz-

able iff f has a finite dimensional realization.

Sontag (1979) proved that f is finitely realizable and bounded iff it satisfies the affine
difference equation
2, @iu(t=1),.... u(1))Y(t~i) = @y (u(t=1),....u(t-1)) (1)
i=0
where r is the order of the system, and a;, i=0,1,...,+1 are polynomials. The results can be gen-
eralised to the multi-input, multi-output case but for simplicity, only the single-input, single-

output case is considered in this paper.

The outpu{—afﬁne difference equation (1) is an input-output model valid everywhere
(Sontag, 1979). Its potential application, therefore, is very broad. The obvious disadvantage of
using eqn. (1) in the identification of nonlinear systems, however, is that there is no simple

explicit recursion in y(t). This may explain why so few results have been achieved in this area.

3. Least squares estimation

In order to apply the well-known least squares estimation method, a linear-in-the-
parameters expression must be derived."Expanding each 4; as an L degree polynomial, keeping
only one term of ay(u(t-1),...,u(t-r))y(f) on the left hand side (LHS) of the equation and moving
the rest of the terms to the right hand side (RHS) yields

M
Y= épi(t)ei +&(0) (2)
where 0, /=1,...,M are unknown parameters to be estimated and &(r) is some modelling error.
For example, consider a second order system with a linear expansion for g;
(cootcoru(t—1)+coau(t=2))y(t) + (croteru(t—1)+cpu(t=2))y(t=1) + (cootcaru(t—1)+coou(t-2))y(-2)

= c30+c31u(t—1)+(:32u(t—2)
Inspection of this model clearly illustrates that before any estimation routine can be applied the

term to regress upon must be determined since in general cy may not exist and there is no

strict recursion in y(t). This creates a significant problem for parameter estimation.



.

Assume that u(—1)y(¢) is chosen as Y(z), the term on which to regress upon, then

€30 C31 c
0, =—, p1i(t) =15 6, = —, pp(t) = u(t-1); 03 = "93: pa(0) = u(t-2);
Co1 Co1 Cot1

Coo Co2 C1o
04 =— —, pa(t) = Y(0); 05 = — —, ps(t) = u(t=2)y(t); 66 = — —, pe(t) = y(+-1); etc.
Co1 Co1 Co1

The total terms in the expansion of each g; are

L
n=3n (3)
=0
where ny = 1, n; = ng_(r+i-1)/i, i=1,...,L. Therefore, there are n possible candidates for Y(¢). For

each expression eqn. (2), the total number of unknown parameters is
M=(@r+2n-1 4)

TABLEs 1 and 2 give values of n and M for some typical values of r and L. It is seen that n
and M increase rapidly as the system order r and the degree L of the polynomial expansion

increase.

The immediate difficulty is however which term of ag(u(t—1),...,u(t—r))y(f) should be chosen
as Y(r). There appears to be no a priori information regarding this matter. If a term is used as
Y(r) which does not exist in the real system, the final model fit will be useless. Such a situation
can be detected only after analysing the estimation results and comparing them with the results
obtained using different choices of ¥(). This means that each possible choice of Y(r) has to be
tried first before the conclusion can be reached. It is apparent that the identification task is
complicated. Many statistical tests can be used to analyse the estimation results in order to
determine the correct choice of Y(¢). Fortunately, a simple calculation of the sum of the squared

errors often provides adequate information

N
sqe = 3., (1) — 5’ 5)
=1 .
where N is the data length

R 1 F . A A . o
J Y= Ao i=D),tr) {8p1(u(t-1),..,u(t=1)) Eﬂ;(u(t D)yeeou(t=r))y(t-i)}

and 4;[.], i=0,1,...,r+1 are the estimates of a,[.].

Even when a correct term which exists in the data generating mechanism is used as Y(),
the determination of the structure or which terms to include in the model is essential if a
parsimonious model is to be determined from the large number of candidates TABLEs 1 and 2.
Direct least squares estimation based on eqn. (2) may involve an excessive number of terms.
Simply increasing the system order r and the degree L of the polynomial expansion to achieve
the desired accuracy will in general result in an excessively complex model and possibly

numerical ill-conditioning. An orthogonal least squares algorithm (Korenberg, Billings and Liu,



1986) can however be derived to overcome these difficulties.

4. Orthogonal regression & £:C

The orthogonal least squares algorithm (Korenberg, Billings and Liu, 1986) is much more
efficient than the ordinary least squares algorithm. The strength of the algorithm lies mainly in
the fact that it provides information regarding which terms in the model are significant. This is
often vital in the identification of nonlinear systems. Since the detailed derivation can be found
in the paper mentioned above, only the main results are quoted. An orthogonal regression
procedure is then proposed for the output-affine problem outlined above.

Consider a linear-in-the-parameters expression of eqn. (2). Assume that no two pyf)s are

identical and &(f) is a zero mean white sequence uncorrelated with p(r), i=1,...M. The orthogonal

algorithm involves a procedure of transferring eqn. (2) into an equivalent orthogonal equation

M
Y()) = 3, wing + &0 (6)
=1
where
wi(f) = pi(t)
(7
k-1
wi(t) = pt) — 3 caw(D), k=2,...M
i=l
and
wipt) . ..
oy = , i<, j=2,...M 8
T WO ®
Here, the bar — denotes time averaging. The estimates of the coefficients g; are given by
wi(DY (1)
g, = , i=1,..M 9
’ wi (D) ; ®
The coefficients of the original equation-can easily be obtained according to the formula
Ou = u
(10)

a M .
0;=4- Y o8, =M-1M-2,.,1
JEit+l
The estimates eqn. (10) are unbiased and the standard deviations of the estimates are given by

A 1 ij .
s5td(0;) = o ,-— —_— i=1,.,M - (11
Ng" w}(r)

1 i=j
b = i J=1,.,.M - (12)
=2 Oaty  O<i<j 0 N,
=i+l

where
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and o? = E{€*()}. An estimate of & can be obtained from

M’ 2
\/ E(Y(r) wiDg) (13)

L—l

Because of the orthogonahty

7(e) = Z WD) + o (14)
The ratio of the reduction in the sum of squared errors due to the i’th term is therefore given
by
ghwi(n)

[rer]; = g i=1,...M (15)
Y4()

Eqn. (15) can be used as a criterion for determining the significance of the terms in the model

expansion and insignificant terms can be removed from the orthogonal equation. This is
equivalent to removing corresponding p,(f)s from the original model leading to a less complex

model.

However, care is required in interpreting eqn. (15). It can be shown that if the position of
each p(f) in eqn. (2) is changed a different value of [rer]; will be obtained. In general, a term in
the first position of eqn. (2) will have a larger [rer]; value than that obtained by changing its
position to appear later in the equation. As a result, simply orthogonalizing the p,(f)s into the
orthogonal equation in the order in which they happened to be written down in eqn. (2) may
produce the wrong information regarding their significance using eqn. (15). To avoid this
difficuty, an orthogonal regression procedure motivated by the idea of stepwise regression
(Smillie, 1966) is proposed

In the initial stage, all p,(t), i=1,..,M are considered as possible candidates for wy(f). For

i=1,...,.M, calculate

wit) = pi(r)
w§'5(t)Y(t)

& =
W)
o @My
[rer]p =
Y=(»

Find the maximum of [rer]’, say, [rer]{® = max{[rer]{’, 1<i<M}. Then the one-term orthogonal

equation is selected

Y(1) = wi(t)g: + (1)
with wi (1) = wi(®), & = 80 and [rer]; = [rer]{.

In the second stage, all p{(1), i=1,....M, i#j are considered as possible candidates for wy().

For i=1,..,M, i#j, calculate

wi() = pit) — 0w, (1)



g,.g} - WE‘)(I)Y(!)
()
@ WD)

[rer}&" = ?2_(__0_

where

5 wilOpi)
0.9 5 ——
wi(o)

Find the maximum of [rer]?, say, [rer]$? = max{[rer]{, 1<i<M, i#}. Then the two-term
orthogonal equation is formed
Y(1) = wi()g1 + wa(t)g, + &(t)
with wo(t) = w(8) = pt)-0uwy (), 8 = $% and [rer], = [rer]®, where oy, = afd.
The procedure is terminated at the m’th stage when -
1- i [rer]; < a‘it_igs_'z_‘rrffc{ ‘rolergm;e;

i=1
where m < M. The final orthogonal equation is selected as

Y() = 3 wit)g + E0)
i=1

Using eqn. (10), it is straightforward to calculate the corresponding parameters 6; in the model

containing only m significant terms.

The above procedure has advantages over stepwise regression. Because of the
orthogonality, before adding the i+1'th term to the orthogonal equation, there is no need to
remove the effect of the i’th terms. In stepwise regression, a term that was significant at an
earlier stage may become insignificant after several other terms are included in the model. To
overcome this difficuty, before adding a new term, those terms that are already in the model
are tested for their significance using some statistical test (Billings and Voon, 1986). If a term
is found to become insignificant it is deleted from the model. Such a precaution is not

necessary in orthogonal regression.

In orthogonal regression, it is not required to remove the mean levels. This is desired
because removing mean levels from signals when estimating nonlinear models can change the
structure of the model, and will almost always induce input sensitivity (Billings and Voon,

1984).

5. Simulation study

Two simulated examples are used to illustrate the application of the orthogonal regression

algorithm to output-affine systems.



Example 1

[we(t=1)Fu(t=2)1y()=0.2u(t— 1) y(t—1)+0.7u(t—1)u(-2)
200 pairs of data were generated using the input u(f)=sin{(n/6)¢}. An output-affine model with
=2 and I=2 was used to fit the data. Depending on the choice of Y(), the total possible linear-
in-the-parameters models of eqn. (2) is 6. Each such model has 23 parameters in the right hand
side of the expression. Each expression is fitted using the orthogonal regression algorithm. The
results are given in TABLE 3 where the order in which the selected terms appear is according
to the order in which they were actually selected. Comparing sqge values in each case there is
little doubt that the correct choice of ¥(r) is either u(t~1)y(f) or u(r-2)y(r) which correspond to
the existing terms ap(u(+-1),u(~2))y(z) in the real system. Both choices of ¥(#) produce the
correct estimates of the real system parameters.
Example 2

u(t=2)y(y=[u(t—1)+1(t-2)]y(e~1)—(t—1)y(t-2+u(t—1)u(t-2)
A uniformly distributed random variable with amplitude range +0.5 was used as input to
generate 200 pairs of data. An output-affine model with =2 and L=2 was used as a candidate
model. The results obtained using the orthogonal regression algorithm are shown in TABLE 4.
It is clear that the correct choice of Y() is u(+~2)y(f) which is the only term of
ag(u(t=1),u(t=2))y(?) in the real system. The model obtained in this case is a good approximation
to the real system. Because the estimated coefficient. of wu(s~1)y(s) is so near zero, it is
reasonable to test whether this term actually exists. Restarting the regression with this term
deleted gives the final estimated model

w(t=2)y(t)=1.0u(t-2)y(t~1 11 Ou(t-1)u(t~2)+1.0u(t~1)y(t~1)~1.0u(-1)y(--2)
with a smaller sqe = 3.526x1075. This confirms that the coefficient of u(+~1)y(s) is indeed zero. _

6. Noise corrupted outputs

If the system output is corrupted by noise bias occurs using the least squares method.
This is because some of the pi(f)s become correlated with &(f). The extended least squares
method, which has been shown to give unbiased estimates in the identification of NARMAX
models (Billings and Voon, 1984), in this case will also produce biased estimates. Let
2(t) = y(1) + e()
where z(t) is the output corrupted by the white noise e(t). Substituting for y(t) using z(r)-e(¢) in

eqn. (1) gives

r

Y, ai(u(t=1),...,u(t=r))2(t—i) = apy1(u(t-=1),...,u(t-1)) + é a(u(t=1),...,u(t=r))e(—i) (16)
i=0

=0
Defining



-8 -
E(1) = ap(u(t-1),..,u(t-1))e(t) (17)
and expanding the rest of polynomials yields the model
M
Y(1) = 3, pi(00; + E(0) (18)
i=1
Now
M=Q@r+2n-1 (19

The number of unknown parameters is almost doubled and because £(¢) is correlated with those

pi(t)s which have z(?) as their component, bias occurs in the estimates.

Other alternative estimation methods, therefore, must be employed in order to obtain

unbiased estimates. Rearrange eqn. (16) into

2(r) = ao(u(r—l)i..,u(t—r)) [ (41, u(t7)) — E (1), (T))(2(10) = e(=i)} + &) (20)

which is no longer linear-in-the-parameters. The prediction-error estimation algorithm

(Goodwin and Payne, 1977; Billings and Voon, 1986) is applicable provided that some
structure determination technique is incorporated with the algorithm. The extended orthogonal
algorithm (Korenberg, Billings and Liu, 1986) can be modified using the idea of orthogonal
regression. The resulting extended orthogonal regression procedure may then be used to detect
significant terms in the model while the prediction-error algorithm provides optimal estimates
of the final model parameters. Further research is required in order to develop a suitable

estimation algorithm for stochastic output-affine systems.

7. Conclusions

The least squares method is employed in the identification of the output-affine difference
equation model. The problem is not as simple as it first appeared. An orthogonal regression
algorithm was introduced which combines structure determination with parameter estimation

efficiently.

In order to obtain unbiased estimates of the stochastic output-affine system, further
research is needed. A possible unbiased estimation algorithm is the prediction-error algorithm
coupled with some suitable structure determination technique. This is currently under
investigation. The main challenge is to develop an efficient structure determination routine to

detect significant terms in the output-affine model prior to the final estimation.

It is obvious that parsimonious models of linear systems and other tpyes of nonlinear

systems can be identified using the orthogonal regression algorithm.
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TABLE 1. Values of n

2 3 4 5 6

3 4 5 6 7

6 10 15 21 28

10 20 35 S6 B84

TABLE 2. Values of M
T

1 2 3 4 5 6
5 11 19 29 41 55
8 23 49 89 146 223
11 39 99 209 391 671
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TABLE 3. Resuits of example 1

RHS terms

Y(1) “sqe

¥(0) 160.3u(—1)u(t—2)y(f)32.61u(:—2)+65.72y(¢~1) 3.075x1077
+20.24u%(+-2)y(£)~178.9u>(t—1)y(t-1)

u(t=1)y(t) 0.7000u(t—1)u(t-2)—1.000u(t~2)y()+0.2000u(t—1)y(t-1) 3.044x107!

u(t-2)y() 0.7000u(t—1)u(—2)—1.000u(t—1)y(£)+0.2000u(t—1)y(t~1) 9.325x107!

w(e-1)y(t) 1.594u(t—1)u(—2)y(1)-0.8180u(t—1)u(-2)y(t—1)+0.06525y(t) | 1.644

u(t-Du(t-2)y(H) | 0.6270u>(t~1)y(£)}+0.5130u(:—1)u(~2)y(t-1)-0.04074y(z) 1.644

w2 (=2)y(t) 0.8180u(t-1)u(t~2)y(+~1)+0.1848y(1)+0.137Tu(t-1)u(t-2)y(z) | 1.644

TABLE 4. Results of example 2
Y(») RHS terms sqe

y(£) fifteen terms were selected 16.74

u(t-1)y(z) —3.556u(t—1)u(t-2)y(£)}+1.000u(t—2)y(z) 4.334x10°
~1.490x1077u(t—1)y(2-1)~1.803x105u%(+-1)~0.3039y(r)
+1.7782(+=2)y(£)+1.778u*(1—1)y(1)

u(t=2)y(1) 1.000u(t—2)y(t—1)+1.000u(t—1u(t-2)+3.576x10 " u(t—1)y(r) | 4.366x107°
~1.000u(t—1)y(t-2)+1.000u(t—1)y(t-1) B

W (t-1)y(1) 0.1709y(£)—0.5624u(s~2)y(£)+2.000u(t-1)u(t-2)y(z) 4.443x10°
+0.5624u(t—1)y(1)~1.000u>(-2)y(f)

u(t-1)u(t-2)y(f) —0.2812u(r—1)y(:)+£).28 12u(r—2)y(t)+0.500u2(t;1)y(t) 4.443x10°
~0.08547y(£)+0.5000u%(-2)y(1)

u(-2)y(¢) 1.0012(t-2)p(t~1)+0.04245u(t~1)+0.1400u%(+-2) 3.709x10*

—3.089% 10~ u(t—1)u(t-2)y(£)-1.003u(—1)u(t-2)y(1-2)

+1.003u(t-u(-2)y(+-1)




