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Abstract

The practical application of a recently intro-
duced orthogonal parameter estimation algorithm is
investigated by identifying a nonlinear model of a
heat exchanger based on input-output records. A
new criterion called ERR; (Error Reduction Ratio) is
employed to select significant terms in the NAR-
MAX model expansion to yield a parsimonious
model. The fitted mode! is then compared with a
model previously obtained using a prediction error
algorithm' coupled with stepwise regression, and
validated by computing various correlation tests and
plotting predicted outputs. -

1. Introduction

The recent introduction of the NARMAX

model [Leontaritis and Billings 1985 a,b] (Nonlinear
AutoRegressive  Moving - Average model with
eXogenous inputs) into the identification of non-
linear systems provides a system representation
which can be characterized by a small number of
parameters. This is due to the fact that the NAR-
MAX model maps both past inputs and past outputs

into the present system output which considerably -

reduces the computational burden and excessive
parameter set associated with the traditional func-
tional series [Schetzen 1980, Marmarelis -and Mar-
marelis 1978] expansions which map only past
inputs into the present output.

The main difficulty in nonlinear identification
using the NARMAX model is the model structure
determination. Once the exact model structure is
determined, the unknown parameters can be
estimated using standard routines [Billings and
Voon 1984, 1986a, Korenberg, Billings and Liu
1987). In practice, it may be either impossible or
very difficult to derive an analytical model and the
system under consideration is often treated as a

U

black or grey box. The successful application of the
NARMAX model in nonlinear identification is
therefore dependent upon detecting which terms in
the polynomial expansion should be included in the

final model. Several well known methods adopted

for this purpose including a stepwise regression

‘based algorithm and a log determinant ratio test

have been documented elsewhere [Billings and
Voon 1986a, Leontaritis and Billings 1987].

~ In this paper, a riew criterion called ERR; is
used to detect or select significant terms for a non-

“linear heat exchanger system. The resultant model is
estimated using an orthogonal parameter estimation

algorithm and validated by computing various
correlation tests and plotting predicted outputs. A
comparison between this model and a model
estimated using a prediction error/stepwise regres-
sion routine [Billings and Fadzil 1985] is examined.

" 2. Problem Formulation
The NARMAX model is used as a basis to
develop a nonlinear representation of a heat
exchanger, It has been shown that this model can
represent a wide class of nonlinear systems and has

. the general form

Y=ot Fye-1), - - - Je-mate-dD, =+

u(t-d-n1)8(-1), * * - E@-ng)l + &) 0))
where u(f) and y(f) represent the measured input and
output respectively, E(9) is the prediction error
defined as.

En = y(0) - 3© 2
and n,, n, and ng represent the dynamic order of
output y(r), input u(s) and prediction error &n
respectively and F'[ - ] is a nonlinear function of I
degree nonlinearity, d is the time delay in the input
and dc is a constant term. Inclusion of the constant
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term is justified since removing mean levels from
input-output records when estimating nonlinear
models will almost always induce input sensitivity
and consequently change the structure of the model
[Billings and Vioon 1984].

Expanding equation (1) as a polynomial yields

) =§ 0:PA1) + £() 0

where

Pu(l=yt=ny1) * « * y(t-nypu(i—d+1-ny) - - -
U(-d+1-n e (t-ngy) « - - Et-ngy) @

for m=0,1,2,--- .M

k20, 20, 420 .

1Sn,1Sn, - - - 1SS,
0sny<n,, « ¢+ sosnaq,snu

1Sny<ng, -+ + 1Sng<ng
and

k=0 indicates that P,(¢) contains no y(,) terms,

Jj=0 indicates that P,(r) contains no u(.) terms,

¢=0 indicates that P,(r) contains no §(.) terms,

If k=j=¢=0, the corresponding term P,(f) is set to
1.0 so that a constant term 6,=dc may be accommo-
dated in the model. -

For the convenience of later analysis, we refer to
those P,() that contain no &() as deterministic
terms (g=0), the rest as noise terms (¢g+0).

The maximum number of terms is M+1 where M
can be computed from

i
E n; = Rgtighecccee +mny 7 (5)
=l

n; = [ny(nytnngi-1))i

M

L]

where ng=1
For example, a first order system (n/=n,=ng=1)
with second degree nonlinearity is given by
Y(O)=de+0,y(t=1)4+0,u(t-11+03y7 (1)
+0, (- 1)u(-1)+0 512 (-1 )40 £ (1)
+87)(—1)E(1-1)+0u(-1)E(1-1)
+0,5 (-1 () 6)

by defining Po()=1.0, Py(0)=y(--1), Py(i)=u(t-1),
Py()=%(-1),  Py(=y(-1u(1-1),  Ps(O=u’(:-1),
Py()=E(1-1), Py()=y(-1)5(1-1) , Pg(t)}=u(t-1)5(:-1),
Py(n)=t*(1-1) and By=dc, eqn (6) can be written in
the form of eqn (3). There are ten coefficients in
the above model, but for & second order system

' (n=n,=ng=2) with a cubic polynomial expansion

(1=3) there will be eighty four terms in the model
and the excessive number of parameters becomes
evident. The complete NARMAX model representa-
tion of a nonlinear system may therefore cause
severe computational demands on the parameter
estimation algorithms. Even if unlimited computer
facilities were available the problem of overparame-
terization would probably cause numerical ill-
conditioning.

Fortunately, experience has shown that pro-
vided the significant terms in the NARMAX model
can be detected, typically only around ten such
terms are adequate to describe highly nonlinear
dynamics and the remainder can be deleted with lit-
tle deterioration in prediction accuracy [Billings and
Fadzil 1985, Billings and Voon 1984]. Hence, the
detection of significant terms or the selection of
which terms to include in the model becomes criti-
cally important in nonlinear identification using the
NARMAX representation.

.. 3. The Orthogonal Algorithm
The recently introduced orthogonal estimation
algorithm for input-output records "corrupted by
noise provides a simple and efficient way of obtain-

“ing unbiased parameter estimates for the NARMAX
model. The ERR; test which is a by-product of the

algorithm can provide information regarding the
significance of terms in the polynomial expansion in
eqn (3). For a detailed derivation of the orthogonal
algorithm the reader is referred to Korenberg, Bil-
lings and Liu (1987). Only the main results associ-
ated with ERR; are presented here. -

In order to estimate the coefficients 6; in egn
(3), an auxiliary model [Korenberg 1985]

M
Y= 2 emWmltHE() Q)
=0 5

- is introduced such that Wi{r) satisfies the orthogonal-

ity condition over the data record of length N
gm«)wm(rﬁo J0L, - - - ok (8)
This can be achieved by setting |

Wo()=P (1)

W.,(t)=P..(f)-j};:amWr(!) €)

and

N
SPAOWL)
=1

0=

N
zl‘,W?(:)
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Then using eqn (7) yields

N
IHOW()
= (10)

gm“— N
TWa®

=1

Now the coefficients in the original model (3) can
be computed from
Ou=tn

b, f‘, a,,,é- m=M-1, M-2, -,

(11a)
1,0 (11b)
which can be eas:ly estabhshed using the :denuty
Eé..P..(z)= zg.. wl0)

By choosing Wy(1)=Py(1)=1.0, it can be proved

from the orthogonality property of W{) and eqn (7)
that the ERR; is given by

SV
Y IR (12)
2O [D(t)] .
=1 =1
for i=1,2, - -+, M, The ERR; gives the percentage

reduction, by including the i’th term in the model,
from the maximum mean squared eror with the
effects of the constant terms eliminated. The ratio
can also be interpreted as the percentage reduction
in the total sum of the squared errors due to the
inclusion of the i'th term, with the effects of the
constant removed. This ratio can therefore be used
to provide an indication of the significance of terms
in the model. ;

In the implementation of the ERR; test, two
kinds of terms should be treated separately if both
unbiasedness of the estimates and parsimony of the

“model are desired. For deterministic terms, typical
threshold values of ERR; (called C,) are taken to be
0.05 to 0.5 and for noise terms lower threshold
values (called C,,) are taken to be 0.005 to 0.1.

The prediction error &(.) is not known a priori
and can be computed from
&=y (-S6W(0) (13)

where the summation will be specified later. The
orthogonal estimation routine incorporating the ERR;
test is then given by the following algorithm '

(i) Select values for ny, n,, ng, d and ! in egn (1)
and set &(t)=0.0 for t=1, --- N, Select C; and C,,.

(i) Estimate all the auxiliary parameters that
correspond to the candidate deterministic terms
using eqn’s (9) and (10).

(i) If £(=0.0, t=1,2, , N goto (iv) otherwise
estimate all the auxiliary parameters that correspond
to the candidate noise terms using eqn’s (9) and
(10}

(iv) Compute ERR;'s using eqn (11), test against the
thresholds C,, C,, and remove insignificant terms
(v) Estimate the prediction errors using eqn (13)
where the summation is over all selected terms.

(vi) If any deterministic terms were deleted in step
(iv) then take the remaining deterministic terms as
candidates and go to step (ii), otherwise take the
remaining noise terms as candidates and go to step
(iii), and repeat until convergence.

(vii) Estimate the NARMAX model coefficients
using eqn (11) )

Numerous simulations have been done using
the above algorithm [Korenberg, Billings and Liu
1987], here we apply it to the identification of a

heat exchanger

4. The Data Set

The heater exchanger system (Fig.1) consists
of a heater, pump, fan and radiator. Heated water is
pumped through the radiator around a closed loop
and the fan blows air across the radiator. The tem-
perature drop across the radiator and the air flow
rate can be controlled by adjusting the inputs to the
heater and the fan. Fig.2 gives a block diagram of
the system. It has been shown that Loop L;, and
Loop L,, are linear while Loop Ny, is nonlinear.

A detailed description of the heat exchanger .
system and experiment design can be found in the
literature [Billings and Fadzil 1985]. For the purpose
of this paper, only the nonlinear loop N;; will be
studied. The input was a Gaussian white excitation
with a mean of -0.1177 and a bandwidth of 0.5Hz
for the first five hundred input-output records and a
bandwidth of 0.05Hz for the second five hundred
records. In the following analysis, the first 500
points in the data set will be used as the estimation
set, and the second 500 points as the testing set. For
comparison with previous results a linear model is
identified initially and then extended to include non-
linear terms.

5. Linear Analysis

A linear analysis was based on the modified
data set by removing the mean level from the raw
input-output records. The specification of a second

——
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order process model (n=n=2, d=1) and a second
order noise model (ng=2) produced a model with
linear model val:d:ty tests illustrated in Fip.3.
Inspection of Fig.3 shows that ®,:(t) is slightly out-
side the 95% confidence bands and ‘Pﬁ(‘t) is well
outside the 95% confidence bands. This is almost
identical to the results of Billings and Fadzil [1985]
where it was argued that this indicated a deficiency
in the noise model.

The noise model order was therefore increased
to four and the model re-estimated to yield

Y(=0.03177+0.9245y'(+-1)-0.2022y'(+-2)
+0.2660u(¢-1)-0.05577(+2)
~0.1837E(+-1)+0.03405E (--2)+0.2458E(s-3)
0.02721E(—4)+£(r) (14)

which appeared to be the best fit according to the
~ linear model validity tests. However, since the pro-
cess is nonlinear it also must be tested by nonlinear
model validity tests to see if this is an acceptable
approximation. The correlation validity tests intro-
duced below can serve for this purpose. It has been
shown that [Billings and Voon 1986b] when the sys-
tem is nonlinear the residuals E() should be
unpredictable from all linear and nonlinear combina-
tions of past inputs and outputs and this will hold iff

D (1)=5(t)
De(1)=0 for all © (15a)

| @ 1)=0 for 120
Notice the fact that the conventional model validity
tests ®g:(1) and D,(7) are not sufficient when the
system under consideration is nonlinear. When
instrumental variables or suboptimal least squares
are used the residuals may be coloured. In this case
the process model will be an unbiased adequate fit
iff

Du(t)=0 for all ¢
(=0 for all T (15b)
& “,»‘z(t)=0 for all 1

where (1) represent estimates of the prediction error
sequence and the * indicates that zhe mean has been
removed from a signal,

As is the case with the prediction error algo-
rithm, experience has also shown that when using
the orthogonal algorithm the tests in both equation
(15a) and (15b) can often provide an experimenter
with valuable information regarding the deficiencies
in the resultant model, and can indicate which

terms, if any, are missing from the model. These
terms can then be forced in and the new model can
be estimated and tested again,

Computing the comelation tests gave the
results illustrated in Fig.4, which show that although
the linear covariance tests Dge(t), Dur(t) now indi-
cate that the model is adequate, d:uz (1) and
@ H’EZ(T} are well outside the confidance bands indi-

cating that nonlinear terms have been omitted from
the model [Billings and Voon 1986b] . Notice that
(Fig.5) whilst the predicted output gives an accept-
able approximation over the estimation set, the
experimental condition for which the model was
estimated, the deficiency is apparent over the testing
set(last 500 points), which were collected for a
different experimental condition. We can therefore
conclude that the linear covariance tests are not
sufficient and can be misleading when the system
under consideration is nonlinear, In the following
section, estimation of a nonlinear model is investi-
gated, L
6. Nonlinear Identification

In nonlinear identification the raw data set
was used, because using normalised data may result
in an input sensitive model [Billings and Voon

.1984]. As before, the first 500 points in the data set
-were used as the estimation set and the second 500

as the testing set.

With an initial specification of n,—n,,—ng—z, )
d=1, k=3, there will be eighty four candidate terms
in the NARMAX model expansion. With a

“significance threshold of C~0.2 and C.=0.05, the

estimator produced the following model

Y(0=2.140+1.293y(~1)-0.3925y(t—2)
+0.4809u(-1)-0.05788y°(-1)
+0.04298y(1-1)y(r—2)-0.02345y(¢~1)u(t-1)
-0.01323u%(-1E() (16)

The model in egn (16) includes linear
dynamic terms and four second degree nonlinear
dynamic terms as suggested in the linear analysis.
From all the eighty four candidate terms only those
in egn (16) are selected by the ERR; test with a
prespecified significance level,

The prediction accuracy of egn (16) is much
better than that of the linear model egn (14) but the
model validity tests illustrated in Fig.6 show that
Dy, (1) and ¢“1'§(1:) are now acceptable while
D (1), D7) and @ "z'ﬁz('r) are not. This indicates
[Billings and Voon 1986b] that the deficiency may
be due to unmodelled linear terms. A comparison of
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Fig.6 with Fig.3 reveals that ®y(t) and ®,(t) are
very similar in both diagrams and suggests that a
fourth order linear noise model may alleviate the
problem as in the linear analysis. Re-estimating pro-
duced

Y(()=2.113+1.118y{¢-1)-0.2119y(1-2)+0.497 5u(¢-1)
—0.03032y*(+~1)+0.01497y(¢-1)y(t—2)
—0.02657y(t—1)u(t~1)-0.01194u2(r—1)
—0.1348E(r-1)+0.01 108 (1-2)+0.2553& (-3)
+0.04077§(:—4)+§(:) - (D

The model validity tests for this model showed that
®ee(t) was slightly outside the 95% confidance
bands at lag 5 and @ “z-gz('r) was slightly outside at
several lags. This may suggest that £(+~5) should be
included in the model. A comparison with Billings
and Fadzil’s [1985] results reveals that both fits
included the constant term, y(t-1), u(t-1), y*(t-1) and
v(t-1) terms. The other terms do not match because
the above fit includes two more second degree non-
linear terms y(t-1)y(t-2), y(t-1yu(t-1) and a linear
term y(t-2) in place of two cubic nonlinear terms
Y(t-1u(t-1), v’(¢-1) and a u(t-1) term in Billings
and Fadzil [1985). A lower threshold [C=0.04,
Ca=0.01]"was selected to bring in some cubic terms
but no improvement in d’uz‘?("} was achieved. As a
- result, inclusion of higher order nonlinear dynamic
terms did not appear to be justified. Thus re-

estimating with a fifth order linear noise model gave

Y(0=2.017+1.172y(t~1)-0.2465y(+~2)+0.4879u(r-1)
~0.3557y%(¢~1)+0.01937y(—1)y(1-2)
—0.02566y(t~1)u(t~1)-0.01278u%(-1)
~0.1223E (r-1)-0.001474E (1-2)4-0.2486E (¢-3)
+0.044645(1—4)-0.16745 (-5 1+E(0) (18)

The model validity tests applied to this model
confirmed that this fit was adequate (Fig.7). The
advantage of building up & nonlinear model
becomes apparent from an inspection of the predic-
tion accurancy (Fig.8) which is clearly an improve-
ment on the linear model case (Fig.5). Eqn (18) was
therefore accepted as the ‘best’ nonlinear model.
Note that the validity tests for this fit are virtually
the same as those of Billings and Fadzil’s [1985].
The advantage of the present algorithm is that it is
much simpler and computationally more efficient,

7. Conclusions .

The NARMAX difference equation model can
provide a concise representation for nonlinear sys-

tems. Although numerous simulations have been
completed using the orthgonal estimator coupled
with the ERR; test, this paper investigated the practi-
cal application of the algorithm to a heat exchanger.
The ERR; test can provide a very powerful tool for
the determination of the structure of nonlinear sys-
tems using a NARMAX model representation and
the final model can be checked by computing corre-
lation model validity tests and examining predicted
outputs. The ERR; test as reported above is depen-
dent upon the order that terms are included in the
model and nmew algorithms which overcome this
deficiency and extend the results to the multivari-
able case are in press.
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