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INTRODUCTION the Liouville equation in the DM calculations.
In the first implementation of the DM approach
Quantum cascade lasers (QCLs) are CompaC{Figs.l and 4) tunnelling transport only through

fr?;rt(é?:hg:tzc?'lbﬁrz?nrte r?:ﬁag??h;h;i;éfgmzmr'\tet'izthe injection barrier is considered. Fig. 2 illustrates
9 9 the unrealistic spikes in current density and gain

spectrum. However, room temperature operatlothen electrons scatter between spatially extended

has not yet been achieved in THz QCLs; the . . . )
current highest temperature operation is 199.5 Ksubbands (as in Fig.3) using the rate equation

at 3.22THz using an AlGaAs/GaAs stucture [1]. approach.

Advances in theoretical modelling have contributed The formalism is then applied to InAIGaN/GaN
g h: (Fig. 5) and AlGaN/GaN THz QCLs with polar-
to the development of such optimized and novel

devices and both Monte Carlo and rate-equation'zatlon fields included. To calculate tight-binding

models of QCLs can give good agreement with energies, wavefunctions and coupling strengths it is

. . necessary to remove pyro- and piezo-electric fields
experimental results [2]. However, these semi- y by b

classical models do not account for coherent translcrom the isolating barriers to maintain periodicity

L . : of the bandstructure. Optimizations are limited
Gue 1o the typically thick njecion barmiers and can © diagonal transiton designs to account for an
predict unrealistic results. Like non-equilibrium enhanced F(oh_ch Interaction which is thought to
Green’s functions (NEGF), density matrix (DM) suppress gain in nitride systems [8].
modelling accounts for tunnelling but is less com- ACKNOWLEDGEMENT
putationally intensive which allows for its use as a  This work was supported by the EPSRC.
simulation tool. To reach higher temperatures, it is
necessary to suppress the performance degradation REFERENCES
meCh_anlsms which occur. Th.ese include thermal[1] S. Fathololoumi et al.Terahertz quantum cascade lasers
backfiling and thermally activated LO phonon operating up to~ 200 K with optimized oscillator
scattering which occurs as electrons gain enough strength and improved injection tunnelin@pt. Exp.,30,
in-plane kinetic energy to emit an LO phonon ,, 003866 (2012). , ,

L [2] V. D. Jovanovit et al.Influence of doping density on elec-
and relax to the lower laser level non-radiatively. "~ ton dynamics in GaAs/AlGaAs quantum cascade lasers
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allows for coherent modelling of a QCL structure [] G. Beji, Z. Ikoni¢, C. A. Evans, D. Indjin, and P. Harriso
with any number of states. Additionally, the Hamil- Coherent transport description of the dual-wavelength
tonian in the Liouville equation can be be altered =~ a@mbipolar terahertz_quantum cascade lasek Appl.
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that intra-period transport is modelled coherently. = Algebra Library for Fast Prototyping and Computation-
We first model a GaAs structure measured ex- ally Intensive ExperimentsTechnical Report, NICTA

; : : (2010).
perimentally in Ref. 5 to compare gain/current [8] H. Yasuda, T. Kubis, I. Hosako, and K. Hirakawion-
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two submodules per period [6]. The Armadillo  Phys.,111, 083105 (2012).
C++ linear algebra library [7] is used to solve
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Energy-band diagram of the ambipolar THz QCL in
Ref. 5 at 9 kV/cm. The lasing transition is from state 4 to 3.
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Current density and gain as a function of forwar

bias for the ambipolar THz QCL in Ref. 5 at 80K with an
excess electron temperature of 10K.
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Energy-band diagram of the ambipolar THz QCL
in Ref. 5 at 7kV/cm without the tight-binding approach.
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Fig. 4. Simulated gain (or negative absorption) per cm fer th
ambipolar THz QCL in Ref. 5 at 80 K with an excess electron
temperature of 10K using the density matrix approach.
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Fig. 5. Energy-band diagram of the GaN THz QCL in Ref. 8
at a forward bias of 80kV/cm with the tight-binding scheme

to obtain the localized wavefunctions shown.

This leads to an extended state 1 wavefunction providing an
unrealistic resonant LO phonon current path.
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