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1. Introduction

This report describes plant modelling based on data collected during routine
operation at a large coal-fired power station in the north of England. Data
from one of the eight pulverised fuel mills which feed the furnace of one of
the generating units was recorded continuously on magnetic tape, and sampled
using a digital computer at the University. Structural and parametric esti-
mation was then performed using the multivariable system identification

package (LMI) recently developed (Hamiane, 1984).

A brief dgscription of mill operation is presented in Section 2, together with
diagrams showing the principal inputs and outputs, and the basic processes
operating within the mill. Section 3 describes data collection and pre-
liminary correlation analysis. Structure detection and parameter estimation
is conducted in Section 4 and the most appropriate multiple-input, single-
output linear model is fitted. Model validity checks based on the prediction

error are also demonstrated with conclusions presented in Section 5,

2. Pulverised Fuel Mill Operation

Pulverised fuel mill operation is illustrated in figure 2.1. Coal enters

the mill via a conveyor belt, at a rate controlled by an operator or computer-
set scoop position. The mill is rotated, grinding the coal by impact with
steel balls. High velocity air supplied by the primary air (PA) fan carries
the grinding product into the body of the mill where classification takes place
in two basic steps. Particles whose free-fall velocity is greater than the
local upward air velocity fall and recombine with the feed. Following coarse
classification lighter particles are carried to the fine classifier where
further particles are rejected and recirculate. Secondary classification is
by cyclone action; air rotating at a controlled rate causes particles heavier
than the requisite size to be rejected whilst lighter particles are carried

to the burners in a controlled fuel/air mixture.

M
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Inputs to the mill are the primary air flow rate, the coal feed rate, and the
position of the damper controlling the flow of hot/cold air to the mill. The
p?incipal output, the pulverised fuel (p.f.) flow rate, is unobservable on a
routine basis but may be inferred from the pressure drop across the primary
air fan (PA differential pressure), the pressure drop across the entire mill
(mill differential pressure), and the mill outlet temperature. Mill motor
current and PA fan current are among other variables available as secondary
outputs. The pressure drop in the air passing through the mill has two
components: frictional loss due to passage of air through an aperture, and
loss due to fuel/air interaction. A square-law relationship may be demon-
strated between air flow and frictional loss, whereas the coal-dependent
component is directly proportional to the mass of coal in the mill, and

largely independent of air flow, see figure 2.3.

Under normal operating conditions it is required to control the boiler master
pressure to a particular desired value, determined by grid conditions and
consumer demand. A incremental, tuned PID controller operates on the error
in master pressure, and the required change in fuel input to the furnace is
calculated. This is converted to a demanded fuel change per mill, and then
to a common desired primary air differential pressure which is transmitted to
all running mills. A separate control program controls the primary air flow
for each of the mills, following denormalisation of the desired value to
account for individual mill dynamics. The coal feeder speed is controlled to
maintain a constant ratio between the primary air differential pressure (APa)
and the mill differential pressure (APm), termed the 'mill ratio' and rep-
resented by the upper line in figure 2.3. The lower line, termed the 'clean
air line', is the ratio with no coal in the mill; the difference in APm
between these two lines is thus an indication of the instantaneous fuel in
the mill. The mill outlet temperature is separately controlled by adjustment

of the dampers supplying hot and cold air to the mill.
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As has already been mentioned, pulverised fuel output is not directly

observable during routine operation. It is desirable that the mathematical
relationship between this quantity and those variables which are routinely
available be identified. The exercise reported here is a preliminary step
towards such a goal. The fluctuation in boiler master pressure is taken as

the variable most closely reflecting changes in pulverised fuel output.

3. Data Collection and Analysis

Data was recorded continuously on magnetic tape during routine operation
over a series of twenty-minute periods. A maximum of four channels per test

was permitted by the available equipment. The four variables recorded were:

BMP  Boiler master pressure (output)
APm C mill differential pressure (input 1)
APa C mill primary air differential pressure (input 2)

MFS C mill feeder speed (input 3)
These quantities are represented by 1 to 5 volt signals:

BMP 1-5 volts : 0-200 Bar
APm 1-5 volts : 0-70 mBar

APa 1-5 volts : 0-7 mBar

MFS 1-5 volts : 0-100%
The recorded data was subsequently sampled at 5 second intervals and stored
on disc using the Modular Interface (MINC) computer. This unit was selected
for the data-logging operation because of the 12-bit accuracy of the digital-
to-analogue converters. The data was thus read to an accuracy of 0.027%.
Following this, different data sets were selected: one is used in the
identification procedure with the others used for model validity tests.
Only two subsets of data showed appreciable variations in plant variables,
and these two were transferred to the Perkin-Elmer 3220 for processing using

the LMI package.
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Figure 3.1 shows the input/output data sequences. The data was first
normalised by removal of the mean levels, the normalised data being shown

by Figure 3.2.

Correlation analysis between the output and the three inputs was conducted
to gain preliminary information regarding the basic plant couplings. Figure
3.3 shows the cross—correlation plots, from which it may be seen that all
three inputs are highly correlated with the output. At least one non-zero
coefficient is therefore expected for each input in the estimated model.
Cross-correlation between the inputs was investigated, and the results are
presented in figure 3.4, indicating high correlation between the three
selected inputs. Some difficulty must therefore be expected in applying the

structural identification method used in the IMI package.

4. Structural and Parametric Identification

The IMI multivariable identification package (Hamiane, 1984) uses a canonically
observable form of system representation (Luenberger, 1967) which decomposes
the system state equations into n subsystems, where each ith subsystem
(i=1...n) is completely observable from the ith output component. This
greatly simplifies the problem of multivariable identification, which there-
fore consists of the estimation of n separate subsystem models associated with
each of the n system outputs. Unfortunately, associated with this simplicity
is the disadvantage that the use of canonical forms is critically reliant

upon correct estimation of the structural indices, and parameter estimates

will not be consistent if the structural invariants are wrongly estimated

(Ljung, 1976).

State space formulations are the forms of system representation most appropr-
iate to the majority of applications of control systems theory. However, to
identify a system model from input-output data sets, a polynomial matrix
input-output difference equation representation is more useful. Such an

equivalent polynomial matrix representation can be readily derived from the
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canonically observable state-space form (Guidorzi, 1979) and it is this

form which is used for identification purposes in the package.

The structural parameters of the observable canonical form are determined
using a linear dependence test (Hamiame, 1984). The package then offers
four alternative parametric estimation algorithms, conventional recursive
least~squares, extended recursive least squares, recursive instrumental

variables and recursive suboptimal least squares.

The data from the first data set referred to in section 3 was used to
estimate the order, time delays and parameters of the mill model. Subse-
quent to this, cross-validation was carried out against data from the second
data set. Since there is one recorded output, only one subsystem is to be

estimated, which is described by the following three-input, one—output model:

p(z)Z(k) = ql(Z)ul(k*dl) s q2(z)u2(k_d2)
+ q3(z)u3(k~d3)

where z) = a + a zZ + a 2T % e +E
p(z) n n-1 n-2 |

2 5 ag |

F e BB 2

4(2) = B By 1%t Bp (n=2)? 71

1n

n is the model order and dl’ d2 and d3 the time delays between the output

and inputs ugs U, and uq respectively.

4.1 Structure determination A

b

As stated in Section 3 the high correlation between the inputs makes the
structure determination method available in the package inadequate for this
application. Figure 4.1 indicates a first order model for zero delay to all
the inputs. However, by assuming a common delay for all the input/output
channels, the conventional iterative method (Hamiane, 1984) (Estimation

rule 2) indicated that a fourth order model with a common delay of 6 was a
better description of the system. Using the recursive extended least-squares

1, a minimum of the loss function was sought by varying the common time delay
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whilst maintaining a constant model order. This procedure was repeated for
various values of model order and the set {m, d1 = d2 = d3} which led to

minimisation of the loss function was selected.

This set was also chosen such that a further increase in the model order did
not significantly change the value of the loss function. Table 4.1 indicates

that

n = 4 and dl = d2 = d3 =6

A model order of 4 implies that there are 16 parameters to be estimated in

the process model.

4.2 Parameter estimation

Parameter estimation was performed using the recursive least-squares (RLS),
the recursive extended and suboptimal least-squares (RELS and RSOLS) and the
recursive instrumental variable (RIV) algorithms with the above values for

model order and common time delay, and four passes over the data set.

4,2.1 Recursive least=-squares (RLS)

The RLS algorithm was applied and yielded the following estimated model
consisting of 16 coefficients.

Z(k)

0.01536 Z(k-4) - 0.07574 Z(k-3) +

+ 0.15938 Z(k=2) + 0.72377 Z(k=1) +

+ 0.01965 ul(k—lO) + 0.01156 ul(k—9) *

- 0.00803 ul(k—8) - 0.01526 ul(k-7) +

- 0.00413 uz(k~10) + 0.00110 uz(k—Q) +

- 0.00730 uz(k—S) + 0.01876 u2(k—7) +

+ 0.02179 u3(k*10) + 0.02902 u3(k~9) +

- 0.01581 u3(k-8) - 0.01807 u3(k—7)
Figure 4.2 compares the predicted and process outputs, displaying good
correspondence. The residuals were analysed using the model validity checks

and are shown in figure 4.3, indicating that the estimates are biased.



Delay
e 0 1 2 3 4
1 73.221 10° | 36.952 10°| 31.916 10° | 14.910 10* | 37.105 10°
2 381.197 249.924 291.977 365.433 428.675
3 177.034 129.425 167.415 159,955 265.103
4 110,545 100,113 123.812 113.416 115,645
5 107.861 98.233 115.681 99.310 99 754
i 103.931 97.560 99,841 97.265 97.948
Delay
Order 5 6 7 8
1 34.423 10° | 65.101 102| 50.575 102 | 942.896
- 367.605 260.67 175.213 168 892
3 149,342 124.23 116.785 106 .346
4 115,766 97.365 97.671 96,859
5 99.782 96274 95.196 96,597
6 97.052 94,555 94.234 | 95.423
TABLE 4.1

Variations of Loss Function with increasing

values of model

order and time delay
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Biased estimates are expected (Hamiane, 1984) when the RLS estimator is

applied to real processes, as these are generally corrupted by coloured noise.

Furthermore, even if the noise were white, the inevitable external pertur-

bations affecting the recorded data will also lead to bias in the estimates.

4.2.2 Recursive instrumental variable (RIV)

The RIV algorithm was applied to the data and yielded the final model

consisting of 16 coefficients:

Z(k)

0.08358 Z(k-4)
+ 0.3941 Z(k-2)
+ 0.02002 ul(k-lO)
- 0.00562 ul(k“S)
- 0.01295 uz(k—lO)
- 0.02331 uz(k—8)
+ 0.02773 ug(k—lo)

- 0.01268 u3(k"8)

&

+

-+

0.06815 Z(k-3) +

0.5677 Z(k-1) +

0.01160 ul(k—g) +
0.01790 ul(k—7) *
0.01647 u2(k—9) +
0.02052 u2(k—7) +
0.02834 u3(k—9) +

0.01969 u3(k—7) +

Inspection of figure 4.4 indicates that the predicted output is comparable

with the process output.

Th

e estimation errors were processed using the

model validity checks and the results are shown in figure 4.5. The

correlation coefficients r

the estimates are unbilased

Y1

(t) =0, r (1) = 0 and r (1) = 0 show that
£ u2£ u3€

4.,2.3 Recursive suboptimal least-squares (RSOLS)

The RSOLS algorithm was applied and yielded the final estimated model con-

sisting of 16 coefficients

Z(k) 0.3240 Z(k-4)

- 0.01982 Z(k-2)

+ 0.01204 ul(k—lo)
+ 0.0028 ul(k~8)

- 0.01765 uz(k—lO)

N

+

+

0.2186 Z(k=-3) +
0.8779 Z(k-1) +

0.01464 ul(k—9) *
0.0095 ul(k—7) +

0.0313 uz(k~9) +
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e

-+

0.05736 uz(k—S) 0.0543 uz(k—Y) +

+
e

0.01279 u3(k—10) 0.00506 u3(k*9) +

+

0.11643 uB(k—S) - 0.1412 ug(k~7)

Figure 4.6 shows that the predicted output is comparable with the process
output. The estimation errors were processed using the model validity checks

and the results are shown in figure 4.7 r {t) =0, r (t) = 0 and

16 u2€

r g(T) = 0, indicating that the estimates are unbiased.
3

4.2.4 Recursive extended least—squares (RELS)

Noise corrupting real processes is generally assumed to be coloured and hence
only the first version of the RELS algorithm was applied, i.e. RELS I. It is
important to note however, that if the output were known to be corrupted by
white noise then, because the model has only one output, the RELS I and

RELS II algorithms would yield the same results, provided the noise model
order is taken to be equal to the process model order, as was the case here.
The RELS I algorithm yielded the following estimated model consisting of 20

coefficients :

Z(k) = 0.06912 Z(k-4) - 0.06424 Z(k-3) +
+ 10,3712 Z(k-2) + 0.5977 Z(k=-1) +

+ 0.01859 ul(k—10) + 0.01233 ul(k—9) +

+

- 0.00852 ul(k—8) - 0.01437 ul(k—7)
~ 0.00697 uz(k—lo) + 0.003862 u2(k—9) +
- 0.007672 uz(k—S) + 0.01967 uz(k-7) +

+ 0.02532 u3(k—10) + 0.02865 ug(k~9) +

- 0.01476 u3(k~8) 0.02073 uSIk—7) +

0.07603 e(k-3) +

+

- 0.02905 e(k-4)

0.1417 e(k-2) + 0.1501 e(k-1)

Inspection of figure 4.8 indicates that the predicted output compares
favourably with the process output. The residual errors were analysed using

correlation checks and these are shown in figure 4.9. rEE(T) = (0 indicates
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that the residuals are white and r (t) =0, r
u, & u
1 2
indicate that the estimates are unbiased.

E;(T) = 0 and rUBE(T) =0

Inspection of figure 4.10 showing the predicted outputs of the estimated
models obtained by RLS, RIV, RSOLS and RELS T superimposed on the real process
output. Inspection of the corresponding model validity tests indicates that
the recursive extended least-squares algorithm appears to yield the best
model, with the recursive suboptimal least-squares algorithm being the next
best, followed by the recursive instrumental variable. The simple least-
squares estimator yielded biased estimates, implying that the output noise

is coloured, as is the case with most real applications. However, it may be
noted from the results given in table 4.2 that the parameter estimates of the
RSOLS estimator are not comparable with those of the RLS, RIV and RELS I
estimators, which show reasonable agreement. On the other hand, inspection
of the predicted output and the model validity tests has indicated that the
estimates are unbiased. These contradictory results may be explained as
follows: any bias appearing in the coefficients Bij of the input regression

may affect the coefficients a, of the output regression and vice-versa.

k
These two effects may compensate each other in the input-output regression
and produce a model output that is comparable with the process output. The

bias appearing in the coefficients may be due to the fact that the noise 1is

probably not additive at the output, which results in biased estimates.

The predictivity of the estimated model was then tested by fitting the model
to the second set of data. The raw input/output data was first normalised
as shown in figure 4.11. The predicted output was then computed using the
measured inputs and compared with the real output from the same data set.
Figure 4.12 indicates that the predicted output is not comparable with the
process output. This implies that the estimated model is not predictive and
hence not valid for the process. This may be attributed to operating point

dependent non-linearities in the system and to changes in variables beyond
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Coefficient RLS RIV RSOLS RELS I
a 0.01536 | 0.08358 | 0.3240 0.06912
a, -0.07574 | -0.06815 | -0.2186 | -0.06424
a5 0.15938 | 0.3941 | -0.01982 | 0.3712
a 0.72377 | 0.5677 0.8779 0.5977
By, 0.01965 | 0.02002 | 0.01204 | 0.01859
Bys 0.01156 | 0.01160 | 0.01464 | 0.01233
Bys -0.00803 | -0.00562 | 0.0028 | -0.00852
By -0.01526 | -0.01790 | 0.0095 | -0.01437
B, -0.00413 | -0.01295 | -0.01765 | -0.00697
B 0.00110 | 0.01647 | 0.0313 0.00386
Brg -0.00730 | -0.02331 | -0.05736 | -0.00767
Bsy 0.01876 | 0.02052 | 0.0543 0.01967
Ba 0.02179 | 0.02773 | 0.01279 | 0,02532
Bus 0.02902 | 0.02834 | 0.00506 | 0.02865
flg -0.01581 | -0.01268 | 0.11643 | -0.01476
Bs, -0.01807 | -0.01969 | 0.14121 | -0.02073
c, -0.02905
c, 0 07603
c, -0.1417
% 0.1501

TABLE 4.2

Comparison between parameter estimates of
RLS, RIV, RSOLS and RELS I algorithms
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the measuring capacity of this experiment; for instance, the available data
was probably sampled too infrequently, resulting in a substantial loss of
information. These poor results may also be attributed to the fact that
only four variables were considered in the estimation and hence any existing
couplings between the available data and other operating variables have been
neglected. It would have been desirable to repeat these tests with other
data sets. Unfortunately, within the data recorded only two subsets of data
showed appreciable variations in plant variables and no other subsets could

be derived.

5. Conclusions

Structural and parametric identification of a pulverised fuel mill is
illustrated using the iterative search method for model order and time delay
determination and four recursive estimation algorithms for parametric
identification. The description of the process and its operation were briefly
reviewed. The process was assumed to be linear and data was normalised by
subtracting mean levels. Correlation analysis was performed as a preliminary
step in the identification procedure in order to verify relations between the
different variables. The correlation plots have shown that a high correla-
tion exists between inputs and outputs but also between the inputs, which did
now allow fast determination of the structure. A fourth order model with a
common delay of 6 to all the inputs was estimated using the recursive least-
squares, the recursive suboptimal and extended least—squares and the
recursive instrumental variable algorithms. The RELS I algorithm produced
the best results with an estimated model consisting of 20 coefficients.

Model validity tests using correlation checks have shown that the parameter
estimates are unbiased. However, the model obtained does not provide the
correct representation of the system, as indicated by cross-validation

tests with another data set. Tt is therefore concluded that either the
ayﬁfiable data was sampled too slowly leading to a loss of information or

that four variables cannot accurately reflect plant operation, and that more
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variables should be included in the identification procedure in order to
get a more appropriate model. Furthermore, use of persistently exciting
inputs 1s a necessary requirement in system identification, and normal
operating inputs do not generally satisfy the condition of persistent
excitation. Therefore another possible reason for the above results is
that the recorded input signals were not sufficient to excite all the system
modes. A more appropriate model would have probably been identified if
additional excitations were added to the actual process inputs. The results
presented here may be interpreted as illustrative of the procedure that would
be followed if data from a more comprehensive and precisely controlled

experiment were available.
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