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Abstract. There are basically three distinct approaches to the identification of nonlinear
systems and these are based on functicnal series expansions, block oriented systems and
nonlinear differential or difference equation models. The present study is an attempt to
provide a brief introduction and overview of some of the better known algorithms for each of

these system descriptions.
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INTRODUCTION
There are basically three distinct approaches to
the identification of nonlinear systems and these
are based on functional series expansions, block
oriented systems and parameter estimation methods
applied to nonlinear differential or difference
equation models. Each of the three approaches has
distinect features and characteristics which arise
both from the mathematical description which is
used to characterise the system and the method of
identification that is applied. The present study
is an attempt to provide a brief introduction and
overview of some of the better known algorithms for
each of these system descriptions.

LINEAR OR NONLINEAR

The first stage in the identification procedure
should be designed to indicate if the relationship
between the input and output data is linear or non-
linear. The simplest method of achieving this
objective is to inject step inputs of:varying ampl-
itude and plot the system gain against the input
amplitude. If this is precluded because the pro-
cess cannot be taken off normal production-or if
the data is pre-recorded or the analysis relates to
the residuals then alternative tests must be used.
Several tests are available and these have been
surveyed by Haber (1985) who recommended the time
domain test, higher order autocorrelation and non-
linear cross-correlation methods. The time domain
test is just a generalisation of the step test
whereby multilevel inputs are injected into the
process, and the nonlinear correlation test is dis-
cussed in the section on block structured systems -
see eqn (21). The higher order autocorrelation
test which can be applied whenever the third order
moments of the input are zero and all even order
moments exist (e.g. a sine wave, gaussian input
etc., etc.) consists of computing (Billings and
Fadzil, 1985).

by 20 = (2(em) = D (20D w

where the bar indicates Sime average. It can read-
ily be proved that ¢:,2, (1) = 0 ¥ 1 iff the process

is linear. The test will distinguish between
additive noise corruption of the measurements and
distortion due to nonlinear effects providing the
noise and input are independent.

SYSTEM IDENTIFICATION

If an analytical model of the process under study
has been derived but the coefficients are unknown
standard optimisation procedures can be applied to
yield estimates of the model parameters. This sit-
uation however seldom exists and often only a lim-
ited amount ofaprion information is available and
the process is treated as a black box. The choice
of identification routine then becomes dependent
upon the expansion which is chosen to represent
the nonlinear system. There are several expans-
ions which can be selected (Billings 1980, Mehra
1979), but most of these can be categorised as
either a functional series, a block structured
system or a differential/difference equation and

_each induces different identification algorithms

which are briefly discussed in the following
sections.

FUNCTIONAL SERIES

Early in the twentieth century Frechet showed that
a large class of nonlinear time invariant systems

can be represented by the Volterra series (Barrett
1979, Schetzen 1980).
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where h (1., ...T ) is the n'th order Volterra
n 1 n

kernel. Convergance of the Volterra series for
both deterministic and stochastic inputs has been
studied in the literature. Identification of non-
linear systems based on the Volterra representation
requires the measurement of the kernels h'(Tl’TE’
..Ti}. There are several approaches to

this problem the most common being the extension of
the correlation methods used for linear systems.

Consider for example the identification of a system
which can be described by a Volterra series with
just two terms

y(t) = {Thl(Tl)“{t"Tl)dTl

+ LJ hZ(Tl.TZ)U(t‘Tl)U(t‘TZ} d'r1 dtz (3)

Computing the first and second order cross-
correlation functions yields
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The solution of these equations for a general
stochastic input is extremely difficult. If how-
ever the input is selected to be white Gaussian
the moments of the input are

E[u(tl)u(l:z)...u(tl)]‘: 0 i odd

"

[ns (tn—tm) i even (6)
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where the summation is over all ways of dividing i
objects into pairs and eqn's (4) and (5) reduce to

¢uy(ﬁ) = hl(o) 7
¢uuy(01,02) =y é (01—02)+2h2(01,02) (8)

Removing the mean of the output eliminates the
first term in eqn (8) and estimates of the system
kernels follow directly. This is of course a very
idealised example. In practice the number of terms
in the Volterra series would be unknown and the
above method would break down whenever significant
higher order terms were present.

Fakhouri (1980) has introduced an alternative
approach to this problem based on the representat-
ion of the kernels in terms of their multidimen—
sional pulse transfer functions. The algorithm

is based on non-white Gaussian inputs, correlation
and least squares and Fakhouri proves that using
the approach each kernel can be identified sequen—
tially. Korenberg (1983) uses a different app-
roach, again based on correlation, but where the
unidentified residue is successively approximated
by a single basic model. Unlike the algorithm of
eqn's (7) and (8) both of these methods will work
for systems which are represented by Volterra
series with more than two terms.

To facilitate the identification of nonlinear
systems Wiener used the Volterra series as a basis
and applied a Gram-Schmidt orthoganlisation pro-
cedure to construct a new functional series
(Schetzen, 1980)

y(t) = HZG (cnucn,u(t); 9)

where the functionals are orthogonal to one anoth-
er for a Gaussian white stimulus and can therefore
be identified in isolation, The first few terms
of the Wiener functional series are

6, (k,u(r)} = i k, (u(t-1) dr

—x

G2 {kz,u(t)] = Ii k2(Tlf&)u{t-Tl)u(t'Tz)dTlde

Lo
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P {mkz(Tl,Tl) 5 (10)
where P represents the power spectral density of
the input. Although the Wiener series is equi-

valent to'the Volterra series, the former spans
the function space more efficiently due to the
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orthoganality of the functiomals. In general the
Wiener kernels are not equal to the Volterra
kernels.

Numerous methods have developed to identify the
kernels in Wiener's series (Marmarelis and
Marmarelis 1978) the most popular being a correl-
ation method by Lee and Schetzen (Schetzen 1980).
The procedure consists of computing multidimen-—
gsional correlation functions between the white
Gaussian input and the system output to yield

kn(Tl,t

n-1
greet )= 1 {y(e)- ] sm[km,u(c)] u(e-t) ..

n'P m=o0

..u(t—Tn) (11)

¥ Tl, ...Tn.

The second term on the rhs of eqn (11) only has a
value on the diagonal and is included to remove
impulse functions which would otherwise appear

when T1=12....T o The amount of computation

associated with eqn (11) can be excessive with
computing time increasing almost exponentially
with the order of the kernel to be evaluated. It
has recently been shown (Palm and Poggio, 1978)
that errors associated with the diagonal kernel
estimates in the continuous time formulation can
introduce fundamental difficulties in the ident-—
ification of third and higher order kernels but
these problems can easily be avoided by using
appropriate discrete stochastic inputs.

Algorithms based on the expansion of eqn (9) are
usually referred to as Wiener II methods. In the
original formulation, referred to as the Wiener I
method (Billings 1980), Wiener represented each
functional term by a Fourier-Hermite series and
expanded the kernels in a series of Laguerre
functions lm(T) as

Wb aener ) s wie § G gve. Lo 0 Yl €57
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y(t) =n§0Hn{kn’u(t)} (12)

Laguerre functions were sg¢lectedbecause they could
be represented by a series of phase shifted elect-—
rical networks. Identification of the coefficient
J is achieved by correlating the output of
m m

0 n

the unknown system yb(t) with the output ya(t) of

a known system forawhite Gaussian input to yield

sems =1 1
Cp o =LY, (DY (0) (13)
o n n.P

The known system is comstructed such that its
output for a white Gaussian input is Gn{¥€,u(t)}

where the kernel in the leading term is synthes-
ised as a product of Laguerre functions. Unfort-
unately identification of even a simple system
containing a second order nonlinearity-would
require the evaluation of typically 1010 coeffic-
ients C 5.
o ™n

It is relatively easy to show that the coefficien-
ts in the series eqn (10) are the coefficients of
the Hermite polynomials so that

y(t)=néo Gtk ,u(0)] =nzo H (k ,u(e)) (14)



which illustrates the relationship (Billings, 1980)
between the two distinct approaches which were
developed by Wiener.

Since almost all the identification algorithms
based on functional series expansions use a white
Gaussian excitation the possibility of replacing
this by pseudorandom sequences has been widely
investigated in relation to the correlation based
algorithms (Barker and Pradisthayon, 1970). Whilst
pseudorandom sequences were found to reduce the
computation time significantly.. The higher order
moments contained anomalies and these induce errors
in the kernmel estimates. It has recently been
shown however that the use of prbs inputs for non-
linear systems can lead to disasterous results
where even identifiability is lost.

Identification in the frequency domain (Tsoi,1979)
has been studied by several authors based on higher
order or polyspectra (Priestley, 1981) and FFT
algorithms and often résults in a considerable
reduction in the computational requirement.

Volterra series have been widely applied in the
analysis of nonlinear systems (Hung and Stark,
1977; Hung, Stark and Eykhoff, 1982, Barrett 1979)
and several practical systems have been identified
based on Wiener's series (Marmarelis and Marmarelis
1978, Schetzen 1980).

RLOCK STRUCTURED SYSTEMS

Block structured systems are systems which can be
represented by interconnections of linear dynamic
models and static nonlinear elements (Tsoi 1979,
Haber and Keviczky, 1976). Although this class of
models can be treated using the functional series
expansions simplified identification techniques
can in many cases be derived by exploiting the
structural form of the model. The basic philo-
sophy underlying this approach has been to avoid

a black-box description by identifying the systems
in terms of the individual component subsystems.
The ideas can best be illustrated by considering
the general model illustrated in Fig.l. which has
been analysed by many authors.

i

u(t x(t) q(t)™ y(t)

Fig.l. The General Model

Inspection of Fig.l. shows that the major diffi-
culty in identifying this system will arise

because of the presence of the static non-linearity
F[.]. It is convenient therefore to consider this
in isolation initially. Assume that the signal
x{t) can be measured and let f(xl,xZ;T) be the

second order probability density function of the
process x(t) and define

g(xz,u) = _i xlf{xl,xz;o) dxl (15)
1f this function separates as

g(xz,o) e gl(x?_)g2 (o) ¥ x,0 (16)

then x(t) is said to be a separable process
(Billings and Fakhouri, 1982) where

x £(x.) g, (0)¢ (o)
- 2 Y o4 XX
gl(xz) gz(o) s gz{d) ¢xx{°)) an

The separable class of random processes is fairly
wide and includes the Gaussian process, sine wave
process, pseudorandom binary sequence etc.

Define the cross—correlation function
©
= F .
¢xq(c) J_‘£ x [xz:Lf(xl,xz,o)dxld_xz (18)

Substituting from eqn's (15) and (17) yields

n
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CF¢xx(U) (19)

where CF is a constant. This is known as the
invariance property and forms the basis of an
identification algorithm for the general model in
Fig.l. Realistically the internal signals in Fig.
1. x(t) and q(t) will not be available for meas-
urement .

However by considering separability under linear
and nonlinear transformation the result of eqn (19)
can be generalised such that correlating between
the input and output in Fig.l. for a non-zerc mean
Gaussian white input yields (Billings and Fakhouri
1982)

¢u (o) = CFG f hl(Tl)hz(G—rl) d11

¥
5 _ 2,
¢ 5 (@) = Cope / h, “(o T, () dry (20)
uy
where CFG and CFFG are constants providing hl(t) is

stable bounded-inputs bounded outputs. The resu-
1ts of eqn (20) are, except for the constance GFG
and CFFG' completely independent of the nonlinear
element ‘and this effectively decouples the identi-
fication of the linear and nonlinear component

subsystems. The two unknowns hl(t) and hz(t) can

be determined to within a constant scale factor by
decomposing eqn (20) and the nonlinearity can then
be determined.

Another advantage of this particular algorithm is
that it provides information regarding the system
structure. Lf the system under investigation is
linear, then

¢ 2 (¢) = 0O¥ag (21)
vy
in eqn (20). Thus the first degree correlation
function ¢uy(0) yields an estimate of the linear

system impulse response and the second degree
correlation function ¢ 2 (o) provides a convenient
u'y

test for linearity which was referred to as the
nonlinear correlation test in section 2. If the
first and second degree correlation functions eqn
(20) are equal except for a constant of propor—
tionality then the system must have the structure
of what is referred to as a Hammerstein model
(hl(t) = 6(t)). However if the second degree cor-

relation function is the square of the first deg
ree correlation function, except for a constant of
proportionality, the system has the structure of
a Wiener model (hz(t) = §{t}).

gimilar results which provide estimates of the
individual component subsystems are available for
feedback, feedforward and multiplicative block
oriented systems (Billings, 1980; Billings and
Fakhouri, 1982; Korenberg 1973, Tso0i,1979) .

DIFFERENCE EQUATION MODELS

Recent results in approximation and realisation



theory have produced nonlinear difference equation
models that are suitable as a basis for identifi-
cation (Fliess and Normand-Cyrot, 1982). The
relevant results are briefly:-

(i) Any continuous causal functional can be
be arbitrarily well approximated by a
bilinear system (Fliess and Normand-
Cyrot, 1982).

(ii) Any discrete time nonlinear system can
subject to two mild assumptions be rep-—
resented by the NARMAX (Nonlinear ARMAX)
model (Leontaritis and Billings,1985)

YW?=FD&%L.“ﬂkm2nﬂbD.”
u(k-n )] (22)
u

in a region around the equilibrium point
where F[.] is some nonlinear function.
The model has been derived for multi-
variable stochastic nonlinear systems
although only the SISO case is given
here.

(iii) Subjeect to mild assumptions any discrete-
time system can be arbitrarily well app-—
roximated by the state~affine model
(Sontag, 1979)

r
x(k+1)=(A + T P (u (K),...u (k)A, jx(k)
0 21 1 m i

y(k)=c(x(k)) (23)

where the P.(u(k)) are monomal in the
inputs and , A ,..A are square

. 1 5
matrices.

It is important to note that with digserete-time bi-
linear systems it is impossible to approximate the
quadratic system y{k)=u2(k—1) (Fliess and Normand-
Cyrot, 1982). Only results (ii) and (iii) above
are therefore of interest since in almost all in-
stances the data will be analysed in sampled data
form.

Parameter estimation algorithms for the state—aff-—
ine model have been developed (Dang Van Mien and
Normand—Cyrot, 1984) by identifying a series of
linear models around different operating points

and then patching these together to form the final
nonlinear description. This approach, which will
work whenever the operating point changes slowly
and smoothly, provides a great deal of insight into
the operation of the process and has been applied
to several industrial processes.

Tdentification based on the NARMAX model (Billings
and Fadzil 1985, Leontaritis and Billings 1985)
has concentrated on the stochastic form of eqn(22}

2(k+n) = Flz(k+n-1),...z(k),ulk+n) ... u(k),
a(k+n—1),...a(k)] +  e(k+n) (24)

where g (k) = E {g (k)| z(k-1),...,u(k-1)...} Trep-
resent the prediction errors and F[.] has been sel-
ected as a polynomial. This leads to nonlinear
difference equations which include powers and
cross—products of delayed inputs, outputs and pre-
diction error terms. The multipligative terms
between ¢ (k-i),i = 1,...n and past inputs and out-
puts occur because internal neise cannot in
general be translated to be additive at the output
whenever the system is nonlinear and because they
are induced by the choice of model. Thus one dis-
advantage of including past outputs in the model
expansion eqn(24) is that even additive output
measurement noise induces multiplicative noise
terms. As a consequence of this most of the para-

1§

peter estimation techniques developed for linear
systems cannot be applied directly and new algori-
thms have to be developed (Billings and Fadzil,
1985).

Whatever model structure is assumed the direct
application of a maximum likelihood algorithm is
not possible unless the distribution of the
prediction errors, which for nonlinear systems
will usually be non-gaussian, is known. However,
by considering the loss function

X T
log det } e(k,0)e(k-@)

& k=l

3oy = My e

a prediction error estimate can be obtained (Good-
win and Payne 1977). For Gaussian innovations the
prediction error estimate will be identical to the
maximum likelihood estimate, but for non-gaussian
innovations the asymptotic covariance of the pre-
diction error estimates will be larger than the
Cramer—Rao bound. The prediction error estimates
and the Hessian associated with them will however
be asymptotically normally distributed and this
allows us to apply many of the classical stati-
stical tests of significance and model order.

It is vitally important in nonlinear identifica-
tion that the structure of the model is selected
carefully prior to complete estimaticn. .The maxim
of continually increasing the model order or degree
of polynomial expansion to improve the model fit

is in many cases inappropriate for nonlinear sys-
tems since the latter action may increase the
number of parameters in the model dramatically and
could induce numerical problems. These difficul-
ties can be avoided by using techniques such as
stepwise regression and hypothesis testing routines
that indicate which terms linear or nonlinear
provide a significant contribution to the output
(Billings and Fadzil 1985).

When the system is nmonlinear the residuals £ (k)
should be unpredictable from all linear and non-
linear combinations of past inputs and outputs and
this condition will be satisfied iff

¢EE(T) = §(1)
¢UE(T) =0V
¢£€u(1) = g(£)g(t-1-1)u(t-1-1) = O¥r20 (26)

Experience has shown that the use of the tests in
eqn (26) together with

4,207 (0 = (u2(£)-ud)E(t+1) = 0 ¥ 1

(u2(0)-u?) (£2(t+1)) = 0¥ T (27)

)

¢u252(f)

often gives the experimenter a great deal of infor=
mation regarding the deficiencies in the fitted
model and can indicate which terms should be inclu-
ded in the model to improve the fit (Billings and
Fadzil 1985). Notice that the traditional linear
tests ¢££(T) and ¢u5(7) are not sufficient.

CONCLUSTONS

The identification of nonlinear systems depends on
both the construction of model representations
which can approximate a large class of nonlinear
systems and the development of identification or
parameter estimation algorithms based on these
descriptions. Although the choice between the
various algorithms is wide it will often be dic-
tated by the process, the choice of input, the
amount of a priori information and the purpose of
the identification.



The functional series methods can be used to rep-
resent a very broad class of nonlinear systems but
this is achieved at the expense of a large parame-
ter set. Identification of just the first two
kernels in a Volterra series would for example
require the evaluation of typically 500 kernel
values. If it was necessary to identify the
higher order kernels the computations could become
horrendous. This problem which applies equally to
almost all the functional series methods arises
because the output is expanded in terms of past
input values only. The restriction to a white
Gaussian input signal is a further disadvantage

of this approach. Nevertheless, numerous
applications have been reported, methods of inter-
preting the kermels have been devised and the use
of the expansions in the analysis of nonlinear
systems is now well established.

Block structuréd systems represent a much smaller
class of systems than functional series. They are
however much easier to identify and this can often
be achieved in a manner which preserves the origin-
al system structure and provides valuable physical .
insight and information for: control. Even systems
with hard nonlinearities can be identified using
this approach which requires the estimation of
typically 40-100 parameters. The restriction to ..
special ‘inputs such as Gaussian white noise is oft-
en required and of course the methods can only be
applied if the proeess has the structure of- or 'can
be approximated by a block structured model.

Recent results in approximation and realization
theory have produced nonlinear difference and
state-space equation models that provide concise
representations (usually with less than ten terms)
of nonlinear sampled data systems which have been
used as a basis for identification. The advantage
of this approach is the reduction in the number of
data points required (typically less than 1000),
the small parameter set and the wide choice of
input excitation that can be used. The parameter
set will be greatly reduced compared to the fun-
ctional series methods because the information on
both past inputs and outputs is used to predict the
current output value. Notice however that the num-
ber of parameters to be estimated can only be red-
uced to a small number if structure detection and
validity tests are combined with the parameter
estimation routines.

The identification of nonlinear systems is a diffi-
cult problem and just a few of the better known
algorithms and some recent results have been des—
cribed above. Much work remains to be done to
unify the methods, to devise new algorithms and to
apply the results to practical systems.
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