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Abstract

The identification of nonlinear systems based on a NARMAX
(Nonlinear AutoRegressive Moving Average model with eXogenous inputs)
model representation is considered and a combined stepwise,reg{ess%oq/
prediction error estimation algorithm is derived. The stepwise “
regression routine detexmines the model structure by detecting
significant terms in the model whilst the prediction error algorithm
provides optimal estimates of the final model parameters.
Implementation of the algorithms is discussed in detail and several
simulated examples and industrial applications are included to
illustrate that parsimonious models of nonlinear systems can be

identified using the algorithm.
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1. Introduction

The traditional representation for nonlinear systems of unknown
structure has been the Volterra and Wiener functional series. Whilst
these descriptions can represent a wide class of nonlinear systems they
do so at the expense of introducing an excessive number of unknown
coefficients which have to be estimated [ﬁillings 1980, Marmarelis and
Marmarelis l978]. This not only complicates the identification of
systems based on these descriptions but also makes the development of
controller design procedures very complex. It is perhaps for these
reasons that few practical systems have been identified using the Volterra
or Wiener approach and that the design of controllers based on these
models has received virtually no attention.

In contrast the rapid expansion of linear controller design techniques
has been largely based on the difference equation or pulse transfer
function model EHarris,Billings 19851. The linear system impulse
response, which represents the first term in a Volterra expansion,
requires a large number of parameters to characterise a system compared
with a difference equation model and consequently has seldom been used
to formulate controller design algorithms. Both the linear impulse
response model and the functional series of Volterra and Wiener map the
past system input into the present output. This provides a very
redundant system description since the dynamic information in the lagged
system outputs is ignored. It is precisely this information which is
included in the linear difference equation model which maps the past
input and output into the current output and provides a parsimonious

system description,



In a similar manner the nonlinear difference equation model known
as the NARMAX model Ebeontaritis and Billings 1985] (Nonlinear AutoRegressive
Moving Average model with eXogenous input) can, by including information
from both lagged inputs and outputs, provide a very concise representation
for nonlinear systems. It is this model which in the present study is
used as a basis for the development of a prediction error parameter
estimation algorithm for nonlinear systems. The algorithm has been
designed to include a stepwise regression routine which is used to detect
significant terms in the model prior to final estimation. It is shown
that implementation of the prediction error/stepwise regression algorithm
produces parsimonious models, usually with between six and ten terms of
complex nonlinear systems which are suitable as a basis for controller

design studies EBillings,Tsang,Voon 1985].

2 The NARMAX Model

A nonlinear system can be represented by the nonlinear difference

equation model [Leontaritis and Billings 19851

y(t) = F*[y(t-1) ,...y(t-—ny) ,u(t—d),...u(t—d-nu+1)] (1)

where F*[-] is some nonlinear function of u(+) and y(¢) providing
(i) the state-space of the Nerocole realization does not have
infinite dimensions (i.e. we exclude distributed parameter
systems), and
(ii) the linearized system around the origin has a Hankel matrix
of maximum rank (i.e. a linearized model would exist if the
system were operated close to an equilibrium point).
Equation (1) represents the single-input single-output case but the
results have been extended to the multivariable case. The Hammerstein,

Wiener, bilinear, Volterra and other nonlinear models can be shown to be

special cases of egn (1).



An equivalent representation for nonlinear stochastic systems can
be derived [Leontaritis and Billings 1985] by considering input-output
maps based on conditional probability density functions to yield the

model

z(t) = thé(t—l),. ..z(t—nz),u(t—d),...u(t-d-nu+l),s(t-l)...

cevelt-n )] + €(t) (2)

L
where F [-] is a nonlinear map of degree £ nonlinearity, d is the time
delay and e(t) the prediction error. This model is referred to as the
Nonlinear AutoRegressive Moving Average model with eXogenous inputs or

NARMAX model.

3 Maximum Likelihood Estimation

Consider initially the development of a maximum likelihood estimator
E&ooéwin and Payne 1977] assuming that the probability distribution of
the input/output data is known.

Define the vectors

[g(t),...z(l)]T

N
]

[, . ]” (3)

c
1

A general stochastic, discrete-time, dynamical system can be

described by the conditional probability density function of z(t) given

all past inputs and outputs Zt—l and Ut

plz(t) | 2__,,0) (4)
The function egn (4) can be put in its innovation form

z(t) = f(ztul'Ut) + e(t) (5)

where €(t), the prediction error or innovation sequence is the stochastic



process defined as

e(t) = z(t) - B[z(t) | (6)

7 u
t-1" "t

The mean square error estimate of the output z(t), given all past

inputs and outputs, is the vector z(t)

(U ) (7)

z(t) = E[z(t) | zt_l,ut] = £(2,_; .U,

and thus the innovation form eqn (5) separates the output that can be

predicted from the past as f{Zt_ ,Ut) and the unpredictable part as the

1

innovation e(t).

The likelihood function is then given by Bayes rule [Papoulis 1965]

N
L(8; 2,0 = p(ZN,UN,B) = tEl plz(t) ]|z

ey 7U,70) (8)

From egn (5) and the transformation of random variables rule the
conditional distribution of z(t) can be related to that of e(t) as

de(t)

p(z(t)|2t_l,Ut;9) = pE(t)(é(t)|8)idet(aZ(t) ) | (9)
where

e(t) = 2(8) - £(2,_,0) (10)
the Jacobian

‘det (%E%H =1 (11)

and pa(t)(e(t)le) is the conditional probability density function of e(t)

given Z and Ut.

=1
Substituting eqn (9) into egn (8) using the result of egn (ll) gives

the likelihood function
N

L(6;Z2 ,0) = 1

N N sy

P (g LE(E) ]6] (12)



The maximum likelihood estimate is obtained by maximising the
likelihood function egn (12) with respect to 6 the unknown parameters.
If e(t) is an independent normally distributed sequence with common

covariance R, then the likelihood function of eqn (12) can be expressed

as

N m =%
L(0;Z,U0) = I [(2m) "det R]
. expl ~%e (£)R Te(t)} (13)

The negative log likelihood function per sample then is

£10:2,,0) = T log L(+) = %m log(2m + hlog det R
N . 5%
- uN ) e(e) "R et (14)
t=1

If the covariance matrix R of the innovation e(t) is known then the

maximisation of L (<) is equivalent to the minimisation of

N 2! 51 —
3,0 =5 § e® R e(®) =% trace KT 0(6) (15)

A

where Q is the sample covariance matrix of the residuals e(t)

1 N o« g
QM) =% 1 ele) e (£) (16)
t=1
T T
and the property x Rx = trace Rxx has been used. Generally, the
covariance R will be unknown and will therefore need to be estimated.

Differentiating egn (14) with respect to R gives

N
o0& ( * - & " ~ T, =1
ﬁ—’ia{ Loowrt L Lt Y CmewDr (a7
R 2N
t=1
. I il -1 =1, _=1.=F
where the identities 3/3R log det R = R* and 3/8R(trace WR ~) = =(R WR )

have been used., Setting 3 (+)/3R equal to zero gives the maximum



likelihood estimate of the covariance matrix of the residuals

~ ~

& N P
R = ) oe(t)e(t)” = Q(6) (18)
t=1

= R

and substituting this value of the covariance matrix in;f('} gives

C?Z(e;zN,UI\]) = Lm(log2m+l) + 4log det Q(8) (19)

Hence the maximization onZR-) is equivalent to the minimization of
J,.(8) = log det Q(8) (20)

The maximum likelihood estimator is consistent, asymptotically
normally distributed and asymptotically efficient [Goodwin and Payne 197i].

The covariance matrix of the maximum likelihood estimator reaches the

Cramer-Rao bound asymptotically.

4, Prediction Erroy Estimation for the NARMAX Model

When it is known that a system is linear it is often possible by
the central limit theorem to assume that the innovations have a Gaussian
distribution and the maximum likelihood method can be applied directly.
When a system is nonlinear however the distribution of the prediction
error will seldom be Gaussian and will usually be unknown. Maximum
likelihood estimation cannot in general be applied when the system is
nonlinear therefore and alternative algorithms must be developed. The
least squares algorithms described in Billings and Voon [1984] are one
possibility but in the present study prediction error algorithms based
either on the criterion Jl(e) egn (15) or J2(8) eqn (20) will be
considered. Minimisation of either of these criterions with respect
to the unknown parameter vector § produces prediction error estimates
with very similar asymptotic properties as the maximum likelihood estimator

D&oodwin and Payne 1977], Because both of these criteria were derived



from the log likelihood function it is not surprising that for Gaussian
innovations the prediction error method is equivalent to the maximum
likelihood method. In the case of non-Gaussian innovations the
prediction error method can be applied without any knowledge of the
distribution of the innovations.

The prediction error estimates obtained by minimising either Jl(B)
or J2(G) are strongly consistent and asymptotically normally distributed.
In the case where the criterion J2(9) is used the inverse of the
Hessian of the loss function at its minimum approaches 52, the per
sample asymptotic covariance matrix of the estimator. This is an
equivalent result to the maximum likelihood estimator except that here
52 does not equal the Cramer-Rao bound but takes a somewhat larger value
since the prediction error method is not in general asymptotically
efficient. For this reason only J2(8) eqn (20) will be considered
in the present analysis. These results indicate that the maximum
likelihood algorithm derived for Gaussian innovations can be applied to
general distributions without any of the essential properties being
lost. Moreover the asymptotic normality results for the prediction
error methods means that statistical tests such as the t-test or F-ratio
test can be applied to determine significant parameters in the estimated
model .

Minimisation of the criterion JZ(G), egqn (20} to yield the parameter
estimates must be done using numerical methods. Differentiating J2(6)
eqn (20) with respect to 6 gives the gradient

~

9J

N .
s = = ) elwo@™ 2ele) i=1...n (21)
i t=1 i

The derivative of the residuals BE(t}/BBi are calculated from



pe(t) 9 -
aei = aei f(Zt_l,Ut) i= l,...n8 (22)

The Hessian of the function JZ(S) is given by

B2J

N b L i ~
2 2 de (t) -1 3&(t)
536 "N L a5 29 T 55
1 3] t=1 3 3
N B,
2 A T ~1 @
t=1 i%%5
N N ~ T ~
2 A T -1~ de(k de(k) -
T L1 &) o(e) l[E(k} ;é) + gé ) e (k)
N° t=1 k=1 i i
-1 3E(t)
. Q(8) YRS
j
for i,j= 1,2,...n, (23)

The second derivatives of the residuals are calculated from

2~ 2
9 e(t) _ 3 —
3636, 36,00, < (Zp_17U) Lo = Gy vt (24)

L J \E Jj

The second term of eqn (23), for 6 approaching the true parameter
value, tends to the expected value of zero. The third term of eqn (23)
also approaches zero for N-w, This suggests that the first term only
should be used for an approximate calculation of the Hessian. This also
guarantees that the approximate Hessian matrix is always positive
definite and thus no measures for the contrary need to be taken in the
numerical optimization procedure. Hence the Hessian matrices are

calculated as



N 2 K ~
Z de(t) -1 de(t) (25)

The prediction error estimates are then given by

2 =

A A a J2* 3J2
+ _ - — e e e i ] = LR
i3 i
where o is a line search constant. Notice that on substituting egn (21)

and eqgn (25) into eqn (26) Q(e)—l cancels. The algorithm can now be
summarised as
(i) Initially, estimate 8(k), for k = O using a simple least
squares estimator
(ii) Calculate BJz/BGi, 82J2*/88i36j at 0(k) for i,j = l,2...n8.
(iii) Use a line search algorithm, such as the Golden section method
[Bazaraa and Shetty 1979], to estimate o such that the loss
function Jz(e) is minimised.
{Incorporating a line search speeds up the convergence of
the estimates}.
(iv) Evaluate the estimates egqn (26).
(v) If Jz(é(k+l))—J2(a(k)) < a suitable convergence limit then

stop, otherwise increase k to k+l and go to (ii).

4.1 Example

For example, consider a NARMAX model with first order dynamics and

second degree nonlinearity

z(t) = F2[z(t—l},u(t~l),e(t~l)1 + e(t)
= YT(1)8 + e(t)
2
z(t) = Blz(t—l)+62u(t—l)+83e(t—l)+64z (t—l)+852(t—l)u(t—l)+
962(t—l)e(t—l)+67u2(t—l)+68u{t—l)e(t—l)+69e2(t—l)+e(t}

(27)
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where the only assumption made about the noise e(t) is that it is
independent of the input. The prediction error, e(t) can be computed

from

e(t) = z(t)—Blz(t—l)—62u(t—l)—83;(t—l}~64z2(t—l)~952(t—l)u(t—l)—

N2

9F (t-1) (28)

. 2 A
662{t~l)e(t—;)—97u (t—l)—Bsu(t—l)e(t—l)-e

once initial estimates of Gi are available. Notice that because the
NARMAX model maps the past of the input and output into the present
output multiplicative noise terms are introduced. For the estimates

to be unbiased, all the coefficients ei including the coefficients of

the noise terms must be included in the parameter vector. The gradient

matrix is then given by

1 [ A

Wy Yos o RE(E)
55 z e(t) Y
1 t=1 1
99, 2 o
=5 = =N Q(e) : (29)
aly N )
I ) e S
9/ t=1 9
where gét) are obtained by differentiating equation (28)



. .

de (t) ~
) = - z(t-1) —[83+66z(t-l)+68u(t—l)+289€(t—l)]
Be(t) _ ;
e8 - s e <[ ]
2
BE(t) _ _ 2 ;
= = - e(t-1) -] ]
3
3€ (t) 2 ,
59 = = 7z {t=1) - [ 2 ]
4
3e(t) ’
- = - z(t-Dut-1) - [ ]
5
3e )
gét) = - z(t-1)é(t-1) - [ " ]
6
9¢€ (t) 2 .
N5 = - u (t-1) - [ ]
7
9¢ (t) : :
= - u(t-lee-1) - [ ]
8
Bé(t) ~2 n
2, =-e(t-1) - [ ]

s A

(1) (2)

Column (1) has the same form as the data vector matrix and column (2)
represents the coefficients of the differentiated NARMAX noise model.

Equation (30) can then be substituted into equation (29) to evaluate

the gradient of the loss function.

The approximated Hessian matrix is represented as

3e (t-1)

a0

3e(t-1)

08

de (t-1)

36

3¢ (t-1)

a6

3¢ (t-1)

a6

€ (t-1)

98

IE (t-1)

a8

e (£-1)

90

de (t-1)

98

(30)
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. 2 * 9 * T
) J, 873,
3elael aelaeg
. * 2.
*
82J2 8 J2
........ §565ssspsanases 98 08
‘ 96,36, 9°"g
N & N n )
z JeE(t) de(t) Z Se(t) de(t)
N T TN o 381 28,
2 -1 :
= n 26 . ? : (31)
§ B8 (t) AE(t) § 38 (t) 98 (t)
e2p 80y 98, ..y aeg 29,
and is computed by substituting equation (30) into eguation (31). The

estimates are then calculated using egn (26) and the deterministic

predicted output can be evaluated as

2(6) = PE(t-1),...,2(tn ) ,u(t-d), ... ult-dn _+1)]
or
i T ~
z(t) = Y, ()6, (32)
Zu Zu
5 Structure Determination

The determination of the structure or which terms to include in the
model is essential in nonlinear parameter estimation since the NARMAX model
can easily become overparameterised. Direct estimation based on say a
polynomial expansion of eqgn (2) may involve an excessive number of terms,
Simply increasing the oﬁder of the dynamic terms {nu,nz,ng) and the order
of the polynomial expansion # to achieve the desired prediction accuracy
will in general result in an excessively complex model and possibly

numerical ill-conditioning. The maximum number of coefficients in the
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nonlinear model equation (2) is given by

2
5= §om
i=1 *
(33)
n, = Dl, (n +n +n +i-l)J/i . where n =1
il i-l 'z u € [e]

For example, a first order dynamic model for input, output and noise with
third degree nonlinearity would have 19 coefficients whilst a fifth
degree'nonlinearity would have 55 coefficients. Simulaticon has shown
[ﬁillings and Fadzil 1985] that usually less than ten of the terms in the
NARMAX model are significant and the remainder can be discarded with little
deterioration in the prediction accuracy of the model.

The Akaike [1974,1977] information criteria which indicates the
optimum number of coefficients that are reguired to characterize a model
is given by

AIC = N logeR + 2 (no. of parameters) (34)

~

where N represents the number of data peoints and R is.the variance of the
prediction error.

The optimum number of coefficients is chosen when any further increase
in the number of parameters does not increase the AIC criteria. This has
the disadvantage that the experimenter has to guess the best set of
significant coefficients from the various permutations available within
the total number of coefficients and this can be computationally expensive
when the system is nonlinear.

Alternative methods of detecting model structure can be based on
the forward, backward or stepwise regression methods.

The forward regression Eueper and Smith lQBl] method selects each
coefficient in the model in turn until the regression is satisfactory.

The order of including the coefficients is determined by using the

partial correlation coefficient as a measure of the significance of the
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coefficients that have not yet been included in the equation. The

coefficient that is most highly correlated with the output is chosen
as the next term to be included in the equation. This process is
repeated until the most recently selected coefficient has an F-ratio
test that indicates insignificant partial correlation and the process
is terminated. This forward regression method does not examine the
effect of a newly selected coefficient which may cause any of those
coefficients entered in the earlier stages to become insignficiant.

The backward regression [Draper and Smith 1981, Smillie 1966] me thod
initially estimates all the coefficients that are included in the model
and then calculates the partial F-ratio for each individual term. The
lowest value of the partial F-ratio is selected and tested for its
significance level. If this partial F-ratio is insignificant as compared
to a preselected significance F-value, the corresponding term is removed

from the regression and the coefficients that remain in the model are

re-estimated. This process is repeated until the lowest partial F-ratio
is significant and the process is terminated. Tnis determines the final
selected model required to represent the system. However, this method

of including all the coefficients into the regression in the initial
stage may sometimes cause the covariance or information matrix to become
ill-conditioned and possibly marginally singular which often yields

erroneous estimates.

However, the forward and backward regression methods can be combined

together to form the so-called stepwise regression method.

5.1 ©Stepwise Regression

The stepwise regression [ﬁall, Gupta and Tyler 1974, Efroymson 1962,
Draper and Smith 1981, Smillie 1966, Klein, Batterson and Murphy 19811

technique is used to detect the set of coefficients that can best
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characterize a model. In fact, stepwise regression is computationally
efficient because it gives intermediate statistical information at each
stage of the calculation which is used to select the most appropriate
coefficients to be added into the model. The model is increased by
adding one coefficient at a time during the intermediate stage, such that
the added coefficient is the one which contributes the greatest improve-
ment in the 'goodness of fit' to the model. If a coefficient which was
significant at an earlier stage later becomes insignificant, after
several other coefficients are included in the model, this coefficient

is then deleted before adding ancother significant coefficient. Hence

by adding and deleting the appropriate coefficients, the best model should
be determined.

Consider the NARMAX model

z(t) = Fg[z(t—l),...,z(t—nz),u(t~d},...,u(t—d-nu+l),

a(t—l),...,e(t—nE)J + e (t) (35)

Expanding eguation (35) as a polynomial expansion gives

= % + e
x, (t) lel(t)+ +6n X ] 0 1%, o 1D
Z zZ =z z
+en R S (t)+8n RN T +l(t)+,__
Zz ua 2z u A z u
+9n 4n +n “n_+n 4n (t)+9n B ey AT 0 4 dn +l(t)+"'
Z u € 'z u € z u € z u e
cev.otB x (E)+e (L) (36)
nn
where xz(t) = z(t)
= z(t-1)

xl(t)
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x (t) = z(t-n )
n [4

z
x +l(t) = u(t-4)
A
X i (t) = u(t—d—nu+l)
zZ u
Xn +n +l(t) =L
z U
e o (t) = €(t-n )
Z
WY w5 Gl
Xn +n +n +1 -
zZ U €
Xn P— +2(t) = z(t=l)z(t-2)
zZ u €
Xn s gy +3(t) = z({t-1)z(t=3)
Z U €
X 4n +n +4(t) = z(t~-1)z(t-4)
z u €
xk{t) = polynowial terms of z(t), u(t) and e(t)
; £ ;
xn\t} = g (t—nﬁ: (37)

where n is glven by equation (33).

Egquation (36) can now be expressed as

n
x (£) = ) 8. x, () + e(t) (38)
i=1
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The data for each term ares then usually normalised by removing the

mean for each of the corrvesponding terms and hence equation (38) becomes

n

where the bar denotes sveriage wval:

The error in the =

so that minimizing the sum cf “he souares

2f the

o 2o ~ 2 B

e l|“ = 7 & (x t3-% ) = T 8 (x (£)-x)}

' I z - ¥
t=1 gl

with respect to 0, vields

n N . ) }
E E {x.(t)—xi)(x,(t)-xi) g, =

For g 82 Lol pew o oF1

These are just a set of n simultaneous I

which can now be expressed in the correlation coefficient r, .

3 ( 3
rll rl2 G E W W E e fln 81
8*
Fay  hgg FEERaIs Dgp 2
...... : 5}
L rnl rn2 rnn j . n

vector

(39)

N data points

(40)

N
Y (xict)-Ei)<xz<t)-§z)
j=1 Le=1 i ] 8 g=

(41)

Linear algebraic equations in ei

form

(42)
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where N
Yo(x, (£)=x,) (x, (£)=-x,)
b=l * s J
ri" - a,o
J i%
N — —
Vox, (0)=x,) (x (£)-% )
=] pu i = Z
E . =
z1 g.o
X &
N
o, = ﬂ/ z (xi(t) - ;i)z
t=1

3 -
o = Lok (8) - x)
=1 “

and

=
Q
1=

The stepwise regression procedure begins by selecting the term which is
most closely correlated with the output xz(t), that is the variable xi(t)

say whose r , is the largest of &all the E gt kK= 1,2 pes oDl The model

21
x () = 6, x (t) + elt) - (44)
z 1 d
is then uszed to fit the data. The next term to be included in the model

is that particulsy ierm which gives the largest partial correlation

between the ouvtput % (t) and the J-th term, x.(t) sey, from the remainin
. J 5 y

i

terms not in the reogression after removing the effect of the i-th term.

This partial correleiion is defined ag r _ . and is interpretted as the

artial correlaticn beiveen x (L) and the J-th term with the effect of the
P -

e resulting model is then

7

i-th term removed.

fiss
B
—

¥ () = 8,2 (L) + &.x. (1) + (t) (4
z i1 .



Within each intermediate stage, the partial correlation between the
/
output and the k-th term of the remaining coefficients not in the

model can be calculated from previous calculated correlations using

the general recurrence relation [Smillie 1966]

CTok.ij.. k=2 Tzk-1.ij...k-2"kk-1.ij...k-2
r . = — (46)
ple 8 Jea k-1 5 5
J{lnr )

zk=1.13. k-2 FFRK-1.95.. k-2

Before each of the selected terms with the largest partial correlation
are included in the model, those terms that are already in the model are
tested for their significance using the statistical t-test. Since a

prediction error estimator is uced to estimate the coefficients within
each stage, the estimates have &n estimated prediction error variance,

coefficient Sj is nermally distributed about

3?2 Ly W e P2 .., is the diagonal term
i P

of the i-th element of the prediction error perameter covariance matrix

r_. The t-test jis given by

2
Si - 8, &
e
t g = — i=1,2,...n (47)
N_n /A___‘_ r ! 14
¥ RP_ .
2,34
with N-n* degrees of freecdom, where n* is the number of coefficients
already in the model. It i desirable to test the hypothesis that

B, =0 (i.e. Xz(t) does nct depend on: §,) and the statistic

i 3
ei
tN—n* B g ; 1 =}, 2, n# (48)
¥ RP ..
2 Aa
is used. Bowever, the P-distrisuticn witl ! and N-n* degrees of freedom

"
. . L Sy i 5
is eguivalent to the 17 distributicn wi

[oF)

1l I=-n* degrees of freedom an

h
&
m

hence the significance of ividual coefficient Gi can be determined

.



from the F-ratio test

9
E}:i_
Fi = — § I = 125 sesn® (49)
RPy,ii
Normally, a 95% confidence intexval for the F-ratio test, Ftest is chosen
and when N-n*>100 is large, the typical Ftest value is =4. If the
smallest Fi > Ftest then the coefficient is significant and no coefficient
then that

is deleted, on the other hand, if the smallest Fi < Ftest'

particular corresponding coefficient is deleted.

To bring in another variable into the model, the partial correlation
coefficients of all other parameters are examined and the F-ratio test

for the coefficients is formed

2

r . (N-n*)
P _ zk.ij... k-1 (50)
i (1-2 )
Fok.ijy...k-1

The above procedure is repeated until no term is either deleted or

included in the determined model. The final model with n* number of

significant coefficients is then expressed as
n*
x_(t) = § 8.x (f) + e(t) (51)
z . ii
i=l
where ei are the significant coefficients.
The F-ratioc test as described above, which is included in the
stepwise regression routine reguires considerable computation for every
intermediate stage. Fortunately, it is not necessary to calculate the

~

covariance P the prediction error covariance R and the various partial

2!
correlation coefficients as described above, in order to detect the

significant coefficients in the model. The stepwise regression technique

is simply adapted using a Gauss-Jordan fEfroymson 1961, Smillie 1966]



elimination algorithm based on an augmented form of the transformed
correlation matrix of equation (42) and not on the original matrices
of equation (41). The Gauss—-Jordan elimination technique uses the
pivot method and is well documented elsewhere and will not be detailed
here.

The pivot elements in the G-J elimination method are calculated
along the principal diagonal of the matrix A eqgn (42) which has the
effect of including that particular coefficient corresponding to the
pivot element which is selected. Suppose that n* coefficients are
significantly selected then the G-J elimination method merely transforms
the matrix A of eguation (42) to a unity diagonal matrix of dimension

(n*xn*)

(1 0 eeeiiinans o) ( 9: ) 'rzltr(n*)‘

© 1 ieeeeeeee.. o] 6 r o5 (n¥)

L. : = |, (52)
Lo 8 eeersemn 1 ei ; r;ntr(n*)d

tr
where r ., (n*) represents the transformed value at the n* stage of the
ZL

* tr .
G-J elimination and Gi are the estimates. The rzz (n*) term is the

variance of the predicted error at the n* stage. From eguation (52},

equation (43) can be expressed as

o r .tr(n*)

Z Z1 "
6 = —_— = Dnaw ¥ 53
i Ui ' 1 1,2, n . (53)

Therefore, the unity matrix of eguation (52) resulting from the

transformation of the correlation matrix A of equation (42) is used as
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a working matrix to store the transformed value calculated during the
elimination process. This minimizes the storage required in the
computation. The matrix transformation [bmillie 1966] used at the
k-th intermediate stage for the m-th selected coefficient is given by

the iterative relations below

r (k-=1l)r,.(k-1) - x, (k-1)r ,(k-1)
mm ij m]j

rij(k) = - (k—l)lm for i #m, § #m
mm

= rim(k—i)

rlj(k)=w forl#m'j:m
(54)

rmj(k—l)
rmj(k) e for i =m, j #m

. mm

1 Eras & = & (g
rmm(k) = Ty for i =m , j=m
mm

The values of the matrix 2 at the k-th stage of the elimination for

the m-th selected coefficient is equal tc the inverse of that particular
m-th coefficient. This matrix A also provides statistical information
for the F-ratio test for each individual term. The F-ratio for those
terms that are in the model at the k-th stage of the elimination process
is evaluated as

2
(N-—n“-)l‘zi (k)
- i=1:2;...,0% {5&)

Eguation (55) is eguivalent to equaticon (49), since

5 rzz(k)
R = — B_ ... =4 (k) znd 8% = r . (k
(N-n*) ! el i3 - i 21( )
If the minimum value of Fd' Fnin is insignificant compared to the 95%

significance level then that corresponding m-th coefficient is deleted
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by dividing that particular term by its inverse using equation (54).
In order to include the next most significant term that is nct in the
regression, the F-ratio is calculated as
(N-n*)V,
a3 AR d = Y esumethdl (=8
ZZ 3
If the maximum value of the Fa, Fmax is significant compared to the
95% significance level, then that particular m-th term is included in
the model which can be estimated using equation (54). In fact eqguation

(56) is equivalent to eguation (50), since

2

rjz(k)
V = N o SR
J .. (k)
J3]
and
v, Jrr:.2 (k)
i jz s o (57)
r (k) r (kK)r.. (k) jz.ik...n-n*
zz ZZ 33

vhere the ik...N-n* are terms already in the model.

In the above computations the correlation coefficients were
normalised by removing the mean from each individual term and dividing
by the standard deviations. Whilst this is highly desirable when
dealing with linear systems mean levels must not be removed when the
model to be fitted is nonlinear. Removing mean levels from signals
when estimating nonlinear models can change the structure of the model
and will almost always induce input sensitivity [ﬁillings and Voon 1984].
This means that the model parameters become a function of the statistics
of the input signal. A model estimated for one particular input would
therefore not be valid for prediction based on any other input with
different statistics. This problem can be avoided by operating on

the raw data and including a constant term in the model egn (2) and (38).
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These problems can easily be avoided when using the stepwise regression

algorithm above for the NARMAX model if all mean levels are set to zero.

Sulale Implementing Stepwise Regression

Implementation of the combined algorithm begins by postulating
the terms which might enter the model and specifying the parameters
d, nu, nz, n€ ana £ in egn (35). Application of the algorithm to
numerous simulated and industrial processes [Billings and Fadzil 1984,1985]
has shown that good initial estimates of d, nu, nz and n  can be obtained
by fitting a linear model to the data initially. This can be achieved
either by implementing the.prediction error algorithm with £ set to
unity or by applying any appropriate linear parameter estimation routine.
Appropriate values for 4, n e nz, n€ can then be determined by initially
setting each of these parameters to some small value and estimating
models over a range of values. The best linear model is then selected
by applying standard linear methods of model order and time delay
selection and examining the predicted model output and analysing the
residuals [Ljung and Soderstrom 1983]. Note that it may not be possible

to satisfy the normal linear validation tests of white residuals

(¢€€(T) = §(1)) and residuals which are uncorrelated with the input
(¢ué(T) = 0) because of the presence of nonlinear effects in the data
set. However, this initial analysis does seem to provide excellent

initial estimates for g4, n e n_, n_ and the prediction error sequence £(t).

Estimation of the nonlinear model begins by selecting £ the degree
of nonlinearity in egn (35) (typically & < 3) and entering the values of
dy nu, n , né and €(t) into the stepwise regression routine. To simplify
the computations the prediction error sequence €(t) is not regenerated

for every inclusion or deletion of coefficients in the model. The final

estimates from the stepwise regression routine may well therefore be
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slightly biased. Experience has shown that improved érediction
accuracy is obtained if the linear terms found to be significant in
the initial linear model estimation are forced into the model so that
the stepwise regression routine detects significant nonlinear terms
only [Billings and Fadzil 1984,1985].

As an alternative to the above procedure the detailed estimation
of a linear model can be omitted and a recursive least squares routine
can be ﬁsed to provide initial estimates of the prediction error
sequence for entry into the stepwise regression algorithm. Application
of the algorithm has shown however that this approach produces
inferior models.

The output from the stepwise regression routine defines the NARMAX
model structure and the estimates are used as start values in the
prediction error algorithm. The prediction error routine re-estimates
the significant coefficients and the model is tested using an F-ratio
test to ensure that the coefficients are significant. Any coefficients
found to be insignificant are deleted and the reduced model is once
again optimised in the prediction error algorithm. This procedure is
repeated until all the coefficients are significant. The F-ratio test

for the prediction error estimates is defined by

F, = —— i = 1485ee 0k (58)

A flow chart of the procedure is illustrated in Fig.l.

The stepwise regression algorithm can if required be combined with
any parameter estimation algorithm. The prediction error routine would
then for example be replaced by an extended least squares, modified
instrumental variables or suboptimal least squares routine [Eillings and

Voon 1984].
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Whatever parameter estimation algorithm is used to optimise the
final model the data set should be split to form an estimation set and
a testing set. The estimation set is used to estimate all the models
and the testing set it used to provide a comparison between the plant
and model output. Experience has shown that linear models often
produce a predicted output which follows the data in the estimaticn
set regsonably closely. However, prediction over a different piece
of data, the testing set, usually reveals severe deficiencies in the

model when nonlinear effects are present in the data.

5.2 Model Validation

When the parameters are estimated, there is no guarantee that the
significant coefficients that are selected in the NARMAX model
represent the true model. Irrespective of which parameter estimation
routine was implemented, if the model structure and parameter estimates
are correct then the prediction error sequence £(t) should be
unpredictable from all linear and nonlinear combinations of past

inputs and outputs and this condition will hold iff [ﬁillings and Voon

1983]
ban(T) = 8(1)
¢ (T) =0 ¥ T (59)
ue
¢§{§u) (1) =0 ¥

If instrumental variables or suboptimal least squares algorithms are used
the prediction errors may be coloured. In this case the prediction
error €(t) should be independent of all linear and nonlinear combinations
of inputs and this condition will hold iff [ﬁillings and Voon 1983]

¢ 2.E2(r) = i} % 1t

¢ 2" (1) =0 W1 (60)
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Notice that for nonlinear systems the traditional linear covariance
tests ¢gg(T)' ¢u€(T} are not sufficient.

Experience has shown that when using a prediction error algorithm
the tests in both egns (59) and (60) give the experimenter a great deal
of information regarding deficiencies in the fitted model and can
indicate which terms should be included in the model to improve the fit.

If a linear model is fitted at the initial stage of the analysis
the higher order model validity checks in egns (59) and (60) can be used
to indicate if the prediction accuracy of the model could be improved by
inserting nonlinear terms into the model. If the tests indicate that
no significant nonlinear terms remain in the residuals the analysis
would terminate at this stage. Tests which detect the presence of
nonlinearities in data‘prior to parameter estimation are also available
[?illings and Voon 19851 and can be used to augment the model validation

tests to indicate if it is worthwhile fitting a nonlinear model.

6. Simulation Results

The identification of several simulated systems and industrial

processes are described below to illustrate the effectiveness of the

algorithm.

6.1 Simulated Examples

Several simulated examples are described below. In each case the
stepwise regression routine was entered directly, and linear models were
not fitted at the preliminary stage as recommended above. This was
possible because the order of the linear dynamics were known in each

case.

A Hammerstein model described as
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vi(t) = 1.3y (t-1) - 0.42y(t-2) + 0.2{u(t-1) + u°(t-1)}
+ O.4{u(t—2) + u3{t—2)} (6l)
Z(t) = y(t) + e(t)

was simulated using a uniformly random distributed input of amplitude #1.0
superimposed on an operating point b = 0.2, The output y(t) was corrupted
by an additive Gaussian noise sequence of zerc mean with 0.l standard
deviation, e(t)v AN(0,0.1). The estimation set consisted of 500 data

points.

Comparison of Eb = 1.02786 and z = 2.01382 indicates that the model

is nonlinear (because Eb # z) and this is confirmed in figure 2 where

¢z'z'2(r) and ¢Z . ‘2(T) # 0.
b b
The stepwise regression routine in association with a prediction
error algorithm was used for structure determination and parameter
estimation. A nonlinear polynomial model with second order dynamics
(d =1, n =%, =8 = 2) and third degree.nonlinearity (2 = 3) which
has 83 terms was initially used to estimate the model. The structure
determination algorithm selects the significant terms which are then
optimised by the prediction error algorithm to yield the final model with
eight significant terms
z(t) = 1.302z(t-1) - 0.4219z(t-2) + 0.2074u(t-1) + 0.3835u(t-2)
# 0.203u3(t—l) + 0.4025u3(t—2) - 1.304e(t-1) (62)
+ 0.4043e(t-2) + €(t)
The model validity tests egns (59) and (60) illustrated in figure 3 shows
=6(t), ¢ (1), ¢ (t), ¢

(t), ¢ (1) and ¢u () = 0

£ £

g
£(t) contain no further

Ehat #ge 0 g £ (Ew) 21 2

which indicates that the residuals & (t)

20
u

[ =

information and that the estimates are unbiased.



A Wiener model described as

0.8y (t-1) + 0.4u(t-1)

il

y(t)
(63)

It

2(t)] = ¢(£) + ¥ (t) + elt)

was excited by a uniformly distributed input with amplitude range *1.0
superimposed on an operating point b = 0.2. The output y(t) was corrupted
by an additive Gaussian noise seguence of zero mean with standard
deviation 0.1, e(t)vN(0,0.1). The estimation set consisted of 500
data points.

Comparison of Eb = 0.4588 and z = 0.6822 clearly shows that the

model is nonlinear (because z # E) and this is confirmed in figure 4

b
where ¢ 2{1) and ¢ 2(T) # 0.
] ] ] 1
AN A Zb Zb I
A nonlinear polynomial with first order dynamics (d = 1, n =n, = n€

and third degree nonlinearity (2 = 3) which has 19 terms was initially used
to estimate the model. The algorithm produced a final model with 9
significant coefficients
z(t) = 0.7578z(t-1) + 0.3891lu(t-1l) - 0.73%¢(t-1)
= 0.0372322(t~l) + 0.3794z (t-1)u(t-1) + 0.0684u2{t—1)
- 0.368u(t-1)e (t-1) + 0.1216z (t-1)u’ (t-1)

+ 0.0633u3(t—l) + e(t) (64)

The model validity tests are illustrated in figure 5 where ¢€E(T) = 6§(T),

(1) and ¢uE(T) = 0 clearly indicating

¢ {T)’ ¢‘ ] (T)’ ¢ T
E(Eu) 2' 2 u2 .

u g
that the model is adequate.

6.2 Industrial Examples

Whilst the use of simulated examples was a necessary stage in the
development of the stepwise regression/prediction error method it does
not provide a realistic test for the algorithms. To achieve the latter

objective several sets of data were recorded and sampled from pilot scale

industrial processes.
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A liquid level system [3illings, Tsang and Voon l98ﬂ consisting
of a series of interconnected tanks one of which has a conical section
and induces nonlinearities was studied. The model fitted between
a perturbation on the input volume flowrate and the level of liquid

in the conical tank was (for a sampling interval of 9.6 secs)

z(t) = 0.436z(t-1) + 0.68lz(t-2) - 0.149z(t-3)
+ 0.3%u(t-1) + 0.0l4u(t-2) - 0.07lu(t-3)

0.351z (t-1)u(t-1) - 0.03z°(t-2) - 0.135z(£-2)u(t-2)

0.02723(t~2) - 0.10822(t~2)u(t—2)

O.O99u3(t—2) + g(t) + 0.344e(t-1) - 0.201le(t-2)
(65)

All the model validity tests were well within the required confidence
intervals indicating that the model is adequate.

A heat exchanger [Billings and Fadzil 1985] consisting of a
radiator through which heated water is passed and a fan which blows
air across the radiator was studied. The system is a two input (heater
and fan contrcls), two output (drop in temperature across the radiator,
air flow rate ) system. Models have been fitted to all the loops only
one of which is nonlinear. The model for the nonlinear fan/ air flow

loop was identified as (sampling interval 0.3 secs)

z(t) = 2.301 + 0.9173z(t-1) + 0.449%u(t-1)
+ 0.04577u(t-2) - O.Ol88922(t—l)
= O.OO99U2(t—l) = 0.002099zz(t—l)u(t—l)
- 0.00243u3(t—l) + e(t) - 0.004e(t-1)

+ 0.0380e (t-2) + 0.2745e(t-3) + 0.1037e(t~4) (66)

All the model validity tests eqgns (59), (60) were well within the

95% confidence bands.
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Figure 4. Structure detection for the
Wiener model
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A full analysis of the liquid level system and the heat exchanger
is available in the literature [Billings, Tsang, Voon 1985, Billings and
Fadzil 19851. In the identification of both these systems linear

models were estimated prior to entry into the stepwise regression routine.

7. Conclusions

A combined stepwise regression and prediction error algorithm for
nonlinear systems has been described. The stepwise regression routine
detects the significant terms in a NARMAX model description whilst the
prediction error algorithm provides optimised estimates of the model
parameters which have properties very similar to maximum likelihood
estimates. The algorithm when combined with model validation tests
provides a powerful procedure for fitting parsimonious models to non-

linear systems.
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