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1. Introduction

Most systems encountered in practice are nonlinear to some extent due
to inherent distortion introduced by the components of the system Such as
saturationﬂq;,because they include deliberately introduced nonlinear effects
(e.g. bang-bang controllers). Any system for which the superposition
principle does not held is defined to be nonlinear. Nonlinear systems
exhibit phenomena like jumps, limit cycles, hysteresis and chaotic motions
which are not possible in linear systems. It is these characteristics
which often dictéte that the study of nonlinear systems is restricted to

specific system structures.

The statistical analysis of nonlinear systems is in general an
extremely difficult problem and a unified theory applicable to a broad
class of systems does not exist. Systems which contain two or more single-
valued nonlinear elements, multivalued nonlinearitieé or nonlinear functions
of two or more system variables are particularly difficult to analyse and

recourse is often made to either simulation or piece-wise linear analysis.

The present study briefly reviews some of the methods which are
available for the statistical analysis of static and dynamic nonlinear
systems including linearisation methods, system identification algorithms,

and stochastic control.

2. Static Nonlinear Systems

Consider the system illustrated in Fig.l where u(t) is applied as an
input to a single-valued instantaneous nonlinear element N(°) to produce

an output y(t).
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u(t) y(t)
- N(u) ad

Fig.l

If the input is stationary in the strict sense the k'th order

probability density function of y can be obtained from fu(ul,uz,...uk;

...tk) the density of u [i]. To determine fy(yl..yk; t ,..tk) solve

tl't2 1
the system of equations ¥ - N(ul),.--yk = N(uk) for AR and

assuming a unique solution

_ fu(ul,...l.‘lk; tl,...tk)

W o). TN ] s
1 Yk

fy(Yly--Yk: tll--tk)

For example consider the evaluation of the density fy(y;t) when
y(t) = u2(t). When y>0, the egn y = x2 has two solutions ul = V§-and
u, = —#?l Further since fdy/duf = 2%;, then from eqn (1)
£,0it) + £ (-/y;t)

2/y

£ (yit) =
v Yy

If y<0O, then fy(y) = 0.

The moments of the output y, Fig.l, can however be expressed directly
in terms of the probability density function of the input. The auto-

correlation function of the output is for example given by

Ryy(-r) = L{ V1Y, f(yl,yz;'r)dylély:2 wss (2)

or Ryy(r) {f N(ul)N(uZ)f(ul,uz;r)du du oo (3)

12
An analytical expansion of this integral can be obtained when u is
stationary and normally distributed

2 2
1 ul +u2 —2pulu2

f(u, ,u,;1) = ——"———+ Exp ) - —)
12 Imp® (LepP) ® 202 (1-p?)
where E[u(t)] =0
E[uz(t)] -0’ ««a(5)

Efu(t)u(t+n)] = UZD(T}



and p(T) is the normalised covariance function of the input. Using

Mercer's formula [21 eqn (4) can be expanded as

2 2
(al +a2 —-2pala2
exp { -

2
2ﬂ/l-p2 2(1-p")
2 2
i N v o
= (exp { - —E—-+ > /2T z P Qn(al)Qn(a2) .. (B)

n=0

where Qn(a) is the n'th order Hermite polynomial

2 n n
Q (a) = exp (%5% . (;il_ 327; {exp(%fﬁ} 255 (70
n! da

and a, = u, /g.
i i

Combining egn's (3), (4) and (6) yields

n 2
R (1) = k, s (8
g B nEO Pk (8)
I 5 i
where k, = —— [ N(ca)Q (a)exp(®)da eea (9)
Yo » ?

The autocorrelation function of the output eqn (8) is given therefore as
a power series of the normalised autocorrelation function of the input

where the coefficients ki' egn (9), depend on the form of nonlinearity.

For symmetrical non-linearities, N(u) = -N(-u), all even coefficients
k2. vanish, and for nonlinearities which can be expressed as truncated
po%er series with zero coefficients for powersgreater than j, then ki =0
for isj. As an example, the output autocorrelation function for the

bang-bang nonlinearity

y=1 , u»0
Yy ==l 5 uU<0

is given by

]

. ~1
Ryy(r) = ;-Sln p(T) ... (10)

Although the input-output cross-correlation function Ruy(T) can be

determined by following a similar procedure to the above a slightly more



general result can be obtained by introducing separable processes [3],
[23].

Let f(ul,u iT) be the second order probability density function of

2
the stationary process u(t) in Fig.l and define

[e2]

g(uz,T) = fm ulf(ul,uz;T)dul e es(11)

If the g-function separates as

g(uz.r) = gl(uz)g?_(r) ¥ u,1 .o (12)

then u(t) is said to be a separable process, where

u f(u,)
_ 2 2
gl(u2) = —EETET_ e {13)
g,(0O)R_ (1)
T2 uu
gE(T) = R—(O)— eee(14)
uu

The separable class of random processes is fairly wide and includes

the Gaussian process, sine wave process, pseudo-random-binary-sequences etc.

Define the cross-correlation function

Ry () = Ii u N(u,) £(u ,u,;7)du du, ...(15)
substituting from egn's (12) through (14) yields
Ry (™ = [N(u,) g, (u,)g, (1)du,
Ruu(T)
= m fN(uz)uzf(uz)duz
uu
- R (D) ...16)

where CF is a constant scale factor.

Equation (16) which is known as the invariance property, shows that
Ruy(T) is directly proportional to Ruu(r) for any static nonlinear

characteristic N(+) providing u(t) is separable.
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3 Nonlinear Systems with Dynamics

3.1 Functional Series Methods

A functional representation of nonlinear systems which is a generali-
sation of the linear convolution integral was first studied by Volterra
early in the twentieth century. Volterra investigated analytic functionals

and introduced the representation [4]

o n
v(t) = nzl é ...f hn(rl,...rn) izl u(t—Ti)dTi
= I vy (&) e (17)
n=

which has become known as the Volterra series. The functions hi(Tl,...Ti)
in egn (17) are referred to as Volterra kernels. The kernels are bounded
and continuous in each Tj' symmetric functions of their arguments, and

for causal systems hi(Tl,...Ti) = 0 for any Tj<0. Systems which contain
nonlinear memory elements such as hysteresis or backlash are excluded from

the description of egn (17).

Consider the Volterra series representation of the system illustrated

in Fig.2.

u(t) x(t) 5 y(t)
= h(t) T x () 45T () P

Fig.2
From the convolution integral
x(t) = fh(?)u(t-r)dT
But y(t) = x(t)+x2(t) and therefore

y(t) = fh(Tl)u(t—Tl)dTl % ffh(rz)h(T3)u(t—T2)u(t—T3)dT2d13 ... (18)

|
|
|
is the Volterra series representation.

Taking the Fourier Transform of the n'th order kernel in egn (17)

vields the n'th order kernel transform [4]

Hn(jwl,...jmn) = f ...f hn(Tl,...Tn}exp{-j(w T +...+mnTn)}dT

...d
171 "h

1
I-.(lg)

=00



Similarly, considering just the n'th order component of the output yn(t)

and taking Fourier transforms relates the multispectral density

Yn(jwl,...jwn) = Hn(jml,...jwn)U(jml)...U(jmn) « s (20)

to the input spectrum U(jw), from which the output spectrum can be

evaluated as

(=]

Yn(jm) = (:a_T:n:-f {m_j‘ Yn(jm*jul,jul-juz,...jun_l)dul...dun_l
... (21)

The statistical analysis of systems described by a Volterra series
when the kernels are known has been studied extensively particularly with
reference to communication systems [5-8] and Gaussian, sine wave plus
Gaussian or random pulse train inputs. An excellent review of the use
of functionals in the analysis of nonlinear systems is given by Barnett
[]-

Consider the evaluation of the autocorrelation of the output, input-
output cross-correlation and associated spectral densities for a system
with known Volterra kernels assuming the output is strict-sense stationary.

Define the correlation functions

Ruy(r) = EEy(t)u(t—T}]
= ) R_ (1) wenc
n=1 ¥p
R (0 = E[y(8)y(t-1)]
=) Y R (1) «ss(23)

m=1 n=1 Ynym

To evaluate the above expressions it is necessary to determine the partial

correlation functions Ruy (), Ry v (). Rather than evaluating the
n nym
~general expressions which are given in the literature [5—8] consider the

system illustrated in Fig.2 to illustrate the procedure.
Thus from egn (18)

R (T = fh(rl)E{u(t-Tl)u(t—T)}dTl

+ffh(Tz)h(TB)E{U{t—TZ)u(t—TB)u(t—T)}drsz3 cis (AY



Ryy(T) = ffhle)h(TZ)E{u(t—Tl)u(t-T—Tz)}dTldT2

F fffh(Tl)h(Tz)h(13)E{u(t—Tl)u(t—T-Tz)u(t-T*TS)}dTldedT3

+ fffh(Tl)h(Tz)h(TB)E{u(t—Tl~T)u(t—12)u(t—TB)}dTld12d13

+ ffffh(Tl)h(Tz)h(T3)h(T4)E{u(t—Tl)u(t—Tz)u(t—T—TB)u(t—T~T4)}

d id
dTldrsz3 Ty (25)

In general all the moments of the input process up to order n must be known
before egn's (24) and (25) can be evaluated. When the input is a zero

mean white Gaussian process where

Elu(t))u(t,)...u(t)} =0 i odd ... (26)

Il

LI m &8(t -t ) i even
; m
i n#m

and the summation is over all ways of dividing i objects into pairs, eqn's

(24) and (25) reduce to

Ry (T = 0D s s 270
Ryy(T) = fh(T+T2)h(T2)dT2
+ 2ffh(T+T3)h(T+T4)h(T3)h(T4)dT3dT4 « s (28]

Spectral densities are computed by taking Fourier Transforms of the
associated correlation functions and using eqn's (19)-(21). An algebra
of nonlinear systems based on the Volterra series has been developed by

George [10] and this simplifies the notation considerably in many problems.

3.2 The Fokker-Planck-Kolmogorov Equation

Consider the class of dynamic systems which can be represented by

the stochastic vector differential equations
dx/dt = A(x,t) + C(x,t)V(t) ... (29)

where x = {xi} are the n-state variables, A(x,t) = {ai} and C = {cij} are
coefficient matrices and V(t) is an m-dimensional Gaussian white noise
vector with the properties E[Eﬁt)] = 0, EE!(t)yjs)Tj = Q8 (t-s),

Q= diag{cii2}. V(t) can be used to represent random external

disturbances, modelling discrepancies and random parametric perturbations.



Because Gaussian white noise is not mathematically meaningful, rewrite
eqn (29) in terms of the incremental Wiener process aw(t) = v(t)dt to
yield the Ité [11,12] stochastic differential equation

dx = A(x,t)dt + C(x,t)dw(t) ... (30)

where

E{dW} = 0 , E{aW(t)dW(s) } = Q6 (t-s)dt

Equation (30) generates a Markov process x(t) since x(t) and w(t) are
independent with independent increments. Consequently, the solution of
eqn (30) is completely characterized by the first order probability density
function f£(x,t) and the transitional probability density function
f(fftz/fltl) for t_ >t,, both of which can be shown to satisfy the Fokker-

2 1
Planck-Kolmogorov equation [},11,12,13]

2
Af(s) LI n n 4 .
e .Z 5;7‘(ai(§,t)f(-)) + % .; .Z EETBET-((CQC )ijf( ))
i=1 i i=1 j=1 177

... (31)

In general it is of more practical value to determine the moments
mn = EExin] of the system stateg rather than the probability density
function f(§,t}. Using either the method of moments or Ité's fundamental
lemma it can be shown, for example, that the first two moments are given

by the solution of the ordinary differential equations [13,14]

dE(xi)
S - E(ai(zjt)) R .
dE(xix.) m

3t = E(aixi+ajxj) + E((CQC )ij) TR

for (i,Jj) =1,2...n, and given initial conditions E(to) .

To illustrate the procedure consider a linear first order system with

transfer function driven by unity variance Gaussian white noise.

1+sT
The system model in state-space form is

Tdx = -xd¥ + dw ee. (34)

and from eqn (31) its associated Fokker-Planck-Kolmogorov equation is
af 1 3(xf) 1 82f
— e 2 o+ — 5

ot T 3x 2m
ox

... (35)




The first two moments are, from eqn's (32) and (33)

dm

1 __1
Eo e (96
dm
2 __2, ,1
F-—- Tm2 + 5 ees(37)
Sl
with solutions
m (£) = ml(O)e_t/T ...(38)
_ ~2t/7 . L .. ~28/T
mz(t) = m2(0)e + 5 (1-e ) ... (39)

where ml(O) and m2(o) are initial conditions.

If the system equations (29) are nonlinear in the states the lower
order moment egn's (32) and (33) are in general functions of higher order
moments and closed analytic solutions are not possible. Similarly the
probability density function f(x,t) which satisfies the Fokker-Planck-
Kolmogorov equation cannot be found except by linearization or approxima-
tion methods. An alternative is to simulate the stochastic difference
egn (29) and evaluate the required moments by averaging over the realisa-

tions [l 3-—15] i

4, Linearisation Methods

The relative simplicity of the methods of statistical analysis for
linear systems compared with the inherent complexity of the analysis out-
lined above has led to the development of approximation methods based on

linearisation techniques [16].

The simplest form of linearisation is based upon the expansion of
the nonlinear function in a Taylor series about some operating point and
retaining only the linear terms in the analysis. Thus the nonlinear

function g(xl,...xn) is replaced by the approximate expression

ceosX ) (%, -%.) ... (40)
n s 1 1

g(xlr---xn)wg(;tlr---;;{n) + 'El g;cl{;cl'

where X, is the mean of x. and g' = 3f/3x,.
L 1 xi 1
Although eqn (40) is linear with respect to fluctuations it is non-

linear with respect to expectations.




= O e

Equation (40) is valid only for continuous functions with continuous
first derivatives, and cannot therefore be used to study the characteris-
tics of discontinuous components such as relays or limiters. To linearise

such characteristics the method of statistical linearisation was developed.

The earliest method of statistical linearisation was developed by
Booton [;7] for static nonlinearities and stochastic inputs with zero mean.
Booton's method consists of replacing the nonlinearity N(°) by an equivalent
gain which is selected so as to minimise the mean square of the difference

between the output of the devices.

u(t,i,_..,_____nonlinear y (t)
u(t)=0 element +
- e(t)
u(t__)__ Ke
& yrlE)
Fig.3
Consider the system illustrated in Fig.3 where
e(t) = y(t) - K__u(t)
eq
2 2 — 2 2
e (t) =y (&) - ZKeq u(t)y(t) + K - u (t) ... (41)
, s a 2 ,
Selecting Keq so as to minimise e (t) yields
Keq _ult)y(t) _ fy;f(u)du L. .(42)
uz(t) Ju £ (u)du
; . ; ; 2 2
When the input is Gaussian white Ju f(u)du = ¢~ and hence
eq

|
|
|
E i
K = “E-fyuf(u)du ...(43)
o \
It can readily be shown [18] that Keq in egn (43) is equivalent to the

first term in the Wiener series representation egn (53) of a nonlinear

zero memory system,
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Somerville and Atherton [}9] extended Booton's method to include

cases of non-zero mean input signals as illustrated in Fig.4 to yield

y(t)
K =
dc NTS)
X, - u(t)y(t) - ult) *y(t) s & & (44)
uz(t) - u(t)2
u(t)=_ nonlinear Y(tL
element
o e(t)
u(t) -
ch
b K
eq
u(t)-u(t)
Fig.4

To conserve the spectrum of the output Pupkov [20] proposed replacing

the zero memory nonlinear component N(+*) by a dynamic stationary linear

system

t
N(u(t)) = kg u(t) + [ hit) (u(t-t,)-u(t-t,))dt

-—C0

... (45
1 (45)
where h(t) is determined to ensure the autocorrelation equivalence of the

|
left and right hand sides of eqgn (45)
|

/f h(t)h(t,)R (Tt

—00

-t )dt. dt. = R (1) ... (46)
2 vy

1 L 2

and ch is given by eqgn (44).

If h(t) in egn (45) (u(t) = 0) is selected to minimise the mean squared

error this leads to the Wiener-Hopf equation

fh(tl)Ruu(tl-T)dT = Ruy(T) ... (47)




.

Although this equation is in general difficult to solve for h(t), when

the input is a separable process [3] from eqn (16)

Ruy(T) = CFRuu('r)

and the optimum linear approximation to the nonlinear element is Booton's

uivalent gain C_ =K .
ed g F eq

Harmonic linearisation, which yields the describing function [21]
consists in the simplest case of replacing the nonlinear element by a
linear one whose transfer function is equal to the complex ratio of the
fundamental component of the output to the sinusoidal input. The method
has been used extensively to obtain mathematical descriptions of a large
number of nonlinear systems and several modifications have been developed
including describing functions which relate all the output harmonics to

the input fundamentals.

5. Identification

Identification algorithms for nonlinear systems can be categorised as
functional series methods, algorithms for block oriented systems and

parameter estimation techniques [22,23].

5.1 Functional Series and Block Structured Algorithms

Identification using the Volterra series representation egn (17)
involves the measurement of the Volterra kernels. To illustrate the
approach consider the identification of a system which can be described

by just the first two Volterra kernels

y(t) = g hl(Tl)u(t-Tl)dTl+£fh2(Tl,Tz)u(t—Tl)u(t—Tz)dTlde ...(48)

Defining the mean squared error as E{(z(t)—y(t))z} where z(t) is

the measured output and applying calculus of variations yields

=]

E{z(t)} = [ h (v )E{u(t-t ) }dr

o 1

+ [ h, (1, s 7,) E{u(t-1,)u(t-1,) }dr,dr, ... (49)
0

E{z(t)u(t-0)} = £ hl(Tl)E{u(t—Tl)u(t—U)}dTl

+ éj h, (t;, 1)) E{u(t-1, ) u(t-1,)u(t-o) }dr dr, -




w 08 w

E{z(t)u(t-—crl)u(t-—cz)} = é hl(Tl)E{u(t—Tl)u(t—dl)u(t—U2)}d'rl

+ éf h2(Tl,rz)E{u(t—Tl)u(tnTz)u(t—cl)u(t—cz)}dTldT2 s355 (51)

The solution of this set of equations for a general stochastic input is
extremely difficult. However, if the system input is white Gaussian
substituting eqn (26) in eqgn's (49)-(51) yields

o

z(t) = [ h, (1,7)dt
0

RuZ(Ul) = hl(cl) ... (52)
Ruuz(ul,cz) = zé(cl—cz) + 2h2(cl,02)

and the solution for hl(t) and hz(tl't2) is direct providing the mean level
z is removed. Identification of systems which contain higher than second
order kernels is very difficult using this approach. Alternative schemes
involve approximating the kernels by an expansion of orthogonal functions

and estimating the coefficients [22,23].

Wiener used a Gram-Schmidt orthogonalisation procedure to construct
a new functional series where the functionals {Gn} are orthogonal for a

Gaussian white stimulus. The first two terms in the Wiener series are

(=]

{ k) (thult-t)dt <. (53)

-—00

G [k u(w)]

G, [k2,u(t)]

Ii ky (1, T )ult-t Jult-t,)dr, d1,

[=]

- P {mkz(Tl;Tl)dTl ... (54)

where P is the power spectral density of the white noise input. In general
the Wiener kernels are not equal to the Volterra kernels. Numerous methods
have been developed to identify the kernels in Wiener's series [22,23] the
most popular being a correlation method by Lee and Schetzen [4]. The
procedure consists of computing multidimensional correlation functions

between the white Gaussian input and the system output to yield




- Tl -

1 - n-1
=5 v(t) - GmEkm.u(t)]}u(t-Tl)

m=0

k i
n('rl Tn)

ers ult-t ) T,,T
n

1 ...Tn s 5.2:.(55)

2
In an attempt to reduce the computational burden associated with the
functional-series methods various authors have considered the identifica-
tion of block oriented systems [23,24] which can be represented by inter-
connections of linear dynamic systems and static nonlinear elements.

Consider the system illustrated in Fig.5 to illustrate the approach.

y(t)
L h (t) N(*) h, () -

Fig.5

By extending the theory of separable processes [?2—24] and using the
result of egn (16) it can readily be shown that for a Gaussian white input

with mean level b

Ryt (@) = CFthl(Tl)hz(U—Tl)dTl » 5 A58)

2
RUZYl(G) = cFFthl (o=, )h, (T )dT, ... (57)

where providing hl(t) is stable bounded-inputs bounded outputs CFG and CFFG
are constants and the superscript ' indicates that the mean level has been
removed from the signal. Estimates of the individual linear subsystems
hl(t) and h2(t) can be obtained by decomposing egn's (56) and (57) [24]

and the nonlinearity can then be determined. The results of egn's (56),
(57) inherently provide information regarding the structure of the nonlinear
system and this can be used to determine the position of the nonlinear
element prior to complete identification. Similar results, which provide

estimates of the individual component subsystems, are available for

feedback, feedforward and multiplicative block oriented systems [24].
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5.2 Parameter Estimation Algorithms

Parameter estimation methods for nonlinear systems where the structural
form of the describing differential equations are known are now well
established [22,23]. When little a priori information is available and
the process is treated as a black-box, the usual approach is to expand
the input/output using a suitable model representation. Two particular
choices of model expansion, the NARMAX model and piecewise linear models

will be briefly considered in the present analysis.

5.2.1 The NARMAX Model

If a system is linear then it is finitely realizable and can be
represented by the linear difference equation model
n
u
vk) = § (a,y(k-1)) + ) (b, u(k-i)) vie:0/(58)
. I ; i
i=1 i=l
if the Hankel matrix of the system has finite rank. When the system is
nonlinear a similar representation can be derived by utilizing concepts
from Nerode realization, multistructural forms and results from differential

geometry to yield the nonlinear difference equation model [25]

y(k) = F*[y (k-1),.. -y e-n ) yulk-1) .. .u(k-nu)] ... (59)

where F*[-] is some nonlinear function of u(+) and y(°). The model of

egn (59) can be shown [25] to exist whenever

(i) the state-space of the Nerode realization does not have
infinite dimensions (i.e. we exclude distributed parameter
systems), and

(ii) the linearized system around the origin has a Hankel matrix
of maximum rank (i.e. a linearized model would exist if the

system were operated close to an equilibrium point).

Equation (59) represents the single-input single-output case but the
results have been extended to include multivariable systems. The
Hammerstein, Wiener, bilinear, Volterra and other well known nonlinear

models can be shown to be special cases of eqn (59).

An equivalent representation for nonlinear stochastic systems can be

derived by considering input-output maps based on conditional probability



& 1B =

density functions to yield the model
z (k) = F[z(k—l),...z(k-nz),u(k—l),...u(k—nu),e(k-l),...s(k-ne)] +e (k)

... (60)
where e(k) is the prediction error. This model is referred to as the
Nonlinear AutoRegressive Moving Average model with eXogenous inputs or

NARMAX model [25].

A NARMAX model with first order dynamics expanded as a second order

polynomial nonlinearity would for example be represented as

y (k) F2[y(k—1),u(k-1)]

2 2
Cly(k~1)+c2u(k—l)+clly (k—l}+C12y(k-l)u(k-1)+C22u (k-1)
... (Bl)

Assuming that the output measurements are corrupted by additive noise
z(k) = y(k) + e(k)
gives the input-output model
2
z (k) = Clz(k—l)+C2u(k—l)+Cllz (k—l)+Clzz(k-l)u(k—l)

2
+C22u (k-l)+e(k)~ClE(k—l)—ZCllz(k—l)e(k—l)

2
+Clle (k—l)—Clze(k—l)u(k—l) eea(62)

Because the NARMAX model maps the past input and output into the

|
\
\
present output multiplicative noise terms are induced in the model even
though the noise was additive at the output. In general the noise may

enter the system internally and because the system is nonlinear it will

not always be possible to translate it to be additive at the output.

This situation will again result in multiplicative noise terms in the

NARMAX model with the added complication that the noise source and the

prediction error will not in general be equal. Since most of the

parameter estimation techniques derived for linear systems assume that

the noise is independent of the input, biased estimates result when they

are applied to nonlinear systems eqn (60).

The recursive extended least squares (RELS) algorithm can however be

readily adapted to the NARMAX model, by defining the following vectors
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[2(k-1) ,u(k-1) ,2° (k-1) ,z (k-1 u(k-1) ,u° (k-1) ,& (k-1) ,

Qk) =
2 T
e (k=1)z (k-1) ,u(k-1) e (k-1) ,&“ (k-1) ]
~ A~ ~ A T
8 [c,.c,...c]
e(k+l) = z(k+l) - Q(kaé (k) .o (63)

for the model of eqn (62) for example. With these definitions the
standard RELS algorithm can be applied to yield unbiased parameter
estimates. The development of recursive maximum likelihood and instrumental

variable algorithms for the NARMAX model is not quite so straightforward
[26].

The direct application of an offline maximum likelihood algorithm is
not possible because in general the prediction errors will not have a
Gaussian distribution. However, by considering the loss function
N
1 T
J(8) = == log, det ) e(k;08)e (k;0) ... (64)
2N e
k=1
it can be shown that the prediction error estimates obtained by minimising
egn (64) have very similar asymptotic properties to the maximum likelihood
estimates even when e(k) is non-gaussian. A prediction error algorithm
has been developed for the NARMAX model based on this result. This
together with least squares derived algorithms [26] have been augmented
with a stepwise regression algorithm, a likelihood ratioc test and Akaike
tests to detect the model structure or significant terms in the model

prior to final estimation [28].

Whichever model formulation or identification algorithm is implemented
it is important to test that the identified model does adequately describe
the data set. When the system is nonlinear the residuals r (k) should be
unpredictable from all linear and nonlinear combinations of past inputs

and outputs and this condition will hold iff [27]

R =

CC(T) §(1)
R (1) =O0¥rt ... (65)
Rog(® = E[z (k) z(k-1-T)u(k-1-1)] =0 ¥ © > O

Notice that for nonlinear systems the traditional linear tests RC (1)

and Ruc(T) are not sufficient. If instrumental variables or suboptimal

least squares are used the residuals may be coloured. It can be shown
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that in this case the process model is unbiased iff
R (1) =0 ¥1
ug

R,, (0 =E[()-u)zk+n] = 0% 1
wot o ... (66)
R ,, o0 =E[(’ & -u")’ k)] = 0¥t
u g

Experience has shown that when using a prediction error algorithm
the tests in both egn's (65) and (66) often give the experimenter a great
deal of information regarding the deficiencies in the fitted model and
can indicate which terms should be included in the model to improve the

fit [28].

5.2.1.1 An Example

To illustrate some of the ideas associated with parameter estimation
based on the NARMAX model consider the identification of a model relating
the input volume flow rate u(t) and the level of liquid z (t) in the

interconnected tanks illustrated in Fig.6.

A —_—
~ - -

z(t)
hz(t)

e —>
Qz(t) Qw(t)

Fig.6. Interconnected Tanks

A zero mean Gaussian signal was used to perturb the input u(t) and

1000 data pairs were recorded by sampling the input and output at 9.6 secs.

In the early stages of any identification procedure it is important
to establish if the process under test exhibits nonlinear characteristics
which will warrant a nonlinear model. This can readily be achieved

using a simple correlation test [23,27]. If the third order moments of
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the input are zero and all even order moments exist (a sine wave,
gaussian or ternary sequence would for example satisfy the properties)

then the process is linear iff
- -~ 2
R (1) =E[(z(k)-2) (z(k+1) =) ] = 0¥ a5 B7)

zl‘zl

R 2(T) for the liquid level system is illustrated in Fig.7 and
Z'I' 1
clearly ghows that, as expected, the liquid level system is highly

nonlinear.

¢ z'z'2
=
e st~ e |
e 10
1.0 %

Fig.7. Nonlinear detection test

Initially a linear model was fitted to the data using a maximum

likelihood algorithm to give the representation
z (k) = 0.746z (k-1)+0. 340z (k-2) -0.122z (k-3)
+0.471u(k-1)-0.174u(k-2) -0.040u(k-3)

+e (k) +0.423¢ (k-1) +0.038¢ (k-2) ... (68)

A comparison of the process and linear model predicted output is
illustrated in Fig.8. The model validity tests egn's (65), (66) for
this model are illustrated in Fig.9. Notice that although RCC(T) and

Ru;(T) indicate linear adequacy for the model egn (68), R (t) and

2|
R o 2(T) are well outside the 95% confidence bands indicgti%g that

u
nénlinear terms should be included in the model description.




Fig.8.
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The effect of introducing nonlinear terms into the model was
therefore investigated and a prediction error algorithm yielded the

NARMAX model representation

z (k) = 0.436z(k-1)+0.681z(k-2)-0.149z (k-3)
+0. 39%6u(k-1) +0.014u(k-2)-0.071u(k-3)
-0. 351z (k-1) u(k-1) -0.034z° (k-2)
-0.135z(k-2)u(k—2)-0.027z3(k—2)-0.108z2(k—2)u(k—2)
~o.099u3(k~2)+e(k)+o.344e(k—1)-o.201e(k—2) ... (69)

The model validity tests for the model of egqn (69) are illustrated
in Fig.ll and these together with the comparison of the NARMAX model
predicted and process output Fig.l0 show the considerable improvement
in the prediction capabilities of the estimated NARMAX model eqn (69)
compared with the best linear model eqn (68).

uy
m
(]

Fig.l0. Process and Predicted output for
the estimated NARMAX model

5.2.2 Piecewise Linear Modelling

There are several possible ways in which nonlinear systems can be
approximated by locally linear models. These involve either the expansions

of the NARMAX model egn (60) using spline functions, spatial piecewise



— D3

linear models or linear models with signal dependent parameters [29].
The last of these three representations can be fitted by performing a
series of linear experiments and repeatedly utilizing linear parameter
estimation routines to build up a series of linearized models of the
process, This can offer several advantages compared with fitting a
global nonlinear model and may be appropriate in situations where this
type of approximate system description is adequate. To illustrate the

ideas involved we will just consider signal dependent linear modelling.

Linearizing the NARMAX model eqn (60) at a selected operating poiht

Ak = [?l,...zn ,u ,...un ], AksR gives

1
z u
Ny Ty
azt) = § ZELl | wpesy « T L ooy + acoo
b Bz (k-i) L= du(k-i)
i=1 Ak i=l Ak ... (70)

where for simplicity the noise is assumed to be represented by a single
uncorrelated prediction error term e (k). Substituting dz (k) = z(k)—z(k)k ’
dqu(k) = ulk)-u(k)|, , de(k) = E(k)—s(k)lﬂk into eqn (70) and *

manipulating gives

n n
Z u
z (k) = eo| 5 .{ ei|A z(k-i) + .Z enz+i|A u(k-i) +e (k)
k i=1 k i=1 k
s s k7LD
where
nz '
8 |, =zm|, -em]| —Z—BEL'—H 2 (k-1) |
o A Ay b e WG (B
nu
oF [«
) : u(k-i) |
is1 ou(k-i) Ak Ak
0. = __ﬁgl;l
i'A 9z (k-1i)
k
_oF[-
an+i|Ak ~ du(k-i) wine (12)

If the process is such that the parameters in the linearized model

eqgn (71) depend on a signal w(k) then eqn (71) can be written as
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n n
Z u

2(k) = 6, (k) + § 8 (wk)z(k-i) + ) 8 g (0 (k) .ulk-i)

=1 . i=l =z ... (73)

Equation (73) is a signal dependent linear model where w(k) is the
coefficient dependent signal which may depend on the input, the output or
some external variable associated with the operation of the process.

In the modelling of a power station for example it may be appropriate
to select w(k) as the megawatt output. In the liquid level system it
would be the level of liquid in the first tank.

Parameter estimation for signal dependent models is usually performed
in two stages. Initially the coefficients in a series of linear models
as w(k) is varied are estimated. These locally linear models are then
patched together to form an approximate global nonlinear description of
the system under investigation [?9]. For example egn (73) can be

expressed as
z(k) = 9 (k)8 (w(k) + e (k) ce(74)

where the definitions of Y(-) and 6(+) follow directly. Assuming that
the signal dependent parameter vector 6(w(k)) can be approximated by a

finite degree polynomial we can write

6, (w(k)) = B, W(k) , i=0,...n 4n .. (75)
1 y 3 zZ u
where
W) = [Liotk) 0200 ,...o*0]"
_ T
By = [Bio'sil'8i2"'siﬂ]

Substituting egn (75) in egn (74) gives the global nonlinear model
T T
z(k) =¥~ (k) [BwW(k)] ... (76)

The advantage of this approach is that it is relatively easy to
estimate the model parameters and the results can be readily interpretted
using all the well known linear theory. The disadvantage is that the
final model will only provide an adequate representation for the system
for the particular trajectory of input signal used in the identification
unless the process is only mildly nonlinear or the operation of the

Process moves slowly and smoothly from one operating point to another [29].
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5.2.2.1 BAn Example
The implicit nonlinear model

z(k) = O.Sz(k—l)+O.3u(k—l)+0.32(k—l)u(k—l)+O.5u2(k—lj+e(k)

. (77)
was simulated over the global input range of #1.0. Eleven first order
linearized models with input range *0.l were estimated at the different
operating levels where w(k) = u(k). The final global nonlinear model

egn (76) was estimated as

z(k) = [1,z(k-1),u(k-1)] [-0.0019 0.0525 -0.6104 =-0.6156 =-0.3919
0.4548 0.4334 0.0580 -0.1953 -0.0036
0.3034 1.1151 0.3770 0.3723 0.2348

r 3

1

X u(k-1)
2

u” (k-1)
3

u” (k-1)

Lu4(k—l)J .« (78)

The final model egn (78) provided an adequate representation for the
system eqn (77) when perturbed by the input used to initially excite the
process but significant deficiencies in the model were visible for other

rapidly varying inputs.

5.3 Control of Nonlinear Sampled-Data Systems

The choice of model representation for nonlinear systems is vitally
important since this will influence its usefulness for both prediction
and controller design. In view of the success of the linear difference
equation model as a basis for linear controller design procedures it is
natural to extend these ideas to the NARMAX model. There are many
possibilities here that can be investigated [23,30] and only the simple
one-step-ahead adaptive controller based on the NARMAX model will be
considered here. This is best illustrated by designing controllers for

the liquid level system discussed in section 5.2.l1.1.

PI, linear adaptive one-step-ahead and self-tuning regulators were
designed for the liquid level system described in section 5.2.1.1. The

performance of these controllers is illustrated in Fig.l1l2.
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Inspection of Fig.l2 clearly shows the poor performance of all these
linear controllers when applied to the nonlinear liquid level system.
The adaptive linear regulators only performed with any degree of
satisfaction when the set point signal was slowed right down so that
the parameter estimation routines had time to re-adapt to the new
operating point.

The adaptive one-step-ahead nonlinear controller was defined, from

eqn (69), by the feedback law

u(k) = {y*-0.436z(k)-0.681z (k-1)+0.149z (k-2)
~0.94u(k-1) +0.071u (k-2) +0.034z> (k-1)
+0.1352 (k=1) u(k=1) +0.0272° (k-1) +0.108z> (k-1) u (k-1)
+0.099u> (k-1) }/{0.396-0.351z (k) } ... (79)

for [0.396-0.351z(k)] > y > O

where y was set to 0.0l and y* represents the set point. The performance

of the controller egn (79) when applied to the liquid level system is
illustrated in Fig.l3.

= 8 _S€% poin:

annnnonne
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Fig.13. Nonlinear control of the liquid level system

A comparison of the performance of the linear based designs Fig.l2
with the nonlinear design Fig.l3 clearly shows the excellent response of

the system when the nonlinear controller is utilised.
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1 6. Conclusions

The statistical analysis of nonlinear systems is in general a
b difficult task. Whilst some of the techniques currently available
: have been briefly described above details of other alternative approaches

are readily available in the literature.
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