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1.  Introduction 

The concepts of molecular similarity (1-3) and molecular diversity (4, 5) play 

important roles in modern approaches to computer-aided molecular design.  

Molecular similarity provides the simplest, and most widely used, method for virtual 

screening and underlies the use of clustering methods on chemical databases.  

Molecular diversity analysis provides a range of tools for exploring the extent to 

which a set of molecules spans structural space, and underlies many approaches to 

compound selection and to the design of combinatorial libraries.  Many different 

similarity and diversity methods have been described in the literature, and new 

methods continue to appear.  This raises the question of how one can compare 

different methods, so as to identify the most appropriate method(s) for some particular 

application: this paper provides an overview of the ways in which this can be carried 

out, illustrating such comparisons by, principally, our experience of similarity and 

diversity studies that have been carried out in the Chemoinformatics Research Group 

at the University of Sheffield.   

There are two bases for the comparison of similarity and diversity methods.  It 

is possible to compare the efficiency of methods, i.e., the resources, typically 

computer time and computer memory, necessary for the completion of processing.  

Considerations of efficiency, in particular theoretical analyses of computational 

complexity, are important in that they can serve to identify methods that are unlikely 

to be applicable given the rapidly increasing sizes of current and planned chemical 

datasets.  Here, however, we restrict ourselves to comparing the effectiveness of 

similarity and diversity methods, i.e., the extent to which a method is able to satisfy 

the user’s requirements in terms of identifying similar or diverse sets of compounds.  

More specifically, we focus on evaluation criteria based on the availability of 

bioactivity data for the molecules that are being processed, where the data can either 

be qualitative, i.e., a categorical (usually binary) variable, or quantitative, i.e., a real-

valued variable.  The discussion here considers only the criteria that can be used for 

comparative studies: the reader is referred elsewhere for the results of such studies. 

 

2.  Methods 

2.1.  Molecular Similarity Methods 

2.1.1.  Introduction 
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The basic concept of molecular similarity has many applications (1,2) but we focus 

here on its use for similarity-based virtual screening, which is often referred to as 

similarity searching (3).  Here, a user specifies a target structure that is characterised 

by one or more structural descriptors, and this set is compared with the corresponding 

sets of descriptors for each of the molecules in the database.  These comparisons 

enable the calculation of a measure of similarity, i.e., the degree of structural 

relatedness, between the target structure and each of the database structures, and the 

latter are then sorted into order of decreasing similarity with the target.  The output 

from the search is a ranked list in which the structures that are calculated to be most 

similar to the target structure, the nearest neighbours, are located at the top of the list.  

These neighbours form the initial output of the search and will be those that have the 

greatest probability of being of interest to the user, given an appropriate measure of 

inter-molecular structural similarity.  

 Many different types of similarity measure have been discussed in the 

literature but they generally involve three principal components: the representation 

that is used to characterise the molecules that are being compared; the weighting 

scheme that is used to assign differing degrees of importance to the various 

components of these representations; and the similarity coefficient that is used to 

provide a quantitative measure of the degree of structural relatedness between a pair 

of structural representations.  These three components are closely related and it is 

hence most important that a comparative study should seek to ensure that only one of 

these components is varied at any one time.  For example, only a limited amount of 

information might be gained from a comparison of the effectiveness of similarity 

searching using binary fingerprints (e.g., those produced by the UNITY or Daylight 

software) and the Tanimoto coefficient, with the effectiveness of similarity searching 

using a set of computed physicochemical parameters (e.g., those produced by the 

MOLCONN-Z or DiverseSolutions software), some particular standardisation method 

and the Euclidean distance.  Given an appropriate evaluation criterion (as discussed 

below), one might be able to decide that one of these approaches gave better results 

than the other, but one would not be able to identify the relative contributions of the 

various components of the overall similarity measures that were being studied. 

 The basis for all of the evaluation techniques to be discussed here is what is 

commonly referred to as the similar-property principle, which was first stated 

explicitly by Johnson and Maggiora in their seminal 1990 book (1).  The principle 
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states that structurally-similar molecules are expected to exhibit similar properties.  It 

is clear that there are many exceptions to the principle as stated (6,7), since even a 

small change in the structure of a molecule can bring about a radical change in some 

property; for example, replacement of a small alkyl group by a larger one, e.g., methyl 

replaced by t-butyl, can mean that a molecule is now too large to fit a binding site.  

The principle does, however, provide a general rule of thumb that is very widely 

applicable; indeed, if this were not the case, then it would prove difficult indeed to 

develop meaningful structure-activity relationships of any sort.  If the principle does 

hold for a particular dataset, then the top-ranked molecules (which are often referred 

to as the nearest neighbours) in a similarity search are expected to have properties 

that are related to those of the target structure.  We can hence evaluate the 

effectiveness of a structurally-based similarity procedure by the extent to which the 

similarities resulting from its use mirror similarities in some external property, which 

in the context of this paper we take to be biological activity (but could be any type of 

chemical, biological or physical property).  The next two sections of the paper detail 

the ways in which the principle is applied to the analysis of qualitative and 

quantitative datasets. 

2.1.2.  Use of qualitative data 

In what follows, we shall adopt ideas and terminology from that part of 

computer science that is normally referred to as information retrieval (8-10).  The 

measurement of search effectiveness has played a large part in the development of 

information retrieval (or IR) systems, whose principal aim is to identify as many 

documents as possible that are relevant to a user’s query whilst simultaneously 

minimising the number of non-relevant documents that are retrieved.  It is possible to 

apply many of these measures to the evaluation of chemical retrieval systems, where 

one wishes to identify as many molecules as possible that have the same activity as 

the target structure whilst simultaneously minimising the number of inactive 

molecules that are retrieved.   

The relationship between IR and chemical similarity searching is discussed in 

detail by Edgar et al. (11) who summarise the various effectiveness measures in terms 

of the 2×2 contingency table shown in Table 1.  In this table, it is assumed that a 

search has been carried out resulting in the retrieval of the n nearest neighbours at the 

top of the ranked output.  Assume that these n nearest neighbours include a of the A 
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active molecules in the complete database, which contains a total of N molecules.  

Then the recall, R, is defined to be the fraction of the active molecules that are 

retrieved, i.e.,  

A
aR = , 

and the precision, P, is defined to be the fraction of the retrieved molecules that are 

active, i.e., 

n
aP = . 

A retrieval mechanism should seek to maximise both the recall and the precision of a 

search so that, in the ideal case, a user would be presented with all of the actives in the 

database without any additional inactives: needless to say, this ideal is very rarely 

achieved in practice. 

 It is inconvenient to have to specify two measures, i.e., recall and precision, to 

quantify the effectiveness of a search.  The Merck group have made extensive use of 

the enrichment factor, i.e., the number of actives retrieved relative to the number that 

would have been retrieved if compounds had been picked from the database at 

random (12).  Thus, using the notation of Table 1, the enrichment factor at some 

point, n, in the ranking resulting from a similarity search is given by 

NA
na

/
/ . 

Note that since A/N is a constant, the enrichment is monotonic with precision.  Rather 

than specifying the enrichment at some specific point in the ranking, e.g., the top-

1000 positions, it can alternatively be specified at that point where some specific 

fraction, e.g., 50%, of the actives have been retrieved.  Examples of the use of 

enrichment factors are provided by Sheridan et al. (12) and Gillet et al. (13).   

Alternatively, Güner and Henry (14) have introduced the G-H score, which is 

a weighted average of recall and precision.  The score was originally developed for 

evaluating the effectiveness of 3D database searches but can be applied to the 

evaluation of any sort of search for which qualitative bioactivity data are available.  

Using the previous notation, the G-H score is defined to be 

2
RP βα + , 
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where α and β are weights describing the relative importance of recall and precision.  

The lowerbound for the G-H score is zero; if both weights are set to unity, then the 

score is simply the arithmetic mean of recall and precision, i.e., 

2
RP + . 

Examples of the use of the G-H score are provided by Güner and Henry (15) and by 

Raymond and Willett (16), while Edgar et al. discuss other combined measures that 

can be used for chemical similarity searching (11).   

At least three alternative approaches have been widely used.  First, the 

Sheffield group has generally quoted the mean numbers of active compounds 

identified in some fixed number of the top-ranked nearest neighbours, when averaged 

over a set of searches for bioactive target structures.  An early example of the use of 

this approach is a comparison of 3D similarity measures based on inter-atomic 

distances (17), with Briem and Lessel providing a more recent application in their 

extended comparison of virtual screening methods (18).  The use of a fixed cut-off 

means that this measure is basically a reformulation of precision, which is entirely 

acceptable in the early stages of a discovery programme, when the immediate need is 

to identify additional active molecules; however, the measure takes no account of 

recall, which may be an important factor in a detailed comparative study of the 

behaviour of different similarity measures.  A second, and alternative, ‘leave-one-out’ 

classification approach assumes that the activity of one of the molecules in the 

database, X, is unknown.  A similarity search is carried out using X as the target 

structure and the top-x (where x is odd) nearest neighbours identified.  The activity or 

inactivity of X is then predicted on the basis of a majority vote (hence the requirement 

for an odd number) of the known activities of the selected nearest neighbours.  This 

process is repeated for each of the N molecules in turn (or just the A active molecules 

in many cases), yielding a contingency table of the sort shown in Table 2.  Various 

statistics can be produced from the elements of this table: perhaps the most common 

is Cohen’s kappa statistic (19).  This is defined to be  

E
EO

−
−

1
, 

where O and E are the observed and expected accuracies of classification.  These 

accuracies can be defined in terms of the elements of Table 2 as follows: 



 7 

n
liO +

= , and 

n
lkljjikiE

2

))(())(( +++++
= . 

There are many variants on this basic idea, such as the weighted kappa described by 

Cohen himself (20) and the Rand statistic (21), which is perhaps the most widely used 

of the measures available for comparing different clusterings of the same set of 

objects. 

Finally, it may be of interest to study the performance of a measure across the 

entire ranking resulting from a similarity search, rather than the performance for some 

fixed number of nearest neighbours.  In this case, the most popular approach is the use 

of a cumulative recall graph, which plots the recall against the number of compounds 

retrieved (i.e., a/A against n using the notation of Table 1).  The best-possible such 

graph would hence be one in which the A relevant documents are at the top of the 

ranking, i.e., at rank-positions 1, 2, 3…A (or at rank-positions, N-A+1, N-A+2, N-

A+3…N in the case of the worst-possible ranking).  The use of such diagrams is 

exemplified by studies of similarity searching using physicochemical descriptors (12) 

and of a range of virtual screening methods for searching agrochemical datasets (22).  

The cumulative recall plot is closely related to the receiver operating characteristic 

(ROC) curves that are widely used in signal detection and classification problems 

(23).  An ROC curve plots the true positives against the false positives for different 

classifications of the same set of objects; this corresponds to plotting a against n-a 

using the notation of Table 1, and thus the shape of an ROC curve tends to the shape 

of a cumulative recall plot when n>>a.  An example of the use of ROC plots in 

chemoinformatics is provided by the work of Cuissart et al. on similarity-based 

methods for the prediction of biodegradability (24).  

2.1.3.  Use of quantitative data 

The similar property principle can also be applied to the analysis of datasets 

for which quantitative bioactivity data are available, most commonly using a simple 

modification of the ‘leave-one-out’ classification approach described above.  Here, 

the predicted property value for the target structure X, P(X), is taken to be the 

arithmetic mean of the observed property values of the selected nearest neighbours.  

This procedure results in the calculation of a P(X) value for each of the N structures in 

a dataset, and an overall figure of merit is then obtained by calculating the product 
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moment correlation coefficient between the sets of N observed and N predicted 

values.  This approach can equally well be applied to the evaluation of clustering 

methods, with the predicted values here being the mean of the other compounds in the 

cluster containing the chosen molecule, X.   

This application of the similar property principle was pioneered by Adamson 

and Bush (25, 26) and has since been very extensively applied.  For example, Willett 

and Winterman used it in one of the first detailed comparisons of measures for 

similarity searching (27) and it also formed the basis for Brown and Martin’s much-

cited comparison of clustering methods and structural descriptors for compound 

selection (28).  

 

2.2. Molecular Diversity Methods   

2.2.1.  Introduction 

 The principal aim of molecular diversity analysis is to identify structurally 

diverse (synonyms are dissimilar, disparate and heterogeneous) sets of compounds 

that can then be tested for bioactivity, the assumption being that a structurally diverse 

set will generate more structure-activity information than will a set of compounds 

identified at random.  The sets of compounds can be selected from an existing 

corporate or public database, or can be the result of a systematic combinatorial library 

design process (4, 5).  

 Many of the comments that were made in Section 3.1.1 regarding similarity 

measures are equally applicable to diversity methods, in that the latter involve 

knowledge of the degree of dissimilarity or distance between pairs, or larger groups, 

of molecules.  Here, however, there is also the need to specify a selection algorithm, 

which uses the computed dissimilarities to identify the final structurally diverse set of 

compounds, and there may also be a diversity index, which quantifies the degree of 

diversity in this set.  It is thus important, as with similarity measures, to isolate the 

effect of the various components of the diversity methods that are being analysed in a 

comparative study.  There have been many such comparisons, e.g., (28-33).  Here, we 

focus on diversity indices since it is these that measure the overall effectiveness of a 

method (in fact, while an index is computed once a selection algorithm has completed 

its task, there are some types of algorithm that seek explicitly to optimise the chosen 

index, so that the current value of the index drives the operation of the selection 

algorithm).  
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Many of the early evaluations of the effectiveness of diversity methods used 

structure-based diversity indices, such as functions of inter-molecular dissimilarities 

in the context of distance-based selection methods or of the numbers of occupied cells 

in partition-based selection methods (4).  A wide range of such indices has been 

reported, as discussed in the excellent review by Waldman et al. (34).  They do, 

however, have the limitation that they quantify diversity in chemical space, whereas 

the principal rationale for molecular diversity methods is to maximise diversity in 

biological space (35), and we hence focus here on indices that take account of 

biological activity.   

2.2.2. General screening programmes  

We have noted the importance of the similar property principle, which would 

imply that a set of compounds exhibiting some degree of structural redundancy, i.e., 

containing molecules that are near neighbours of each other, will also exhibit some 

degree of biological redundancy; a structurally diverse subset, conversely, should 

maximise the number of types of activity exhibited by its constituent molecules.  It 

should thus be possible to compare the effectiveness of different structure-based 

selection methods by the extent to which they result in subsets that exhibit as many as 

possible of the types of activity present in the parent dataset.  Maximising biological 

diversity in this way is the principal aim of general screening programs, which aim to 

select molecules from a database (or design combinatorial libraries for synthesis) that 

exhibit the widest possible range of different types of activity.  An obvious measure 

of the diversity of the resulting compounds is hence the number of types of activity 

exhibited by them.  This can be easily tested using one of the public databases that 

contain both chemical structures and pharmacological activities, such as the MACCS 

Drug Data Report (MDDR, at URL http://www.mdli.com/products/mddr.html) or the 

World Drugs Index (WDI, at URL 

http://www.derwent.com/worlddrugindex/index.html) databases.  Thus, in one of the 

earliest comparative studies of methods for comparing diverse database subsets, 

Snarey et al. compared a range of maximum dissimilarity and sphere exclusion 

methods for dissimilarity-based compound selection by means of the number of 

different types of activity present in subsets chosen from molecules in the WDI 

database (31); this approach has been adopted in several subsequent studies. 

 

 

http://www.mdli.com/products/mddr.html)
http://www.derwent.com/worlddrugindex/index.html)
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2.2.3. Focused screening programmes 

In a focused screening programme, the aim is to select molecules from a 

database (or design combinatorial libraries for synthesis) that provide the maximum 

amount of information about the relationships that exist between structural features 

and some specific type of biological activity.  If this data is qualitative in nature, then 

a simple count of the active molecules present will suffice to quantify the degree of 

biological diversity.  However, at least some account must additionally be taken of the 

chemical diversity that is present, to avoid a high level of diversity being ascribed to a 

cluster of highly similar molecules (such as “me too” or “fast follower” compounds in 

a drug database).  An example of this approach is a comparison of binning schemes 

for cell-based compound selection by Bayley and Willett (36) that selected one 

molecule from each cell in a grid (thus ensuring that the selected molecules were 

structurally diverse) and then noted how many of these selected molecules were 

bioactive (thus quantifying the biological diversity).   

Once interest has been focused on some small volume of structural space, 

large numbers of molecules are synthesised and tested (and often re-tested in the case 

of HTS data), and the results of these experiments used to develop a quantitative 

structure-activity relationship (QSAR).  It has for long been claimed that the use of 

diverse sets of compounds will enable more robust QSARs to be developed than can 

be developed using randomly-chosen training sets.  That this is in fact the case has 

been demonstrated recently by Golbraikh and Tropsha (37), and one can hence 

quantify the effectiveness of a compound selection method by the predictive power of 

the QSARs that can be derived from the compounds selected by that method.  

Quantitative bioactivity data also lies at the heart of the neighbourhood behaviour 

approach of Patterson et al. (33), which is analogous to the similar property principle 

but emphasises the absolute differences in descriptor values and in bioactivity values, 

rather than the values themselves.  Specifically the authors state that a meaningful 

descriptor for diversity analysis is one for which “small differences in structure do not 

(often) produce large differences in biology”, and then use this idea to compare a 

wide range of descriptor types by means of a χ² analysis; an improved version of this 

analysis is described by Dixon and Merz (38). 
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3.  Notes 

1. The group in Sheffield has over two decades experience of carrying out 

comparative studies of similarity (and, more recently, diversity) methods.  

Perhaps the most importance single piece of advice we can give to those 

wishing to carry out comparable studies is the need to use a range of types of 

data, ideally including both homogeneous and heterogeneous datasets.  Only 

by so doing can one ensure the robustness and general applicability of the 

methods that are being compared.  In particular, one would not wish to 

encourage the situation that pertained for some time in the QSAR literature, 

where a new method was normally developed and tested on a single dataset, 

most commonly the set of steroids (39) first popularised by Cramer et al. (40).   

2. In like vein, we would recommend the use of more than just one evaluation 

measure.  That said, it is our experience that different measures usually agree 

as to the relative merits of different approaches (unless there are only very 

minor differences in effectiveness): even so, it is always worth carrying out 

additional analyses to ensure that one’s results are, indeed, independent of the 

evaluation criterion that has been adopted.  

3. Having criticised the exclusive use of the steroid dataset, it does have the great 

advantage that it provides a simple basis for comparison with previous work, 

and it would be highly desirable if comparable test-sets were available for 

similarity and diversity analyses.  To some extent, this is already happening 

with increasing use being made of the qualitative bioactivity data in the 

MDDR and WDI datasets mentioned previously; two other datasets that can 

be used for this purpose, and which have the advantage that they are available 

for public download, are the cancer and AIDS files produced by the National 

Cancer Institute (at URL http://dtp.nci.nih.gov/). 
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Table 1.  Contingency table describing the output of a search in terms of active 
molecules and molecules retrieved in a similarity search retrieving n molecules. 
 

  Active  
  Yes No  

Retrieved Yes a n-a n 
 No A-a N-n-A+a N-n 
  A N-A N 

 
 
Table 2.  Contingency table describing the output of a search in terms of correctly and 
incorrectly predicted molecules in a classification experiment classifying n molecules. 
 

  Classification  
  Active Inactive  

Truth Active i j i+j 
 Inactive k l k+l 
  i+k j+l n 

 
 
 


