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Active Robust Optimization – Enhancing

Robustness to Uncertain Environments
Shaul Salomon, Gideon Avigad, Peter J. Fleming, and Robin C. Purshouse

Abstract—Many real world optimization problems involve un-
certainties. A solution for such a problem is expected to be
robust to these uncertainties. Commonly, robustness is attained
by choosing the solution’s parameters such that the solution’s
performance is less influenced by negative effects of the un-
certain parameters’ variations. This robustness may be viewed
as a passive robustness, because once the solution’s parameters
are chosen, the robustness is inherent in the solution and no
further action, to suppress the effect of uncertainties, is expected.
However, it is acknowledged that enhanced robustness comes on
the expense of peak performances. In this study, Active Robust
Optimization is presented as a new robust optimization approach.
It considers products that are able to adapt to environmental
changes. The enhanced robustness of these solutions is attained
by adaptation, which reduces the loss in performance due to
environmental changes. A new optimization problem named
Active Robust Optimization Problem is formulated. The problem
amalgamates robust optimization with dynamic optimization in
order to evaluate the performance of a candidate solution, while
considering possible environmental conditions. Adaptation’s influ-
ence on the solution’s performance and cost is considered as well.
Hence, the problem is formulated as a multiobjective problem
that simultaneously aims at low costs and high performance.
Since these goals are commonly in conflict: the solution is a set of
optimal adaptive solutions. An evolutionary algorithm is proposed
in order to evolve this set. An example of optimizing an adaptive
optical table is provided. It is shown that an adaptive product,
which is an outcome of the suggested approach, may be superior
to an equivalent product that is not adaptive.

Keywords—robust optimization, dynamic optimization, evolution-
ary algorithms, adaptive design, multi-objective optimization.

I. INTRODUCTION

MOST real world optimization problems involve un-
certainties. These uncertainties might be an outcome

of, e.g., manufacturing tolerances on components or uncon-
trolled changes in environmental conditions. In such cases,
the motivation is to identify a solution that is not just an
optimal one, but also robust to the uncertainties involved.
This kind of optimization is known as Robust Optimization
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(RO). Some common approaches for RO, such as presented
in [1] consider the solution’s expected (mean) performance,
its variance or worst case. To ensure robustness, a solution
may include some properties that reduce the possible negative
influences caused by uncontrolled parameters’ variations (e.g.,
thick insulation may reduce fluctuations of an oven internal
temperature, caused by changes in the ambient temperature).

Many products have some parameters that can be altered
while in use. These changes may influence the performances
of the product. A tyre’s air pressure, a power drill’s speed,
and a cellphone’s screen brightness are examples for such
parameters. Adjusting these parameters to account for the
effects of uncertainties may improve a product’s performance.
If the influence of these adjustable variables is considered
during the design phase, the outcome might be a product that
is more robust, meaning that its performance is less sensitive
to the uncertainties involved.

This conviction may be explained by the cellphone screen
example. Suppose that the brightness of a cellphone’s screen
is determined by optimizing its battery-life, subjected to sat-
isfying the constraint that the screen should be bright enough
to enable visibility of the displayed data. The lower the screen
brightness, the longer the battery-life and therefore, the lowest
brightness that allows visibility should be chosen as the opti-
mal value. Since visibility depends on the surrounding light,
which is uncertain, RO should be considered. The conventional
RO approach will result in a fixed brightness that provides
some defined trade-off between optimality and robustness, i.e.,
the minimal brightness that satisfies the robustness criterion
(e.g., based on worst case, mean value, etc.). Such brightness
enables visibility in any lighting that is not stronger than a
certain level (e.g., daylight with no direct sunlight on the
screen). Whenever the surrounding light is weaker than the
level considered (e.g., during the night), energy is wasted as
the screen is brighter than required. It is clear then, that the
phone’s robustness comes at the expense of a shorter battery-
life. Moreover, whenever the surrounding light is stronger than
the considered level, the data is not visible, and the constraint
is violated.

Adjusting the cellphone’s brightness in real time according
to the actual lighting conditions (either manually or automat-
ically) will preserve battery-life in ambient conditions (i.e.,
more favourable conditions than these driving the robustness
requirement), and offers potential of enhanced robustness in
periods of extreme conditions (e.g., direct sunlight on the
screen). Such an adjustment does not eliminate the environ-
ment’s related uncertainty, as well as its influence on the objec-
tive, yet it enables an active robustness to this uncertainty. The
above example can indicate that an active robustness approach
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may result in better performance than the conventional RO
approach that promotes passive robustness. It is conceivable
though that implementing the adjustment might increase the
product’s cost.

The process of adjustment to a new configuration as a result
of an environmental change is termed here as adaptation.
The meanings of other terms that relate to adaptation are as
follows: adaptive describes a design or a product that can
perform adaptation, and the adaptability of a design defines
what properties it can adjust as well as their limits.

This paper introduces a new optimization problem that aims
at optimal adaptive products that will promote robustness.
The problem, Active Robust Optimization Problem (AROP),
considers the influence of the solution’s adaptability both on
its performances and its cost. Therefore, it is a multi-objective
optimization problem (MOP), and its solution is expected to
be a set of optimal adaptive solutions with a trade-off between
cost and performance.

The reminder of this paper is organized as follows: In
Section II, the position of the current study with respect to
the current state of the art in RO is explained, and common
definitions of robust and dynamic optimization problems are
provided. The AROP is defined and explained in Section III. In
Section IV the problem is demonstrated with an example of an
optical table design. Finally, conclusions and future research
directions are discussed in Section V.

II. BACKGROUND

In this section the required background for understanding the
active robustness approach is provided. The terms Dynamic
Optimization and Robust Optimization that are the building
blocks of the AROP are explained. Existing design and opti-
mization methodologies that relate to the AROP are surveyed,
and the newly suggested approach is positioned with respect
to them.

Robust performance design tries to ensure that performance
requirements are met and constraints are not violated due to
systems uncertainties and variations. Fundamentally, robust
optimization is concerned with minimizing the effect of such
variations without eliminating the source of the uncertainty
or variation [2]. To search for robust solutions, the variables
are treated as stochastic rather than deterministic, while infor-
mation about their probability distribution functions (PDF) is
taken into account.

There are several approaches for robust optimization. The
most common are to represent the performance of a solution by
either its expected value [1], or by the worst case (e.g., [3]). If
we assume a minimization problem (without loss of generality)
then the aim is to find the solution with the minimum expected
value or the minimum worse case, respectively.

The expected value problem can be formulated as:

min
x∈X

E [f(x,P)] (1)

where f() is the objective function, x is an nx-dimensional
vector of decision variables in some feasible region X ⊂ R

nx ,
and P is an np-dimensional vector random variate, with some

defined PDFs, of uncertain environmental parameters that are
independent from the design variables x.

The worst case problem can be formulated as:

min
x∈X

max
p∈P

f(x,p) (2)

where p is a realized vector of uncertain parameters from the
random variate P.

Some other RO methods define a utility multiobjective
problem to optimize the average performance and to minimize
the variance [1].

Optimization problems that search for a solution to changing
objective functions and constraints are known as Dynamic
Optimization Problems (DOPs). Mathematically, a DOP is
defined as follows:

min
y∈Y

f(y,p) (3)

where y is an ny-dimensional vector of decision variables from
some feasible region Y ⊂ R

ny .
For any given vector p, the solution of the DOP y⋆ is

the vector y that minimizes the objective function. The most
common DOP involves the case where p consists of a single
uncertain parameter – the time. In that case, the optimal
solution y⋆ changes in time, since the objective function and
the constraints are time-dependent. Commonly, evolutionary
algorithms for DOPs consist of a mechanism for continuously
tracking the optimum over time, and an additional mechanism
for seeking a new optimum in other regions of the design
space. A comprehensive survey of the existing methods for
solving DOPs and their applications can be found in [4].

The difference between a DOP and RO problem is that in
the latter the solution is to be found prior to the realization of
the uncertainties, while in the former it is searched for once a
particular environmental condition is realized. The fields of RO
and dynamic optimization have been comprehensively studied
during the past two decades, though the synergy between these
two optimization approaches has received scarce attention. The
proposed AROP uses both robust and dynamic optimization:
the properties that cannot change with time are optimized
through RO, while the adaptation of adjustable properties
to the changing environment is analysed by using dynamic
optimization.

Some existing design and optimization methodologies aim at
products that can be modified while in service. Reconfigurable
design is an approach to develop Reconfigurable Manufac-
turing Systems (RMS) [5] that are built of modules. These
modules can be added, removed or replaced when a new
product should be produced. RMS combines the advantages
of high accuracy and production rates associated with dedi-
cated manufacturing systems, with the versatility of flexible
manufacturing systems. An RMS is designed to have the
exact flexibility (adaptability) to enable the production of a
desired family of products. The RMS methodology defines the
properties required from a system in order to be reconfigurable,
but does not include an optimization of the system in order to
achieve its goals, which are high production rates, low costs
and fast reconfiguration.
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While RMS is limited to manufacturing systems, Adaptable
Design [6] (AD) is a methodology that addresses various
types of products. AD aims at products that can adapt from
one configuration to another, when the requirements from
the product change. In order to assess the profitability of an
AD, a cost measure is considered. That measure supports
a decision whether to produce an AD that can satisfy a
number of functions, or several non-AD products, one for
each required function. The AD approach does not inherently
include optimization, though a recent study that performs an
optimization procedure for AD is presented in [7]. For the
problem presented in that work, the dynamic behavior of the
objective functions is known during the design phase, and
therefore, there is no need in RO as in AROP.

In the field of Linear Programming, there is a class of
problems termed “multi-stage stochastic optimization prob-
lems” (see e.g., [8],[9]). These problems can be considered as
stochastic DOPs, where at each stage the uncertain parameters’
distribution is assessed according to their past realizations. The
current study might be mistakenly associated with this type of
problems as it also presents a two-stage approach for dealing
with stochastic optimization problems, but apart from the title,
it is completely different. The main differences are: (a) the
above studies are limited to problems that can be modelled as
a set of linear conditions, (b) the AROP makes a distinction
between decision variables that can or cannot be dynamically
adjusted, and (c) the AROP considers the costs of changes
between possible configurations.

The work of Avigad at al. on the ”Pareto layer” [10], is
the only one known to the authors that deals with the RO of
solutions that are able to adapt to a changing environment,
for non-linear problems. In that work, each variable of a
solution is considered as a range of values rather than a single
value. In contrast to a range rooted in uncertainties, such as
manufacturing tolerances, there, this range is comprised of all
of the variable’s possible values for a later decision. However,
dynamic optimization was not implemented within the evalu-
ation procedure, and therefore a non-optimal representation of
solutions was used.

III. METHODOLOGY

A. Fundamentals

Let x = [x1, . . . , xnx
] ∈ X be an adaptive design, where

X ⊂ R
nx is the feasible domain.

Let Y(x) ⊂ R
ny(x) be the domain for adjustable variables

of a design x, where each vector y =
[

y1(x), . . . , yny
(x)

]

∈
Y(x) represents a possible configuration of the design x. All
possible configurations of a design x, defined by Y(x), are
termed as the design’s adaptability.

Let p =
[

p1, . . . , pnp

]

be a vector of environmental pa-
rameters, which are independent from the design variables,
and at least one of them is uncertain, such that p can be
considered a scenario of a vector random variate P that is
the environmental space defining all possible scenarios of p
and their probabilities.

An objective function f(x,y,p) is defined as a mapping of
x, y, and p to R. Once a design x is implemented, its function

value depends on its configuration y, and the realized scenario
of the environmental parameters p. The configuration y can
be determined according to the realization of p. Since p is a
realization of the random variate P then we can also define
F (x,y,P) as the uncertain distribution of f , considering the
environmental uncertainty.

We also consider a cost function c(x,y,p), which is another
mapping of x, y, and p to R. It is comprised of three
components: (a) the initial implementation costs (e.g., price
of a turbine engine for a power-plant), denoted by cx, (b) the
operational costs of using the design in a configuration y (e.g.,
fuel and deterioration costs for a given working condition of
the engine), denoted by cy, and (c) the costs of the adaptations
of a design as a reaction to changes in p (e.g., the cost of
changing the engine to a different working condition), denoted
by cp. The cost function for a design is a function of the above
three costs, c(x,y,p) ≡ Γ(cx, cy, cp), where Γ is a mapping
of cx, cy and cp to R. Once again, since p is a realization of
the random variate P then we can also define C(x,y,P) as
the uncertain distribution of c, considering the environmental
uncertainty.

B. Problem Definition

An optimal adaptive solution is the solution to the following
Robust Multiobjective Optimization Problem:

min
x∈X

Z = [F (x,y,P), C(x,y,P)] (4)

where Z is a bi-objective vector random variate of perfor-
mance. To obtain point objective vectors, the desired per-
formance indicators I [•] (e.g. expected value or worst case)
can be applied. We use generic functions ϕ(x,y,P) =
If [F (x,y,P)] and ψ(x,y,P) = Ic [C(x,y,P)] to represent
these indicators.

The problem in (4) is a multi-objective robust optimization
problem, since the optimal solution should be robust to the
uncertainties in P. The fact that x is an adaptive solution
distinguishes this problem from the common RO problem (as
explained in Section II), and makes it an active RO problem.
For every scenario of the uncertainties in P, the performance
of a solution can be affected by changing the y configuration
within the solution’s adaptability. As a result, whenever the
environmental parameters change, the solution’s performance
can be improved by adaptation. For a proper evaluation of an
adaptive solution, it has to be assessed for each scenario with
its best possible performance. This performance is achieved by
the optimal configuration for that scenario. In this study, we
define the optimal configuration solely according to the objec-
tive function f , and the configuration’s cost is not considered at
this stage. This definition reflects our perception that whenever
a designer chooses to invest in a product’s adaptability in order
to achieve active robustness, his/her main concern is to enhance
performance, even if it costs more than a non-adaptive product.
According to this perspective, it is not worthwhile to invest in
adaptability, if its strength is not fully exploited to improve the
performance. Therefore the cost is a secondary objective that
should be considered as an additional criterion for comparison



4

between different adaptive solutions. An alternative definition
for optimal configuration that considers configuration’s cost is
suggested as a future work (see section V).

In order to find the optimal configuration y⋆ in a changing
environment, one must solve the following DOP:

y⋆ = argmin
y∈Y(x)

f(x,y,p) (5)

Note that, in the above formulation, when y⋆ is searched for
the values of the environmental parameters p are known. The
values of x are constant (the evaluated design doesn’t change)
and therefore the x variables are treated here as parameters too.
However, one or more values of p can change (which makes
this problem a DOP) and so, for best performance, the above
DOP should be solved whenever p changes, and y should be
adapted to the new y⋆. The optimization can be done either on-
line or off-line, depending on how rapid the response should
be.

Considering the entire environmental uncertainty, a one-to-
one mapping between the scenarios in P and the optimal
configurations in Y(x) can be defined as:

Y⋆ = argmin
y∈Y(x)

F (x,y,P) (6)

In order to transform the RO problem in (4) to an active RO
problem, y should be replaced with Y⋆ for both objectives.

Following the above, an Active Robust Opimization Problem
(AROP) is formulated:

Definition 1 (Active Robust Opimization Problem).

min
x∈X

ζ(x,P) = [ϕ(x,Y⋆,P), ψ(x,Y⋆,P)] (7)

where Y⋆ =argmin
y∈Y(x)

F (x,y,P) (8)

It is a multi-stage problem. In order to compute the objective
functions ϕ and ψ in (7), the DOP in (8) has to be solved for
every solution x with the entire environment universe P.

If ϕ and ψ are contradicting, which is most probably the
case, the solution of the AROP is expected to be a Pareto
optimal set (PS). It is defined by the following definitions,
which are basically similar to the common definitions for
MOPs:

Definition 2 (Pareto Dominance). A vector a = [a1, . . . , an]
is said to Pareto dominate another vector b = [b1, . . . , bn]
(denoted as a ≺ b) if and only if ∀i ∈ 1, . . . , n : ai ≤ bi and
∃i ∈ 1, . . . , n : ai < bi

Definition 3 (Pareto Optimality). An adaptive solution x ∈ X
is said to be Pareto optimal in X if and only if ¬∃x̂ ∈ X :
ζ(x̂,P) ≺ ζ(x,P)

Definition 4 (Pareto Optimal Set). The Pareto optimal set (PS)
is the set of all Pareto optimal adaptive solutions, i.e., PS =
{x ∈ X | ¬∃x̂ ∈ X : ζ(x̂,P) ≺ ζ(x,P)}

Definition 5 (Pareto Optimal Front). The Pareto optimal front
(PF) is the set of objective vectors corresponding to the
solutions in the PS, i.e., PF = {ζ(x,P) | x ∈ PS}

In a typical implementation, such as the examples given in
Sections III-D and IV, we sample the environmental uncer-
tainty P using Monte Carlo methods. This sample, P, leads
to sample-based representations of Y⋆, F and C – denoted
Y⋆, F and C respectively. This leads to estimates of design
and cost performance, ζ.

C. An Evolutionary Algorithm for Solving the AROP

The AROP can be solved with an evolutionary algorithm
(EA) which is described in Algorithm 1. The algorithm in-
cludes a main EA to solve the robust multiobjective optimiza-
tion problem in (7), and an additional algorithm (possibly an
EA) to solve the DOP in (8). The choices of which specific
algorithms to use for each stage are application dependent, and
they are not in the scope of this paper.

The EA is comprised of three main stages:
Steps 8–12: Allocation of the optimal configurations Y⋆

i

and the corresponding function values F (xi,Y
⋆
i ,P) for each

solution xi. This procedure is done by solving the DOP in (8).
Steps 13–14: Evaluation of the objective functions of (7)
according to RO criteria If and Ic.
The main loop: Solving the MOP in (7).

Algorithm 1 An evolutionary algorithm for solving the AROP

1: Sample the environmental space into a set P
2: g ← 1
3: POPg ← initialize a random population of x solutions
4: while stopping criteria not satisfied do
5: for all xi ∈ POPg do

6: Y⋆
i ← ∅

7: F (xi,Y
⋆
i ,P)← ∅

8: for all pj ∈ P do
9: Solve the following DOP:

y⋆
i,j ← min

y∈Y(xi)
f(xi,y,pj)

10: Y⋆
i ← Y⋆

i ∪ y⋆
i,j

11: F (xi,Y
⋆
i ,P)← F (xi,Y

⋆
i ,P) ∪ f(xi,y

⋆
i,j ,pj)

12: end for
13: ϕ

(

xi,Y
⋆
i ,P

)

← If
[

F (xi,Y
⋆
i ,P)

]

14: ψ
(

xi,Y
⋆
i ,P

)

← Ic
[

Γ
(

cx(xi), cy
(

Y⋆
i

)

, cp
(

Y⋆
i

) )]

15: end for
16: POPg+1 ← evolve the next generation from POPg

17: g ← g + 1
18: end while

D. Illustrative Example

Consider an AROP where f(x,y,p) is the following objec-
tive function:

f =
x1 sin (p1y1 + y2 + 0.5p2)

p2y
2
2 + 1

−
x2 cos

(

y1 − y2 + p21
)

y21 + 1
(9)

The design space consists of two variables x = [x1, x2] ∈ R
2

and the environmental space consists of two uncertain variables
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(d) x = xb , p = [0.3, 10]

Fig. 1. Objective function values for various values of the adjustable variables
y. The solution of the DOP in (8) is marked with a circle. Each figure is for
a different vector of environmental variables p. Note that every solution has
a different domain of adjustable variables Y(x).

with Beta probability distribution functions (B). p1 lies within
the region 0.3 ≤ p1 ≤ 1 with B coefficients a = 1.5, b = 2,
and p2 lies within 4 ≤ p2 ≤ 20 with B coefficients a = 2, b =
1.1.

The adaptability of the solutions Y(x) is given by:

−πxi ≤ yi ≤
πxi

2

Fig. 1 depicts objective function values f as a function of
y of two candidate solutions xa = [0.5 , 2] and xb = [2.5 , 1],
under two arbitrary samples of the environmental parameters
pα = [0.3, 10] and pβ = [1, 4]. Fig. 1(a) shows the function
values f(xa,y,pα), and Fig. 1(b) shows the function values
f(xa,y,pβ). Similarly, Fig. 1(c) and 1(d) depict the objective
function values corresponding to a solution xb with the same
samples of p. The solutions to the DOP in (8), y⋆

i,j and

f(xi,y
⋆
i,j ,pj), are marked with a circle in each of the figures

of Fig. 1.

The set P is sampled according to the uncertain parameters’
PDF, and it consists of k = 100 samples distributed according
to the Latin hypercube sampling method [11]. The repetitive
search for y⋆

i,j and f
(

xi,y
⋆
i,j ,pj

)

for all samples pj ∈ P

(Steps 8–12) produces the sets Y⋆
i and F

(

xi,Y
⋆
i ,P

)

. Fig. 2
depicts the Y⋆ and F (x,Y⋆,P) values for the various sce-
narios of P, together with the sets of values for the sampled
scenarios: Y⋆

i and F
(

x,Y⋆,P
)

. Fig. 2(a) and 2(b) depict the
optimal y1 and y2 values, respectively, for solution xa, and
Fig. 2(c) depicts the function values F (xa,Y

⋆
a,P). Similarly,

Fig. 2(d)–2(f) depict the same for solution xb.

By comparing between solutions xa and xb, the following
may be noted:

• Solution xa is more robust to variations in environmental
variables than solution xb. This can be noticed from the

smaller objective values’ differences in Fig. 2(c) than in
Fig. 2(f).
• xa’s robustness is achieved thanks to adaptation, and there-

fore this robustness is an active robustness. It can be seen
from Fig. 1(a) and 1(b) that for the same values of y,
xa has different function values for different scenarios of
p. Nonetheless, the optimal function values, achieved by
adaptation, are almost constant for all possible scenarios of
p.
• For the sampled set depicted in this example, the perfor-

mance of solution xb (Fig. 2(f)) is better for most of the
samples in P, while it is worse for two limited regions
at the boundary of the environmental space. There are
very few samples at these regions as a result of their
low probability. The comparison between the solutions’
performances depends on the RO criterion If (e.g., when
considering the worst-case, design xa is a better solution,
while xb is better according to the expected performance).
• There is a difference in the cost of adaptation cp between

the two solutions. xa is required to make larger adjustments
of y1 than xb, while xb is required to make larger adjust-
ments of y2 than xa. Whether xa or xb has a higher cost
of adaptation depends on which variable is more expensive
to adjust.

IV. REAL WORLD APPLICATION

In this section the advantage of the proposed optimization
approach is demonstrated through an example of an optical
table design. An ”optical table” is a platform that supports sys-
tems for optics experiments. Optics equipment often requires
vibrations to be sub-wavelength [12], therefore the optical
table has to minimize the platform motion caused by floor
vibrations. There are many sources of floor vibrations (e.g.,
street traffic, door slams, nearby machinery such as fans and
air-conditioners, acoustic noises, etc.). The diverse sources
for vibration are associated with a wide range of frequencies
and therefore the isolation system between the floor and the
platform needs to reduce the vibration’s amplitude over a
wide spectrum. The legs of an optical table usually include
an isolation system (e.g., passive rubber mounts, air springs
and regulated pneumatic isolators). The stiffness, damping and
location of the legs affect the competency of the isolation
system to absorb the floor vibrations.

A. Formulation

In this example, a simplified planar model of an optical table
is considered. It consist of a rigid platform with an evenly
distributed mass, supported by three elements: two springs
and a viscous damper. The table should be suitable to various
experiments, and therefore, the mass of the experiment’s
equipment and its center position are uncertain (within known
limits). The motivation is to search for optimal combinations of
springs and damper and their positions, so as to: (a) minimize
the amplitude ratio (AR) between the displacement of the
equipment’s center of mass and the floor’s displacement, for
a known band of vibration frequencies; and (b) minimize the
cost. An adaptive design to satisfy these goals is considered:
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Fig. 2. Y⋆(x,P) and F (x,Y⋆,P) – The best performance of both solutions under the different scenarios of the uncertain variables p. Values for all possible

scenarios (P) are depicted as surfaces, and those for the sampled set P are marked with white dots.

Fig. 3. A model of an optical table.

optical table with an adjustable damper (i.e. the damping
coefficient can be altered with a valve), and with legs (springs
and damper) that can be relocated.

The model and related parameters are depicted in Fig. 3.
The table’s length is L and its mass is M . The experimental
equipment has a total mass of m, its center of gravity is located
at xm and its vertical displacement is denoted as ym. The
spring coefficients are k1 and k2, and the damping coefficient
of the damper is c. The location of the ith element is denoted
as xi. xG represents the location of the system’s center of

gravity, which is computed by:

xG =
ML+ 2mxm
2(m+M)

(10)

The vertical displacement of the floor, denoted by yf , is
considered as a simple harmonic motion with frequency ω.
Horizontal displacement is not considered.

The AROP for an adaptive optical table is the following:

min
x∈X

ζ
(

x,P
)

=
[

ϕ
(

x,Y⋆,P
)

, ψ
(

x,Y⋆,P
)]

(11)

where: Y⋆ =argmin
y∈Y(x)

AR
(

x,y,P
)

(12)

x = [k1, k2] (13)

y = [c, x1, x2, xc] (14)

p = [m,xm, ω,M,L] (15)

where m, xm and ω are uncertain parameters. In the absence
of information regarding the parameters’ PDFs, it is assumed
that m, xm and log (ω) have uniform probability distribution
within their limits. The parameters’ values and the limits of
search variables and uncertainties are given in Table I.

Fig. 4 depicts the free body diagram of the table’s surface.
The x coordinates are measured from xG and are denoted as
x′ = x− xG.

Assuming small angles, the physical model of the system
can be described by the following set of equations:
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TABLE I. VARIABLES AND PARAMETERS OF THE OPTICAL TABLE

OPTIMIZATION PROBLEM

Type Symbol Units Lower limit Upper limit

x k1, k2 N/mm 1 100

y c N ·sec/mm 1 10

xc m 0.1 1.9

x1 m 0.1 0.9

x2 m 1.1 1.9

p m kg 20 50

xm m 0.1 1.9

ω rad/sec 1 104

L m 2

M kg 200

Fig. 4. A free body diagram for the system. The gray line represent the steady
state location of the surface. As a reaction to floor vibrations, its center of
gravity is shifted by y and the whole surface is rotated by θ.

F1 + F2 + Fc = (m+M)ÿ (16)

F1x
′
1 + F2x

′
2 + Fcx

′
c = Iθ̈ (17)

where : F1,2 = k1,2(yf − y1,2) (18)

Fc = c(ẏf − ẏc) (19)

y1,2 = y + θx′1,2 (20)

ẏc = ẏ + θ̇x′c (21)

I =
3mM(2xm − L)

2
+M(m+M)L2

12(m+M)
(22)

(16)–(21) can be reformulated as:

[M ]ẍ+[C]ẋ+ [K]x = [A]v (23)

where : x = [y(t), θ(t)] , v = [yf (t), ẏf (t)]

[M ] =

(

m+M 0
0 I

)

, [C] =

(

c cx′c
cx′c cx′2c

)

[K] =

(

k1 + k2 k1x
′
1 + k2x

′
2

k1x
′
1 + k2x

′
2 k1x

′2
1 + k2x

′2
2

)

[A] =

(

k1 + k2 c
k1x

′
1 + k2x

′
2 cx′c

)

Assuming zero initial conditions, a matrix of transfer func-
tions between V(s) = L(v) and X(s) = L(x) may be
obtained by performing a Laplace transform on both sides

of (23):

[G(s)] =

(

G11 G12

G21 G22

)

=
X(s)

V(s)

=
(

[M ]s2 + [C]s+ [K]
)−1

[A]

(24)

A transfer function between the equipment’s displacement
Ym(s) and the floor’s displacement Yf (s) can be obtained
by recalling that Ym(s) = Y (s) + x′mΘ(s), and L(ẏf (t)) =
sYf (s):

G(s) =
Ym(s)

Yf (s)
= G11 + sG12 + x′m(G21 + sG22) (25)

Finally, the amplitude ratio between the equipment’s displace-
ment and the floor’s displacement, when it vibrates at a
frequency ω, is the norm of the transfer function in (25):

AR = ∥G(jw)∥ (26)

Due to the high sensitivity of the optics equipment, the AR is
considered as its worst case over all sampled realizations of
the uncertainties:

ϕ(x,Y⋆,P) =: max
p

AR
(

x,Y⋆,P
)

(27)

The cost function is based on the following assumptions:

• The implementation cost cx does not consider costs that
are identical for all different solutions. Therefore, it is a
function of the solution’s selected springs. For a given
load, a small spring coefficient demands a larger spring
(either more coils or a larger diameter), which is also more
expensive. Considering the above, the implementation cost
function of the product is:

cx =
log(kl)

log(k1)
+
log(kl)

log(k2)
(28)

where kl is the lower limit of the spring coefficient (most
expensive).
• The configuration in which the design operates does not

affect the cost. Therefore, cy = 0.
• The energy (and its associated cost) required to move the

springs and damper is relative to the distances traveled.
The damping coefficient’s adjustment is a simple action of
turning a nob and therefore it does not have a cost. cp is
then calculated as the averaged adaptation cost during the
expected lifetime of the product. It considers all possible
adaptations between two optimal states y⋆

i and y⋆
j that

belong to the sampled set Y⋆:

cp =:

∑k
i=1

∑k
j=1 ca

∣

∣y⋆
i − y⋆

j

∣

∣

k(k − 1)
τ (29)

where ca = [0, 0.3, 0.3, 0.12] is a vector containing the
costs of adjusting each variable per unit of change, and
τ = 100 is the expected number of adaptations during the
lifetime of the product. Note that the PDFs of uncertain
parameters affect the value of cp since P is sampled
according to them.

Thus:

C
(

x,Y⋆,P
)

= cx + cp (30)
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B. Simulations

The AROP in (11)–(15) is solved with an EA as suggested
in Algorithm 1. The MOP in (11) is solved using NSGA-II-
PSA [13] with a population size of n = 100 for 50 generations.
The DOP in (12) is solved using a basic single objective
genetic algorithm with the same population size and number
of generations. In order to use the knowledge acquired with
the progress of the dynamic optimization, at every iteration
of the loop of Steps 8–12 of Algorithm 1, the existing Y⋆

i is
added to the random initial population of the GA.

First results indicate a strong correlation between the highest
AR and the lower limit of the equipment’s mass. Since the
worst case scenario is considered, the value of the mass was
taken as its lower limit: m = 20kg. The sampled set p consists
of k = 5, 000 samples distributed according to the PDFs of
xm and ω with the Latin hypercube sampling method [11].

The final approximated set and approximated front are
depicted in Fig. 5. The results indicate that softer springs
achieve better performance in reducing the reaction to the
floor’s vibrations, but they are more expensive. Interestingly,
the solution with the best damping is not the one with the
minimal value of spring coefficient for both springs, but a
solution with k1 = 1 N

mm and k2 = 3.5 N
mm . This difference

has shown to decrease the equipment’s displacement better
than two springs with an equal coefficient of 1 N

mm .
The AR and adjustments of three solutions as a function of

xm are depicted in Fig. 6. These three solutions are highlighted
in Fig. 5 as a square, a star and a diamond. Fig. 6(a)–6(c)
depict the AR and optimal locations of springs and damper for
each of the three solutions, and Fig. 6(d) depicts the optimal
damping coefficients. Note that solutions with stiffer springs,
in addition to their lower cost, require smaller adjustments to
changes in location of the experimental equipment. Another
interesting observation is that the optimal adjustments of the
damper and components’ locations for the star related solution
are not symmetric. This is a consequence of the differences
between its springs.

In order to assess the reliability of the obtained approxi-
mated front, the problem was solved for twenty independent
runs of the EA. The statistics for the solution with the best
AR (marked with a star in Fig. 5) is depicted in Fig. 7.

To check the added value of adaptation to the performance
of the adaptive optical table, it is compared with a similar
design that is not adaptive. This design possesses the same
characteristics, but it cannot be changed once implemented
(i.e., all its variables are of type x). The costs are not
considered for this comparison, and the only consideration is
minimal AR. The optimal non-adaptive product is found by
solving the following worst-case RO problem:

xna = argmin
x∈X

max
p∈P

AR(x,p) (31)

where x = [k1, k2, c, xc, x1, x2], p = [m,xm, ω,M,L], and P
and the limits of X are the same as for the AROP.

The solution to the problem in (31) is xna =
[1, 1, 1, 1, 0.9, 1.1], i.e., both springs and the damper are the
weakest possible, the damper is located at the center of the
table, and the springs are as close to the center as possible.
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Fig. 7. Box-plots for the results of the obtained adaptive solution with the
best AR, from 20 independent simulations of the EA.

The maximal AR for this configuration occurs when the center
of mass aligns with the center of the table, and its value is
ϕ(xna) = 0.456. This value is three times higher than the
worst AR of the adaptive solution x⋆, which is ϕ

(

x⋆
)

= 0.15.

V. CONCLUSIONS AND FUTURE WORK

In this paper Active Robustness, a novel robust optimization
approach, was introduced. With this approach, robustness is
enhanced by adaptation to a possibly changing environment.
The Active Robust Optimization Problem was formulated.
The AROP motivates a search for cost effective adaptive
solutions, by simultaneously optimizing for high performance
and low cost. During the design phase, the possible scenarios
of the uncertainties involved are considered, and the optimal
configuration for a sampled set of scenarios is searched for.
It was shown that an adaptive solution that possesses active
robustness is able to achieve better performance than an
equivalent non-adaptive solution.

The type of uncertainty treated in the framework of this
paper was a dynamic or uncertain environment. However, the
AROP is not limited to this type alone, and can be easily
adopted to deal with other sources of uncertainties. If the
fixed design variables are subjected to uncertainties (e.g., as
a result of manufacturing tolerances or deterioration), then
these uncertainties can be considered when solving (8). In a
similar manner, if the adjustable variables cannot be precisely
determined (e.g., due to control issues), the variation of Y⋆

from its desired value can also be added as an uncertain
parameter to (8).

Active robust optimization can be used for concept-based
optimization, where a comparison is required between candi-
date solutions of different concepts (see e.g., [14] and [15]).
Concept-based optimization involves the association of multi-
ple particular solutions with a concept. Each particular solution
from any concept is associated with a point in the objective
space, which is usually common to all concepts. Each con-
ceptual solution, and its associated particular solutions, may
be characterized by different models, different search spaces,
and/or different range of variables. This property is inherent
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Fig. 5. Final approximated set and Pareto front after 50 generations of the evolutionary algorithm.

within the AROP, as the performance and cost of each solution
are evaluated according to its own adjustable domain.

The main drawback of the AROP is its high complexity. This
complexity can be easily noticed by examining the algorithm
suggested in Section III-C: Assuming the DOP of (8) (Steps 9–
11), is solved by an EA with a population size n and G
generations; then nG function evaluations are conducted for
each sample of the environmental space. If the environmental
space is sampled k times; then the DOP requires nGk function
evaluations for each solution x. Assuming the MOP of (7)
is also terminated after G generations, and has a population
size of n; then the total number of function evaluations will
be n2G2k. In addition, the cost function has to be evaluated
as well nG times. A variety of methods exist for reducing
the number of function evaluations in Algorithm 1 or using
approximation methods in the case of expensive functions (for
a comprehensive survey see [16]). An important future work,
in order to allow for practical implementation of the AROP in
real life applications, will be to implement these methods.

Another future work is to further investigate the adaptation’s
cost of the AROP (cp). The adaptation’s cost suggested here
only considers the resources required for adaptation (reflected
from the differences between optimal configurations). In [17],
a method to optimize adaptation to a given environmental
change was introduced. There, in addition to the resources
required for adaptation, the performance of the solution during
adaptation is also considered. An integration of this method
into the AROP might result in a more accurate evaluation of
the solution’s active robustness.

The suggested AROP is a two-stage optimization problem,
where the first stage (Equation (8)) considers the solution’s best
performance for each scenario, and the second stage (Equa-
tion (7)) considers the performance–cost trade-off between
candidate solutions. Since the main goals are performance

and cost, it is conceivable to evaluate a solution according
to these two goals in the first stage as well. If this is the
case, Equation (8) needs to be reformulated to the following
dynamic MOP:

Y⋆ =argmin
y∈Y(x)

Z = [F (x,y,P), Cy(x,y,P)] (32)

This means that a solution would be assessed according to
sub-optimal configurations if they contribute to reducing its
operational costs (cy). In contrast to the one-to-one mapping
of (8) between each environmental scenario and its optimal
configuration, here each scenario would be associated with a
set of Pareto optimal configurations. As a result the objective
functions’ variate F and C should be evaluated according to
a set-based approach. As a future work, the pros and cons of
the extended formulation of the AROP should be studied.

So far, the AROP deals with cases where there is only a
single objective function. The next stage of this study would
deal with generalizing the AROP to enhance robustness of
solutions to multiobjective problems. In a MOP, the best
performances of an adaptive solution, for every realization
of the uncertainties, is a set of Pareto optimal configurations.
Therefore, we envisage that a set-based approach for evaluating
the solutions’ performances would be required.
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[4] C. Cruz, J. R. González, and D. A. Pelta, “Optimization in dynamic
environments: a survey on problems, methods and measures,” Soft

Computing, vol. 15, pp. 1427–1448, 2011.

[5] Y. Koren, U. Heisel, F. Jovane, T. Moriwaki, G. Pritschow, G. Ulsoy, and

H. V. Brussel, “Reconfigurable manufacturing systems,” CIRP Annals

- Manufacturing Technology, vol. 48, no. 2, pp. 527 – 540, 1999.

[6] P. Gu, M. Hashemian, and A. Nee, “Adaptable design,” CIRP Annals -

Manufacturing Technology, vol. 53, no. 2, pp. 539 – 557, 2004.

[7] D. Xue, G. Hua, V. Mehrad, and P. Gu, “Optimal adaptable design
for creating the changeable product based on changeable requirements
considering the whole product life-cycle,” Journal of Manufacturing

Systems, vol. 31, no. 1, pp. 59 – 68, 2012.

[8] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski, “Adjustable
robust solutions of uncertain linear programs,” Mathematical Program-

ming, vol. 99, no. 2, pp. 351–376, 2004.

[9] D. Bertsimas, V. Goyal, and X. Sun, “A geometric characterization of
the power of finite adaptability in multistage stochastic and adaptive
optimization,” Mathematics of Operations Research, vol. 36, no. 1, pp.
24–54, 2011.

[10] G. Avigad, E. Eisenstadt, and A. Goldvard, “Pareto layer: Its formula-



11

tion and search by way of evolutionary multi-objective optimization,”
Engineering Optimization, vol. 42, no. 5, pp. 453–470, 2010.

[11] M. D. McKay, R. J. Beckman, and W. J. Conover, “Comparison of three
methods for selecting values of input variables in the analysis of output
from a computer code,” Technometrics, vol. 21, no. 2, pp. 239–245,
1979.

[12] Newport Corporation. Vibration control - identifying and
controlling vibrations in the workplace. [Online]. Avail-
able: http://photonics.com/edu/Handbook.aspx?AID=25517 [Accessed:
29.01.2013]

[13] S. Salomon, G. Avigad, A. Goldvard, and O. Schütze, “PSA a new
scalable space partition based selection algorithm for MOEAs,” in
EVOLVE - A Bridge between Probability, Set Oriented Numerics, and

Evolutionary Computation II, ser. Advances in Intelligent Systems and
Computing, O. Schütze, Ed. Springer Berlin Heidelberg, 2013, vol.
175, pp. 137–151.

[14] C. Mattson and A. Messac, “Pareto frontier based concept selection
under uncertainty, with visualization,” Optimization and Engineering,
vol. 6, no. 1, pp. 85–115, 2005.

[15] G. Avigad and A. Moshaiov, “Simultaneous concept-based evolutionary
multi-objective optimization,” Applied Soft Computing, vol. 11, no. 1,
pp. 193 – 207, 2011.

[16] Y. Jin, S. Member, and J. Branke, “Evolutionary Optimization in
Uncertain Environments A Survey,” Evolutionary Computation, IEEE

Transactions on, vol. 9, no. 3, pp. 303–317, 2005.

[17] S. Salomon, G. Avigad, P. J. Fleming, and R. C. Purshouse, “Optimiza-
tion of adaptation – a multi-objective approach for optimizing changes
to design parameters,” in Evolutionary Multi-Criterion Optimization,
ser. Lecture Notes in Computer Science, R. C. Purshouse, Ed. Springer
Berlin Heidelberg, 2013, vol. 7811, pp. 21–35.


